

CS283: Robotics Spring 2025: Kinematics

Sören Schwertfeger / 师泽仁

ShanghaiTech University

ADMIN

Project

- 2 credit points!
- Work in groups, min 2 students, max 3 students!
- Next lecture: Topics will be proposed...
 - You can also do your own topic, but only after approval of Prof. Schwertfeger
 - Prepare a short, written proposal till next Tuesday!
- Topic selection: Next Thursday!
 - One member writes an email for the whole group to Bowen: zhangyq12023 (at)shanghaitech.edu.cn ; Put the other group members on CC
 - Subject: [Robotics] Group Selection
- One graduate student from my group will co-supervise your project
- Weekly project meetings!
- Oral "exams" to evaluate the contributions of each member
- No work on project => bad grade of fail

Grading

• Grading scheme is not 100% fixed

 Approximately: 		
Lecture:	50%	
 Quizzes during lecture (reading assignments): 		4%
Homework:		18%
Midterm:		8%
Final:		20%
Project:	50%	
Paper Presentation:		5%
 Project Proposal: 		5%
 Intermediate Report: 		5%
 Weekly project meetings: 		10%
 Final Report: 		10%
 Final Demo: 		10%
 Final Webpage: 		5%

Campus Autonomy: High Speed Navigation

- Use ROS move_base and TEB planner for high speed robot control.
- Include robot dynamics (mass, acceleration, ...)
- Use 3D LRF to detect and predict motion of obstacles (open source software available)
- High-speed navigation through light crowds of students.
- Difficulty: medium
- Requite: good demo
- Supervisor: Yongqi

Ground Truth Localization via AprilTags

- Print (very big) AprilTags and distribute in scenario (e.g. underground parking)
- Use Faro 3D scanner to (semi-) automatically detect and locate AprilTags ->
- Build ground truth 3D map of AprilTag poses
- Write a small program to detect AprilTags in the sensor data
- (If observed with more than one camera, minimize error)
- Generate ground truth trajectories with this
- Difficulty: Medium
- Graduate Supervisor: Bowen Xu

Robot Dog Project

- Reserved for certain students
- Program advanced capabilities for robot
- Difficulty: High
- Graduate Supervisor: Xin Duan

Fetch Robot

Some nice project with fetch robot

- Difficulty: Advanced
- Supervisor: Yaxun Yang

Cotton Project Revival

- Difficulty: Advanced
- Supervisor: Prof. Schwertfeger
- Big project –
 2 teams can share the work:
- Re-do the cotton collection hardware
- Revive the perception and control part

Project Suggestion: Draw with Sand

- Build and program such a robot ...
- Quite difficult ...
- But cool ...
- Bigger group (with sub-tasks) allowed

Finish Omni-Wheel-Leg Journal Paper

- Do final work on journal paper
- Extension of this paper:
- OmniWheg: An Omnidirectional Wheel-Leg Transformable Robot
- Ruixiang Cao; Jun Gu;
 Chen Yu; Andre Rosendo
- <u>https://ieeexplore.ieee.org/</u> <u>document/9982030</u>
- Advisor: Fujing

Leap Hand

- Install <u>https://v1.leaphand.com/</u> LeaHand on Kinova Arm
- Get all the software to work well together
- Work together with Yaxun on her paper
- Difficulty medium
- Supervisor: Yaxun Yang

Robot Introspection for LLMs

- Collect all kinds of robot status data, e.g.:
 - Size, height, weight, capabilities, max speed, urdf, ...
 - Current speed, current power consumption, current direction, current mission objective, current battery status, current CPU temp, cpu usage, mem usage
 - ROS status, running nodes, available topics & services, joint values, console log, ...
 - All kinds of other, robot intrinsic data
- Feed it into an LLM
- Generate a benchmark to test how well the LLM understands the robot
- Supervisor: Prof. Schwertfeger

- Max one group per topic!
- In case of double selection we will discuss alternatives with both groups
- If no one changes it, it will be "First come First Serve"

