[MoMa 2023] Design and Implementation of a State Machine
and GUI for the Megatron Robot System

Yaxun Yang, Fujing Xie, Bowen Xu
{yangyx12022, xiefj, xubw}@shanghaitech.edu.cn

November 2023

Abstract. This project introduces a comprehensive solution for robot con-
trol and task coordination of the Megatron robot utilizing the FlexBe state
machine within the ROS (Robot Operating System) framework. The pri-
mary focus is on enabling efficient management of essential robotic tasks
of the Megatron robot such as Navigation, Pickup Panel, and Place Panel
activities. A significant innovation of this project is the development of
a user-centric Graphical User Interface (GUI), tailored to operators unfa-
miliar with the complexities of state machines. This GUI allows users to
easily monitor and control the robot’s status and operations, enhancing the
interaction between human operators and robotic systems.

1. Introduction

The project involves the integration of FlexBE (Flexible Behavior Engine)! with
ROS (Robot Operating System) to create an advanced robot control system, com-
plemented by a user-friendly Graphical User Interface (GUI). FlexBE is a behavior
engine for ROS that facilitates the creation of complex robot behaviors without the
necessity of manually coding them. It employs state machines which can be easily
composed via a drag-and-drop editor, providing an intuitive approach to defining
robot behaviors. Once these behaviors are designed, FlexBE allows for their exe-
cution and real-time monitoring, offering a high degree of collaborative autonomy.
This means the operator can influence the execution during runtime, such as forcing
transitions, and the robot can request help or confirmation from the operator when
needed. The FlexBE behavior engine is a meta-package encompassing various pack-
ages that collectively enable the definition and running of robotic behaviors. This
includes components like flexbe core, flexbe input, flexbe mirror, and others, each
serving specific roles in the behavior creation and execution process. Complementing
FlexBE, the project also integrates a user-friendly GUI developed through QT Cre-
ator?. The FlexBe GUI serves as an interface for both editing and runtime control of
the FlexBE behavior engine. And the user GUI this project developed is tailored to
users who may not be familiar with the intricacies of state machines, allowing them
to monitor and control the robot’s status and behavior in a more accessible manner.
The GUI incorporates essential control features such as 'STOP’, 'Pause/Unpause’,

Thttp:/ /wiki.ros.org/flexbe
2https://github.com/qt-creator/qt-creator



and 'Confirm’, facilitating user interaction and operational safety. Moreover, it sup-
ports different operational modes, like Semi-Autonomy and Full Autonomy, to cater
to varying levels of robot autonomy and human intervention. This combination of
FlexBE’s state machine capabilities with an user-friendly GUI interface aims to en-
hance the efficiency and usability of Megatron robot systems, making sophisticated
robotic operations more accessible to a broader range of operators.

2. State of the Art

FlexBE represents the state of the art in robotic behavior engines due to its sophis-
ticated features that enable the creation of complex robot behaviors without the
need for manual coding. It offers a user-friendly interface through a drag-and-drop
editor, allowing seamless composition of state machines based on the robot’s capa-
bilities and standard functionalities. One of the defining characteristics of FlexBE
is its facilitation of collaborative autonomy, which means that human operators can
influence the behavior execution in real-time, for instance, by manually triggering
transitions or by the robot requesting operator confirmation for certain actions. This
flexibility is especially beneficial in scenarios like rescue operations or remote manip-
ulation tasks, where adaptability to unforeseen circumstances is crucial. FlexBE’s
hierarchical state machine model ensures that states correspond to actionable be-
haviors and transitions are clearly defined in response to outcomes, setting it apart
from other behavior engines. This approach allows for excellent operator integra-
tion and a comprehensive user interface. The system is designed to support both
full autonomy and restricted manual intervention, empowering operators to mod-
ify the structure of behaviors dynamically during execution without the need for a
restart. Moreover, the FlexBE framework is developed to ensure non-blocking state
execution, which is crucial for allowing remote operator interactions with the robot
behavior during runtime, enhancing the flexibility and responsiveness of robotic sys-
tems. For an understanding of how FlexBE compares with other state machines and
behavior engines in terms of capabilities and applications, additional information
can be found on the ROS Wiki page for FlexBE and the ROS Index page detailing
FlexBE’s functionality and usage. These resources provide insights into the benefits
of using FlexBE over other state machines, as well as tutorials and examples of its
application in various robotic systems.

