
3D Scanning with Fetch Robot

Qi Jiang
2022233182

jiangqi2022@shanghaitech.edu.cn

Xiao Han
2022233173

hanxiao2022@shanghaitech.edu.cn

Abstract

3D scanning technology, widely valuable in fields like
quality control, reverse engineering, and cultural heritage
preservation, is essential for creating precise digital mod-
els of physical objects. Traditional methods, however, of-
ten face limitations in resolution and capture range, lead-
ing to incomplete scans that miss the full shape of objects.
This study introduces a novel automatic 3D scanning ap-
proach using an RGBD camera attached to a fetch robot’s
gripper, which leverages the robot’s motion planning for de-
tailed object scanning. The process involves analyzing point
cloud normals to identify and rescan low-quality areas. The
RGBD camera consistently maintains a 30 cm distance from
the object, ensuring high-resolution results. Moreover, this
method is adaptable for both object and scene scanning,
enabling thorough and high-quality reconstructions.

1. Introduction
3D scanning is a technology used to capture the physi-
cal shape and appearance of an object or environment in
three dimensions. The primary output of a 3D scan is a
point cloud, which is a collection of data points in three-
dimensional space. These points can be connected to form
a mesh, a digital model that represents the surface of the
scanned object and the mesh can be textured and colored if
the scanner captures surface imagery. The application of 3D
scanning spans various sectors. In manufacturing, it plays a
crucial role in quality control and reverse engineering. The
healthcare industry utilizes it for creating prosthetics and
surgical planning. It’s also instrumental in preserving cul-
tural heritage, aiding in construction projects, and in the
entertainment industry, where it facilitates the creation of
digital models for films and video games.

Current 3D scanning methods commonly face resolution
limitations tied to the distance of the scanning device from
the target. For instance, scanning larger objects like a ta-
ble or an entire room from a distance often leads to lower
resolution results. This is a significant drawback, especially
for interactive applications like virtual and augmented re-

ality (VR/AR), video games, smart home technology, and
embodied AI. In these fields, there is a strong preference
for high-resolution scans that produce densely colored point
clouds, enabling the reconstruction of high-quality meshes
for the objects in question. This level of detail is crucial for
creating immersive and accurate digital environments and
experiences.

In our study, we employ a mobile fetch robot equipped
with an RGBD Kinect sensor attached to its gripper for au-
tomated, high-resolution 3D scanning. The robot arm is de-
signed to maneuver around the object at a close range, ap-
proximately 30 cm, to ensure high-resolution results. The
process begins with the robotic arm conducting a long-
range, coarse-grained scan. This initial scan is converted
into an octomap, which aids in preventing arm collision dur-
ing motion planning. For each scan, the octomap records
the scanning distance and the normal direction of every
point. Utilizing this data, we filter out low-quality points
based on their normal direction and distance from the sen-
sor, earmarking them for rescanning. In this rescanning
phase, we prioritize the farthest points from the set for the
robot arm to rescan. This step is repeated until a high-
quality scan is achieved. The final stage involves merging
all the raw scans to form a comprehensive, high-resolution
point cloud, complete with color. This method significantly
improves the quality and detail of the 3D scanning output,
making it particularly suitable for applications that require
precise and detailed digital representations.

2. ROS Dependencies
In this section, we introduce some ROS dependencies lever-
aged in our work.

2.1. Azure Kinect ROS Driver

The Azure Kinect ROS Driver represents a significant ad-
vancement in the realm of robotics and sensor integration,
particularly emphasizing the Azure Kinect’s depth sensing
and RGB capture capabilities. Azure Kinect, a cutting-
edge sensor developed by Microsoft, stands out for its ex-
ceptional depth sensing technology, which allows for pre-
cise three-dimensional environmental mapping and object

1



recognition. This technology is crucial for various appli-
cations, from navigating complex spaces in robotics to cre-
ating detailed 3D models of environments. In addition to
depth sensing, Azure Kinect boasts a high-quality RGB
camera, providing clear and accurate color imaging. This
feature is essential for tasks that require color recognition or
detailed visual analysis, such as object detection and track-
ing in dynamic environments.