				Difficulty:	
	Name	Advisor 🗖	Hardware 🗖	Software 🔽	Algorithm 🗖
1	Campus Autonomy: High Speed Navigation	Yongqi	low	low	medium +
2	April Tag Localization	Bowen	medium	medium	medium
3	Robot Dog Project	Xin Duan	medium	low	medium
4	Fetch Project	Yaxun Yang	low	medium	medium
5	Cotton Project Revival: Gripping	Prof. Schwertfeger	medium+	low	low
6	Cotton Project Revival: Perception & Autonomy	Prof. Schwertfeger	low	advanced	low
7	Writing Project	Prof. Schwertfeger	advanced	medium	medium
8	OmniWheg Project	Fujing	medium	medium	medium
9	Leap Project	Yaxun Yang	medium	medium	medium
10	Robot Introspection for LLMs	Prof. Schwertfeger	low	medium	medium

KINEMATICS

Motivation

- Autonomous mobile robots move around in the environment.
 Therefore ALL of them:
 - <u>They need to know where they are.</u>
 - They need to know where their goal is.
 - They need to know **how** to get there.

•Odometry!

- Robot:
 - I know how fast the wheels turned =>
 - I know how the robot moved =>
 - I know where I am ☺

Odometry

Robot:

- I know how fast the wheels turned =>
- I know how the robot moved =>
- I know where I am ☺
- Marine Navigation: Dead reckoning (using heading sensor)

• Sources of error (AMR pages 269 - 270):

- Wheel slip
 - Uneven floor contact (non-planar surface)
 - Robot kinematic: tracked vehicles, 4 wheel differential drive..
- Integration from speed to position: Limited resolution (time and measurement)
- Wheel misalignment
- Wheel diameter uncertainty
- Variation in contact point of wheel

Mobile Robots with Wheels

- Wheels are the most appropriate solution for most applications
- Three wheels are sufficient to guarantee stability
- With more than three wheels an appropriate suspension is required
- Selection of wheels depends on the application

The Four Basic Wheels Types I

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle

The Four Basic Wheels Types II

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point
- d) Ball or spherical wheel: Suspension technically not solved

Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is be guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque or reductions in the gear box.
- Most arrangements are non-holonomic (see chapter 3)
 - require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

Different Arrangements of Wheels I

Two wheels

Center of gravity below axle

• Three wheels

Different Arrangements of Wheels II

• Four wheels

• Six wheels

Uranus, CMU: Omnidirectional Drive with 4 Wheels

- Movement in the plane has 3 DOF
 - thus only three wheels can be independently controlled
 - It might be better to arrange three swedish wheels in a triangle

MARS Rescue Robot: Tracked Differential Drive

- Kinematic Simplification:
 - 2 Wheels, located at the center

Differential Drive Robots

Ackermann Robot

- No sideways slip than differential drive during turning ⁽ⁱ⁾
- Cannot turn on the spot ⊗

Introduction: Mobile Robot Kinematics

• Aim

- Description of mechanical behavior of the robot for design and control
- Similar to robot manipulator kinematics
- However, mobile robots can move unbound with respect to its environment
 - there is no direct way to measure the robot's position
 - Position must be integrated over time
 - Leads to inaccuracies of the position (motion) estimate
 - -> the number 1 challenge in mobile robotics

Kinematics vs. Kinetics

Kinematics:

- Greek origin: "motion", "moving"
- Describes motion of points and bodies
- Considers position, velocity, acceleration, ...
- Examples: Celestial bodies, particle systems, robotic arm, human skeleton

Kinetics:

- Describes causes of motion
- Effects of forces/moments
- ► Newton's laws, e.g., F = ma

Kinematics and Control Slides: Andreas Geiger https://uni-tuebingen.de/fakultaeten/mathematischnaturwissenschaftlichefakultaet/fachbereiche/informatik/lehrstuehle/autono mous-vision/lectures/self-driving-cars/

30

What are kinematics?

- Describes the motion of points, bodies (objects), and systems of objects
 - Does not consider the forces that cause them (that would be kinetics)
 - Also known as "the geometry of motion"
- For robotics:
 - Describes the motion of the vehicle
 - Puts position/orientation in relation with translational/angular velocities and accelerations
 - Used for regularization, prediction, etc.

What are kinematics?

32

What are kinematics?

