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Abstract

Solar energy, as a crucial clean energy source, is play-
ing an increasingly pivotal role in improving the human en-
ergy infrastructure. However, installing large solar panels
in sun-rich desert areas still faces challenges like low man-
ual efficiency and high costs. This project utilizes LiDAR to
efficiently detect key information about objects during the
installation process, such as the pose of the solar rack, the
position and height of these supports, and the tilt angle of
solar panels, enabling the automated installation of solar
panels by robots. We conduct abundant experiments on var-
ious datasets of real solar racks provided by the company,
demonstrating the correctness, efficiency, and generality of
our method.

1. Introduction
In the pursuit of sustainable energy solutions, solar

power has emerged as a pivotal contributor to a cleaner and
more efficient global energy infrastructure. Expanding the
utilization of solar energy, particularly in sun-rich desert re-
gions, presents an opportunity for substantial energy gen-
eration. However, the installation of large-scale solar pan-
els in such areas encounters challenges associated with low
manual efficiency and high costs.

To address these challenges, this paper proposes a novel
approach that leverages Light Detection and Ranging (Li-
DAR) technology for real-time object detection during the
solar panel installation process. LiDAR, known for its
precision and accuracy in capturing three-dimensional spa-
tial data, is employed to efficiently gather key information
about the environment. The primary focus lies in detect-
ing the pose of the solar rack, determining the position and
height of support structures, and assessing the tilt angle of
solar panels.

The integration of LiDAR-based object detection en-
ables the automation of solar panel installation, facilitated
by robotic systems. This advancement not only contributes
to increased operational efficiency but also mitigates the
challenges associated with human labor in expansive and

challenging terrains.
In this paper, we present the results of extensive experi-

ments conducted on diverse datasets comprising real-world
solar rack scenarios provided by the company. Our ob-
jective is to showcase the correctness, efficiency, and gen-
erality of the proposed method, emphasizing its potential
to revolutionize the solar panel installation process. The
outcomes of these experiments demonstrate the effective-
ness of our approach in addressing the complexities inher-
ent in real-world solar panel deployment, thereby laying the
groundwork for a more streamlined and automated future in
solar energy infrastructure.

2. State of the Art

2.1. Literature

”LiDAR-based detection, tracking, and property estima-
tion: A contemporary review” [2], discusses advancements
in Object detection, Person tracking, and Person property
estimation (PPE), emphasizing the shift from image-based
to sensor-based analysis, including infrared, depth cameras,
and LiDAR sensors. It anticipates LiDAR-based 3D ob-
ject detection becoming a prominent field, particularly in
autonomous driving applications, offering a comprehensive
survey of recent research in this area.

In ”Instance Segmentation of LiDAR Point Clouds” [8],
which presents a robust baseline method for instance seg-
mentation in large-scale outdoor LiDAR point clouds, fea-
turing a novel dense feature encoding technique for precise
localization of small, distant objects, a simple yet effective
approach for single-shot instance prediction, and strategies
to address severe class imbalances.

In ”GIS-based estimation of rooftop solar photovoltaic
potential using LiDAR” [4], which utilizes LiDAR data
merged with Geographic Information System techniques to
identify optimal locations for solar panels on rooftops in
the Georgetown area, considering criteria such as ground,
aspect, slope, human factors, and high radiation levels. The
findings provide insights into potential PV outputs, guiding
energy policy, and future research on solar PV deployment.

In ”Instant Object Detection in Lidar Point Clouds” [1], a



novel method is introduced for object classification in con-
tinuously streamed Lidar point clouds obtained from urban
environments. The proposed framework processes raw 3D
point cloud sequences from a Velodyne HDL-64 Lidar, with
a primary focus on identifying vehicles and pedestrians in
the vicinity of the mobile sensor. The devised pipeline, tai-
lored for outdoor 3D urban object recognition, initially seg-
ments the point cloud into the ground, short objects (low
foreground), and tall objects (high foreground). Utilizing
a unique two-layer grid structure, efficient connected com-
ponent analysis is then performed on foreground regions to
generate distinct groups of points representing various ur-
ban objects. Subsequently, depth images are generated from
object candidates, and an appearance-based preliminary
classification is conducted through a convolutional neural
network. The classification is further refined with contex-
tual features, taking into account expected scene topologies.
The algorithm’s performance is validated through testing on
real Lidar measurements, comprising 1485 objects captured
from diverse urban scenarios.