Integrating these capabilities with the Robot Operating
System (ROS) through the Azure Kinect ROS Driver opens
up a new world of possibilities for robotics developers and
researchers. The driver ensures that the intricate data cap-
tured by Azure Kinect’s depth and RGB sensors are ef-
ficiently translated and made accessible within the ROS
ecosystem. This integration enables advanced applications
in robotic vision and spatial awareness, allowing robots to
interact more effectively with their surroundings and per-
form complex tasks with greater accuracy. By combining
Azure Kinect’s sophisticated depth sensing and RGB cap-
ture with the flexibility and power of ROS, the Azure Kinect
ROS Driver stands as a pivotal tool in advancing robotic ca-
pabilities and expanding the scope of what can be achieved
in the field of robotics and automated systems.

2.2. Easy handeye calibration

The Easy Handeye Calibration package[4] is designed to
simplify and streamline the process of calibrating the re-
lationship between a robot’s end-effector and a camera or
any other sensor attached to it. Calibration is a critical step
in robotic applications, particularly those involving precise
manipulation or interaction with objects based on visual
feedback. In traditional setups, this calibration process can
be time-consuming and technically challenging, requiring
significant expertise in both robotics and vision systems.
The Easy Handeye Calibration package addresses this chal-
lenge by providing an intuitive, user-friendly interface and a
set of robust algorithms that automate much of the calibra-
tion process. This package dramatically reduces the com-
plexity and time required to achieve accurate hand-eye cali-
bration, making it accessible to a broader range of users, in-
cluding those with limited technical background in robotics
or computer vision.

The package is designed to be highly versatile and com-
patible with a variety of robotic arms and vision systems,
making it a valuable tool for a wide array of applications,
from industrial automation to research and development
in robotics. By leveraging advanced algorithms, the Easy
Handeye Calibration package can accurately determine the
transformation between the robot’s coordinate system and
the camera’s viewpoint, enabling precise alignment and
synchronization between the robot’s movements and the
sensor’s data. This capability is crucial for tasks that rely on
visual guidance, such as pick-and-place operations, assem-

bly tasks, or any application where a robot interacts with
its environment based on visual input. The Easy Handeye
Calibration package not only enhances the efficiency and
accuracy of these tasks but also opens up new possibilities
in robotic applications by simplifying one of the most com-
plex and critical aspects of robot setup and operation.

2.3. MoveIt

The MoveIt ROS package is a highly influential and widely
used software in the field of robotics, serving as an essen-
tial tool for motion planning, manipulation, kinematics, and
control. Developed within the Robot Operating System
(ROS) framework, MoveIt is designed to facilitate com-
plex robotic movement and interaction with the environ-
ment in a user-friendly and efficient manner. It stands out
for its ability to handle both the computational and practi-
cal aspects of robotic movement, including collision detec-
tion, real-time planning, and manipulation. MoveIt’s com-
prehensive suite of tools and libraries allows roboticists to
develop sophisticated motion planning algorithms, manage
robot kinematics, and integrate sensor information for re-
active control. This makes it an invaluable asset in appli-
cations ranging from industrial automation to research in
humanoid robotics, where precise and safe movement is
paramount.

What sets MoveIt apart is its adaptability and ease of use,
allowing it to be implemented with a wide variety of robots,
from small desktop arms to full-size humanoid robots. Its
modular architecture and integration with the ROS ecosys-
tem enable developers to customize and extend its capabil-
ities to suit specific application needs. MoveIt’s interac-
tive graphical interface and visualization tools further aid
in simplifying the task of motion planning and execution,
making it more accessible to users without deep expertise
in robotics. This user-friendliness, combined with its pow-
erful features, has made MoveIt a cornerstone in the ROS
community, driving innovation and progress in the field of
robotics. Whether for industrial applications, academic re-
search, or hobbyist projects, MoveIt provides a comprehen-
sive solution for robotic motion planning and execution, un-
derscoring its significance in advancing the capabilities and
accessibility of robotic systems.