 It does not stop at acceleration, but theory involves an arbitrarily high number of derivatives:

In practice

- Often we use finite models to simplify/smoothify the system
 - Locally constant acceleration

$$\mathbf{x}(t) = \mathbf{x}_0 + \mathbf{v}_0 t + \frac{1}{2}\mathbf{a}_0 t^2$$

Locally constant velocity

$$\mathbf{x}(t) = \mathbf{x}_0 + \mathbf{v}_0 t$$

Why do we want to introduce kinematic models

- For prediction
 - E.g.: If we have an initial estimate, we can use a kinematic model to generate a prior pose at a later point
- For smoothness
 - E.g.: If we estimate poses, we may constrain their difference to be consistent with some prior or measured velocity
- To impose constraints
 - E.g.: The motion may be more specific and include kinematic constraints
- For control
 - E.g.: Knowledge of how the system is moving is beneficial for reaching the goal pose

COORDINATE SYSTEM

 $\mathcal{O}_{S[k]}$

 $\hat{\mathbf{x}}_{R[k]}$

Right Hand Coordinate System

- Standard in Robotics
- Positive rotation around X is anti-clockwise
- Right-hand rule mnemonic:
 - Thumb: z-axis
 - Index finger: x-axis
 - Second finger: y-axis
 - Rotation: Thumb = rotation axis, positive rotation in finger direction
- Robot Coordinate System:
 - X front
 - Z up (Underwater: Z down)
 - Y ???

 $\mathcal{O}_{R[k]}$

Odometry

With respect to the robot start pose: Where is the robot now?

Two approaches – same result:

- Geometry (easy in 2D)
- Transforms (better for 3D)

 $\mathcal{F}_{R[X]}$: The *F*rame of reference (the local coordinate system) of the *R*obot at the time *X*

Use of robot frames $\mathcal{F}_{R[X]}$

 $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$ (coordinates (0, 0)

 $\overrightarrow{\mathcal{O}_{R[X]}P}$: position vector from $\mathcal{O}_{R[X]}$ to point P - $\begin{pmatrix} x \\ y \end{pmatrix}$

- Object P is observed at times 0 to 4
- Object P is static (does not move)
- The Robot moves

(e.g. $\mathcal{F}_{R[0]} \neq \mathcal{F}_{R[1]}$)

=> (x, y) coordinates of P are different in all frames, for example:

•
$$\overline{\mathcal{O}_{R[0]}}\vec{P} \neq \overline{\mathcal{O}_{R[1]}}\vec{P}$$

Position, Orientation & Pose

- Position:
 - $\binom{x}{y}$ coordinates of any object or point (or another frame)
 - with respect to (wrt.) a specified frame
- Orientation:
 - (Θ) angle of any oriented object (or another frame)
 - with respect to (wrt.) a specified frame
- Pose:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ position and orientation of any oriented object
 - with respect to (wrt.) a specified frame

Translation, Rotation & Transform

- Translation:
 - $\binom{x}{y}$ difference, change, motion from one reference frame to another reference frame
- Rotation:
 - (Θ) difference in angle, rotation between one reference frame and another reference frame
- Transform:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ difference, motion between one reference frame and another reference frame

Position & Translation, Orientation & Rotation

У 5 $\mathcal{F}_{R[1]}$ ${}^{R[0]}_{R[1]}t \approx \begin{pmatrix} 4.5 \\ 3.2 \end{pmatrix}$ $\mathcal{O}_{R[1]}$ ${}^{R[0]}_{R[1]}R \ (\Theta \approx -30^{\circ})$ $\mathcal{F}_{R[0]}$ 5 $\mathcal{O}_{R[0]}$ Χ

- $\mathcal{F}_{R[X]}$: Frame of reference of the robot at time X
- Where is that frame $\mathcal{F}_{R[X]}$?
 - Can only be expressed with respect to (wrt.) another frame (e.g. global Frame \mathcal{F}_G) =>
 - Pose of $\mathcal{F}_{R[X]}$ wrt. \mathcal{F}_{G}
- $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$
 - $\overrightarrow{\mathcal{O}_{R[X]}\mathcal{O}_{R[X+1]}}$: **Position** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

so $\mathcal{O}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

 $\triangleq R[X] \\ R[X+1] t : \mathbf{Translation}$

- The angle Θ between the x-Axes:
 - **Orientation** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

 $\triangleq \frac{R[X]}{R[X+1]}R : \text{Rotation of } \mathcal{F}_{R[X+1]} \text{ wrt. } \mathcal{F}_{R[X]}$

Transform

- $\frac{R[X]}{R[X+1]}t$: Translation
 - Position vector (x, y) of R[X + 1] wrt. R[X]
 - - Angle (Θ) of R[X + 1] wrt. R[X] \bullet

 ${R[X] \atop R[X+1]} T \equiv \begin{cases} R[X+1]^{T} \\ R[X+1]^{T} \end{cases}$ Transform: •