The review ”Deep 3D Object Detection Networks Us-
ing LiDAR Data: A Review” [7] provides a comprehensive
examination of challenges and methodologies in 3D object
detection networks utilizing LiDAR data, encompassing an
overview of the 3D detection task, LiDAR sensing tech-
niques, deep 3D detection networks, challenges associated
with LiDAR point cloud representations, evaluation met-
rics, algorithm performance on authoritative benchmarks,
and insights into existing challenges and open issues.

In ”LIDAR-based 3D object perception” [3], the authors
present a LiDAR-based perception system for ground robot
mobility, incorporating 3D object detection, classification,
and tracking, demonstrated on the MuCAR-3 autonomous
ground vehicle. The system efficiently navigates urban traf-
fic and off-road scenarios through a unique combination of
2D and 3D data processing, achieving real-time operation
at a 0.1s frame rate.

GndNet [5] proposes a novel end-to-end approach that
estimates the ground plane elevation information and
ground points segmentation in real time, achieving the state-
of-the-art with best accuracy in time rate of 55Hz. The
author augement the dataset derived from SemanticKITTI
by CRF-based method to train the network. GndNet com-
bines PointNet and Pillar Feature Encoding network to ex-
tract features of point clouds with occupancy grid genera-
tion, then regresses the ground height using a convolutional
encoder-decoder network. It can estimate elevation of com-
plicated grounds in real time and segment the point clouds
into ground and non-ground categories, inspiring to obtain
plane parameters in our work.

”Object Detection From a Few LIDAR Scanning Planes”
[6] introduces a novel recognition method tailored for LI-
DARs, specifically focusing on a sparse number of detec-

tion planes. This approach proves advantageous, particu-
larly in scenarios where the angular resolution is adequate,
but the planes are widely spaced in the vertical direction.
The methodology incorporates Fourier descriptors to char-
acterize a scan plane and utilizes Convolutional Neural Net-
works for classification. Our method capitalizes on both
time-varying shape information and contours derived from
multiple scan planes when available. Demonstrating effi-
cacy, the proposed method performs at least comparably to
state-of-the-art algorithms in near-field situations while si-
multaneously extending the detection range. The evaluation
involved tens of thousands of samples from extensive pub-
lic datasets, encompassing separate assessments for far-field
objects.

2.2. ROS Package

2.2.1 PCL

The Point Cloud Library (PCL) is a comprehensive open-
source library within the Robot Operating System (ROS)
environment, designed to facilitate the processing and anal-
ysis of 2D/3D point cloud data. PCL provides a rich set of
functionalities for tasks such as point cloud filtering, seg-
mentation, feature extraction, registration, and visualiza-
tion. It supports a variety of point cloud data sources, in-
cluding Lidar and depth cameras.

PCL is seamlessly integrated with ROS, allowing users
to leverage its powerful tools for perception and manipula-
tion tasks in robotic applications. It enables efficient han-
dling and manipulation of point cloud data through a set of
modular and extensible algorithms, making it a valuable re-
source for researchers, developers, and roboticists working
on projects involving perception and environmental under-
standing.

The library supports both C++ and Python programming
languages, providing flexibility for developers to choose the
language that best suits their needs. With its extensive set
of tools and algorithms, PCL in ROS contributes to advanc-
ing the capabilities of robotic systems by enabling them to
interpret and interact with their environment through point
cloud data.

2.2.2 Rviz

ROS Visualization (rviz) is a powerful 3D visualization
tool that is an integral part of the Robot Operating System
(ROS). It provides a user-friendly interface for visualizing
various types of data generated within a ROS-based robotic
system. With rviz, users can visualize and interact with data
such as point clouds, robot models, sensor data, trajectories,
and more.

Rviz allows users to customize their visualizations to
better understand the robot’s perception of its environment.
It supports the display of information from different sensors



and topics, enabling a comprehensive view of the robot’s
surroundings. Users can interactively manipulate the vi-
sualization, change perspectives, and gain insights into the
robot’s sensor data in real-time.