3. System Description
3.1. FlexBe

The state machine depicted in the image outlines a robotic system’s workflow for
handling solar racks. The initial state is not visible, but the flow moves into a
decision point, which likely determines the subsequent action based on certain con-
ditions or inputs. One branch leads to a "Waypoint Navigation Robot,” suggesting
an automated navigation process where the robot moves to predefined coordinates.
From the decision point, another branch extends to a series of actions involving
the robot’s interaction with solar racks. It starts with ”y: Drive robot,” where the
robot moves to a specific location. The next step is "Pickup Solar Rack from truck,”
indicating a robotic arm or mechanism that grabs the solar rack. Following this,
the robot ”"Place Solar Rack on rods,” which implies placing the rack into a setup



position, possibly on a solar farm. The final action in this sequence is "Place Solar
Rack on truck,” suggesting that the robot can also load the racks back onto the
truck, likely for repositioning or storage. This sequence suggests a cyclical process
where the robot can both unload and load solar racks as needed. Throughout the
process, the robot’s actions are likely governed by a state machine inside, which is
not fully shown. This internal state machine would handle the detailed decision-
making required at each step to ensure the robot performs the correct action based
on its current state and external inputs. The state of our project is shown in Figure.
1

‘‘‘‘‘‘‘‘

Figure 1. FlexBe of Megatron Robot

3.2. GUI

The GUI is tailored to allow a human operator to monitor and control the robot with
varying levels of autonomy, providing both manual control and automated behavior
adjustments. The interface is divided into several sections, each with a distinct
function, shown in Fig.2:

3.2.1. Control Buttons

STOP: A prominent red button, to immediately halt all robot operations.

Pause: A button to temporarily stop robot movements.

Confirm: Used to confirm certain actions or decisions made by the robot.

Semi-Autonomy: The yellow button switch the robot to a mode requiring

more operator input.

5. Next State: Progresses the robot to the next step in its task sequence when
in Semi-Autonomy mode.

6. Full Autonomy: A green button, a mode where the robot operates indepen-

dently of operator input.

Ll e

3.2.2. Operational Buttons

1. Drive Joy: Joystick control for driving the robot.
2. Arm Joy: Joystick control for the robot’s arm.



3. Various Arm Movement Buttons: Actions such as "Arm home,” "Arm truck
pre,” and "Arm truck pick,” performing precise control over the robot’s arm
for various tasks.

3.2.3. Status Panels

1. FlexBE State: Displays the current state of the FlexBE state machine, with
a description area below.

2. Robot Status: Shows the robot’s status, which includes wall time and other
system information.

3. RViz Panel: Part of the RViz visualization tool used in ROS for visualizing
the robot’s environment, navigation paths, and sensor data.

3.2.4. Record Functionality

1. Record Bagfile: This botton is a feature to record the robot’s data streams
for later analysis or replay.

bolight_megatron - rqt

File Plugins Running Perspectives Help
#Bolight Megatron DIC® -0

Home | AppManager = rqtConsole
Next Record
State i

Semi-
Autonomy

- Pause Confirm

#Bolight Megatron DIC® - 0@ ' default.rviz[*] - RViz DOCO -00
File Panels Help

FlexBE State

Robot Status

Reset 31fps

Figure 2. GUI of Megatron Robot

4. Conclusions

In conclusion, this project has successfully demonstrated the effective integration of
FlexBE within the ROS framework to enhance the control and task coordination
capabilities of the Megatron robot. Through the implementation of a user-friendly
GUI, the project has addressed the common barrier of complexity associated with
state machine operations, making it accessible to operators without advanced tech-
nical knowledge. The GUI’s design facilitates not only real-time monitoring but also
interactive control, contributing significantly to the robot’s operational safety and
flexibility. Moreover, the project’s use of FlexBE’s state-of-the-art behavior engine
has allowed for the seamless creation and execution of complex robotic behaviors,



while also providing the ability to dynamically alter behavior execution in response
to real-world variables. Future work could focus on expanding the robot’s capabili-
ties and further refining the interface to ensure that the Megatron robot continues
to set the benchmark in autonomous robotic solutions.