Geometry approach to Odometry

We want to know:

- Position of the robot (x, y)
- Orientation of the robot (Θ)
- => together: Pose $\begin{pmatrix} x \\ y \\ \Theta \end{pmatrix}$

With respect to (wrt.) \mathcal{F}_{G} : The global frame; global coordinate system

$$\mathcal{F}_{R[0]} = \mathcal{F}_{G} \Rightarrow {}^{G}\mathcal{F}_{R[0]} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$${}^{G}\mathcal{F}_{R[1]} = {}^{R[0]}_{R[1]}T \approx \begin{pmatrix} 4.5\\3.2\\30^{\circ} \end{pmatrix}$$

Mathematical approach: Transforms

Where is the Robot now?

TRANSFORMS & STUFF ③

Affine Transformation

- Function between affine spaces. Preserves:
 - points,

Robotics

- straight lines
- planes
- sets of parallel lines remain parallel
- Allows:
 - Interesting for Robotics: translation, rotation, (scaling), and chaining of those
 - Not so interesting for Robotics: reflection, shearing, homothetic transforms
- Rotation and Translation:

$$\begin{bmatrix} \cos\theta & \sin\theta & X \\ -\sin\theta & \cos\theta & Y \\ 0 & 0 & 1 \end{bmatrix}$$

Math: Rigid Transformation

- Geometric transformation that preserves Euclidean distance between pairs of points.
- Includes reflections (i.e. change from right-hand to left-hand coorinate system and back)
- Just rotation & translation: rigid motions or proper rigid transformations:
 - Decomposed to rotation and translation
 - => subset of Affine Transofrmations

 In Robotics: Just use term Transform or Transformation for rigid motions (without reflections)

Lie groups for transformations

- Smoothly differentiable Group
- No singularities
- Good interpolation

- SO: Special Orthorgonal group
- SE: Special Euclidian group
- Sim_ilarity transform group

Group	Description	Dim.	Matrix Representation
SO(3)	3D Rotations	3	3D rotation matrix
SE(3)	3D Rigid transformations 6	Linear transformation on	
$\operatorname{SE}(3)$	SE(3) SD Rigid transformations 0		homogeneous 4-vectors
SO(2)	2D Rotations	1	2D rotation matrix
SF(9)	2D Rigid transformations	3	Linear transformation on
$\operatorname{SE}(2)$	2D Rigid transformations		homogeneous 3-vectors
Sim(3)	3D Similarity transformations (rigid motion + scale)	7	Linear transformation on
			homogeneous 4-vectors

http://ethaneade.com/lie.pdf

	Notation	Meaning		
Transform	$\mathcal{F}_{\mathrm{R}[k]}$	Coordinate frame attached to object 'R' (usually the robot)		
nanoionn		at sample time-instant k .		
	$\mathcal{O}_{\mathrm{R}[k]}$	Origin of $\mathcal{F}_{\mathbf{R}[k]}$.		
$\mathcal{F}_{A} \qquad A_{\mathbf{p}} \qquad P \qquad \mathcal{G}_{\mathbf{p}} \qquad \mathcal{F}_{G} \qquad \mathcal{F}_{G} \qquad \mathcal{O}_{G}$	${}^{\mathrm{R}[k]}\mathrm{p}$	For any general point P , the position vector $\overline{\mathcal{O}_{\mathbf{R}[k]}}P$ resolved		
		in $\mathcal{F}_{\mathbf{R}[k]}$.		
	$^{ m H}\hat{\mathbf{x}}_{ m R}$	The x-axis direction of \mathcal{F}_{R} resolved in \mathcal{F}_{H} . Similarly, ${}^{H}\hat{y}_{R}$,		
		${}^{\mathrm{H}}\hat{\mathbf{z}}_{\mathrm{R}}$ can be defined. Obviously, ${}^{\mathrm{R}}\hat{\mathbf{x}}_{\mathrm{R}} = \hat{\mathbf{e}}_{1}$. Time indices can		
\mathcal{F}_B		be added to the frames, if necessary.		
\mathcal{O}_B $\mathbf{R}^{[k]}_{S[k']}\mathbf{R}$		The rotation-matrix of $\mathcal{F}_{S[k']}$ with respect to $\mathcal{F}_{R[k]}$.		
$^{ m R}_{ m S}{ m t}$		The translation vector $\overrightarrow{\mathcal{O}_R\mathcal{O}_S}$ resolved in \mathcal{F}_R .		
Transform ${}^{G}_{A}t \triangleq \overrightarrow{\mathcal{O}_{G}}\overrightarrow{\mathcal{O}_{A}}$ resolved in \mathcal{F}_{G} between two ${}^{G}\mathbf{p} = {}^{G}_{A}\mathbf{R} \ {}^{A}\mathbf{p} + {}^{G}_{A}t$ coordinate frames ${}^{G}\mathbf{p} = {}^{G}_{A}\mathbf{R} \ {}^{A}\mathbf{p} + {}^{G}_{A}t$ $\triangleq {}^{G}_{A}\mathbf{T}(\ {}^{A}\mathbf{p}).$		$\begin{pmatrix} {}^{\mathrm{G}}\mathbf{p} \\ 1 \end{pmatrix} \equiv \begin{pmatrix} {}^{\mathrm{G}}\mathbf{R} & {}^{\mathrm{G}}\mathbf{t} \\ 0_{1\times [2,3]} & 1 \end{pmatrix} \begin{pmatrix} {}^{\mathrm{A}}\mathbf{p} \\ 1 \end{pmatrix} {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{T} \equiv \begin{cases} {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{t} \\ {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{R} \end{cases}$		
		$\begin{bmatrix} \cos \theta & -\sin \theta & G_A t_X \end{bmatrix}$		
		$\sin\theta$ $\cos\theta$ ${}^{G}_{A}t_{y}$		