This visualization tool is particularly valuable for debug-
ging, testing, and understanding the robot’s behavior dur-
ing development. It aids in the analysis of sensor data and
the evaluation of algorithms, contributing to the overall un-
derstanding and improvement of robotic systems within the
ROS framework.

3. System Description
3.1. Pipeline

Figure 1. Overview of our framework

• 1. Read the longitude and latitude of origin, base link
and rods from yaml map. Subscibe to pose of base link
from driving group.

• 2. Transform the coordinates of rods under base link.

• 3. Subscribe to point cloud messages from 2 Lidars.

• 4. Transform the point clouds under base link accord-
ing to the pose of the lidar w.r.t. the base link. Then
perform point clouds fusion.

• 5. Start perception (Mainly use methods integrated in
the PCL package)

5.1 Using statisticalremoval and
PassThrough filter methods to remove the out-
lier and noise and downsampling the points to
accelerate the process.

5.2 Using Planemodel segmentation method to
remove the ground and fit the solar panel, then get the
parameters of the ground plane, the coordinate of the
center of the panel, and the roll, pitch and yaw of the
panel (maybe in long-lat form).

5.3 Using Linemodel segmentation method to
fit the rods individually, given the prior knowledge of
rods position and size, then get the coordinates of the
top of the rods by averaging several top points.

5.4 Compute the inclination degree of rods from
the coefficients of line models and publish an alert if
the inclination could cause the installation to fail.

• 6. Publish the custom messages of panel and rods in-
fos (pose and errors) into a topic at a frequency of 10
Hertz.

• 7. Visualize the processed point cloud in Rviz lively,
together with robot urdf, and use the marker to point
out origin points, the detected solar panel and rods.

4. Experiments

4.1. Datasets

The radar dataset is collected by Bolight Company,
named as ”trans 2023-12-08-11-31-27.bag”. To differen-
tiate the frame id of each radar, we set the frame id of
the left radar as ”lidar1 link” and that of the right radar as
”lidar2 link” and changes the file name by ”3lidars.bag”.
The bag file contains all kinds of information such as point
clouds, URDF infos, etc.. We only focus on the information
of point clouds such as topics and messages, etc..

Figure 2. Original point cloud with solar panel and rods

4.2. Visualization Result

Fig3, Fig4, Fig5 and Fig6 are the pictures of the vi-
sualization. We use marker to mark each object detected
in Rviz. The original point clouds are marked by white
marker, the detected panel is marked by red marker, the
prior rods are marked by yellow marker, and the detected
rods are marked by purple marker.



Figure 3. Point cloud of the whole scene

Figure 4. Point cloud of detected solar panel

Figure 5. Point cloud of rods from prior knowledge

Figure 6. Point cloud of detected rods

4.3. Numerical Result

The custom messages of panel consists of the inclination
of the panel (described by rall, pitch and yaw). The cus-
tom messages of rods consists of the position (described by
x,y,z), inclination (described by rall and pitch) and errors
(described by average error and max error) of eight rods.
The custom messages of detected results are published in
real time of 10Hz.

Belows are the format of custom messages.

(a) Panel message

(b) Rod message

(c) Rods message

In the custom messages, the first two lines describe the
information of detected panel. The next 16 lines (2 lines for
each rod) describe the information of detected rods, with
the first 8 lines representing the rods from left side and the
second 8 lines representing the rods from right side.

Belows are the numerical result of one frame in the bag
file.



(a) Point cloud of one frame

(b) Custom messages of one frame

Figure 8. Custom messages of one frame

5. Conclusion
We have proposed an effective utilization of LiDAR to

enhance the installation of large-scale solar panels. The
real-time detection of critical information, including the
precise positioning, height, and tilt angle of both solar pan-
els and their supports, is achieved through a frequency of
10 Hertz message publication within the Robot Operating
System (ROS). The integration of this technology enables
robots to automate the installation of solar panels, ensuring
accuracy in angles and positions. This standardized installa-
tion process not only improves the efficiency of solar panel
deployment but also contributes to cost reduction by mini-
mizing manual labor.
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