2.4. OctoMap

The OctoMap[1–3] ROS package represents a pivotal de-
velopment in the field of 3D mapping and environment
modeling within the Robot Operating System (ROS) frame-
work. At its core, OctoMap is a versatile and highly effi-
cient library for generating and manipulating 3D occupancy
grids. It excels in creating detailed, three-dimensional maps
of environments by aggregating data from various sensors,
such as LiDARs or RGB-D cameras. This capability is
crucial in a wide range of robotics applications, including



autonomous navigation, obstacle avoidance, and complex
scene understanding. The OctoMap package stands out for
its unique approach to spatial representation, using an oc-
tree structure that allows for compact storage while main-
taining high-resolution details in areas of interest. This ef-
ficiency in data representation and manipulation makes Oc-
toMap an ideal choice for real-time applications where both
accuracy and computational efficiency are essential.

Integrating OctoMap with ROS broadens its applicabil-
ity and ease of use in robotic systems. Through this inte-
gration, roboticists and developers can seamlessly incorpo-
rate 3D mapping and environment modeling into their ROS-
based applications. The package provides tools for updating
and querying the map, enabling robots to interact with dy-
namic environments intelligently and adaptively. Further-
more, OctoMap’s compatibility with other ROS packages,
such as navigation and perception, allows for the creation of
sophisticated and comprehensive robotic systems. The abil-
ity to efficiently process and utilize 3D spatial information
opens up new possibilities in areas like autonomous explo-
ration, search and rescue operations, and intricate manipu-
lation tasks. Overall, the OctoMap ROS package is a tes-
tament to the advancements in robotic capabilities, offering
a robust and scalable solution for 3D environment mapping
and management in the ever-evolving field of robotics.

3. Implementation
3.1. System Description

In our approach, we utilize a Fetch robot arm equipped
with an RGBD Kinect sensor mounted on its gripper. This
setup enables the capture of dense point clouds with RGB
color. As the Fetch robot arm moves, it facilitates the ac-
quisition of multi-view, high-resolution scans of objects.
These scans are then merged to form a comprehensive and
dense point cloud, which can be utilized to reconstruct high-
quality mesh of the objects.

3.2. Methodology Implementation Details

In this section, we introduce the detailed implementations
of our project, including the device pre-processing such as
sensor configuration and eye-on-hand calibration, and algo-
rithm details.

3.2.1 Sensor Configuration

We equip the gripper of a fetch robot with an RGBD Kinect
camera, allowing for automatic 3D scanning as it moves
with the robot arm. To integrate an Azure Kinect Devel-
oper Kit into our existing ROS setup, we utilized the Azure
Kinect ROS Driver package. This ROS node outputs var-
ious sensor data, from which we use the PointCloud2, op-
tionally enhanced with color from the camera.

3.2.2 Eye-on-hand Calibration

Upon successfully obtaining sensor data from the Azure
Kinect ROS Driver node, we perform the eye-on-hand cal-
ibration to compute the static transform between the refer-
ence frames of a robot’s hand effector. With the sensor at-
tached to the end-effector, we position a visual target, such
as a calibration plate, at a fixed location. Initially, the april-
tag ROS library is utilized for automatic detection of the
visual target. Following this, the easy handeye package aids
in computing the static transform matrix between the Kinect
sensor and the gripper. This calibration matrix is computed
by maneuvering the fetch robot arm, controlled via MoveIt,
to capture the calibration plate from 25 distinct angles. Sub-
sequently, we make the robot publish its own pose into tf.