Transform: Operations

Inverse of a Transform :

$${}_{A}^{B}\mathbf{T} = {}_{B}^{A}\mathbf{T}^{-1} \equiv \left\{ {}_{B}^{-}{}_{B}^{A}\mathbf{R}^{\mathsf{T}}{}_{B}^{A}\mathbf{t} \\ {}_{B}^{A}\mathbf{R}^{\mathsf{T}} \right\}$$

Relative (Difference) Transform : ${}^{B}_{A}\mathbf{T} = {}^{G}_{B}\mathbf{T}^{-1} {}^{G}_{A}\mathbf{T}$

See: Quick Reference to Geometric Transforms in Robotics by Kaustubh Pathak on the webpage!

Chaining:
$${}_{R[X+1]}^{G}\mathbf{T} = {}_{R[X]}^{G}\mathbf{T} {}_{R[X+1]}^{R[X]}\mathbf{T} \equiv \begin{cases} {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}t + {}_{R[X]}^{G}t \\ {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}\mathbf{R} \end{cases} = \begin{cases} {}_{R[X+1]}^{R[X+1]}t \\ {}_{R[X+1]}^{G}\mathbf{R} \end{pmatrix}$$

In 2D Translation:

In 2D Rotation:

$$\begin{bmatrix} R[X+1] t_{X} \\ G \\ R[X+1] t_{Y} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos {}_{R[X]} \theta & -\sin {}_{R[X]} \theta & {}_{R[X]} t_{X} \\ \sin {}_{R[X]} \theta & \cos {}_{R[X]} \theta & {}_{R[X]} t_{Y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R[X] \\ R[X+1] t_{X} \\ R[X] \\ R[X] \\ R[X+1] t_{Y} \\ 1 \end{bmatrix}$$

$${}_{R[X+1]}^{G}R = \begin{bmatrix} \cos_{R[X+1]}^{G}\theta & -\sin_{R[X+1]}^{G}\theta \\ \sin_{R[X+1]}^{G}\theta & \cos_{R[X+1]}^{G}\theta \end{bmatrix} = \begin{bmatrix} \cos_{R[X]}^{G}\theta & -\sin_{R[X]}^{G}\theta \\ \sin_{R[X]}^{G}\theta & \cos_{R[X]}^{G}\theta \end{bmatrix} \begin{bmatrix} \cos_{R[X+1]}^{R[X]}\theta & -\sin_{R[X]}^{R[X]}\theta \\ \sin_{R[X+1]}^{R[X]}\theta & \cos_{R[X+1]}^{R[X]}\theta \end{bmatrix}$$

In 2D Rotation (simple):
$${}_{R[X+1]}^{G}\theta = {}_{R[X]}^{G}\theta + {}_{R[X]}^{R[X]}\theta$$

In ROS: nav_2d_msgs/Pose2DStamped