3.2.3 Algorithm Details

After completing the preliminary setup of the device, we
move on to the algorithmic aspect of our project. In this
section, we will delve into the details of the algorithm im-
plemented in our process.

• Move the Fetch robot arm to a fixed start pose and take a
rough scan of the environment. We read the voxel cells’
center points of the current octomap.

• Crop out the point cloud in the target region with a fixed
3D bounding box at the Region of Interest.

• Add the occupied cells into the PlanningSceneInterface to
for robot arms’ collision avoidance.

• Maintain a 3D voxel grid for the 3D region of interest.
For each voxel, store the grid center position coordinates,
its normal vector and its minimum scanned distance from
its center point to the camera position.

• Divided all the occupied grids into two categories, grids
that need to be scanned again and grids that are per-
fectly scanned. For octomap cells, the grids that need to
be scanned again include the unknown cells, the frontier
cells(a cell whose neighbours contain both unknown cells
and occupied cells) and the grids that are scanned from
a distant range. Since we temporarily failed to deserial-
ize the octomap ros message, we simply take the grids
scanned from a distant range as unfinished cells.

• For the unfinished cells, we select the furthest reachable
cell as the next scan. We pose the camera pointing to the
cells at the position of 20 centimeters along the normal
vector. If the Inverse Kinematics fail to plan the motion,
we mark the cell as unreachable and search for the next
best scan.

• We take the scan and turn it into the base frame.
• Repeat step.3 to step.6 until complete high-resolution

scanning.
• Take all the scans into a whole dense point clouds.



4. Experiment Results
4.1. Evaluation Metric

Since the motivation of our 3D scanning with fetch robot is
to get a high-resolution dense scanned point cloud of an ob-
ject, we choose the the level of hollowness as the evaluation
metric.

4.2. Results

4.2.1 Metric Results

In the cropped target 3D region, the distant scan of the chair
back is 5% hollow. Our scan in the close range is about
0.1% hollow.

4.2.2 Visualization

We merge the scans we get and crop out the target region.
The obtained point cloud can be viewed as follow. (a) is
the target chair scanned from the distant initial pose. (b) is
the partial point cloud on the chair back of the scan (a). (c)
shows the close scan taken automatically by the fetch robot
at the position of 20 centimeters along the normal vector.
The results shows that our method gains a much denser scan
of the target object.

5. Conclusion
In this project, we concentrate on achieving high-resolution
3D scanning of objects using a fetch robot. Our method’s
limitation lies in not addressing unknown and frontier re-
gions, primarily due to the lack of a Python interface for
octomap data deserialization and our limited proficiency in
C++. Consequently, we opted for voxelizing the point cloud
rather than using octomap.

References
[1] Julie Stephany Berrio, Wei Zhou, James Ward, Stewart Wor-

rall, and Eduardo Nebot. Octree map based on sparse point

cloud and heuristic probability distribution for labeled im-
ages. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 3174–3181. IEEE,
2018. 2

[2] Nathaniel Fairfield, George A. Kantor, and David S. Wetter-
green. Real-time slam with octree evidence grids for explo-
ration in underwater tunnels. Journal of Field Robotics, 24,
2007.

[3] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. Octomap: An efficient
probabilistic 3d mapping framework based on octrees. Au-
tonomous robots, 34:189–206, 2013. 2

[4] Roger Y Tsai, Reimar K Lenz, et al. A new technique for
fully autonomous and efficient 3 d robotics hand/eye calibra-
tion. IEEE Transactions on robotics and automation, 5(3):
345–358, 1989. 2


	. Introduction
	. ROS Dependencies
	. Azure Kinect ROS Driver
	. Easy handeye calibration
	. MoveIt
	. OctoMap

	. Implementation
	. System Description
	. Methodology Implementation Details
	Sensor Configuration
	Eye-on-hand Calibration
	Algorithm Details


	. Experiment Results
	. Evaluation Metric
	. Results
	Metric Results
	Visualization


	. Conclusion

