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Abstract

In general, most of the tasks performed by robots are re-
lated to picking up and placing objects, usually combined
with trajectory planning and manipulation. For the objects
to be picked up, they are given a generous collision detec-
tion volume until they finally approaches the target posi-
tion. Occasionally, optimal trajectory may be too close to
the obstacles to make the kinematics solver regard it safe
and plausible. This situation gives us the intuition that
the solver is much too conservative under certain collision
avoidance constraints. Thus, our group (intended to) im-
plements a control algorithm to eliminate the conservatism.
Conventional method like control barrier function(CBF) [3]
takes the network-predicted trajectory plan as input, and
imposes collision constraints using an optimization layer.
The effectiveness is well proved while conservatism still ex-
ists. Our final target is to make improvement on learning-
based CBFs. The initialization modality has been consid-
ered the major factor which influence the final output of
an optimization problem. Delightfully, diffusion model[1]
gains the ability to generate motion trajectory and increase
the modality. Based on the properties of diffusion model and
control barrier function, we decide to combine both of the
architectures to erase the conservatism of trajectory plan-
ning.

1. Introduction

Trajectory planning with collision avoidance has been
a long-term excavated and difficult mission depending on
the target and environment complexity. Object picking and
placement, for instance, only consider the grabbed objects
as rigid and static objects. The very few control algorithms
that directly intend to interact with deformable surface ob-
jects in motion planning only reduce the threat of obstacles
by other methods such as image or semantic point cloud
recognition [11]. For some other cases, small object can be
placed to the target position by underactuated movements

like pushing and ticking, not simply grabbing. Diversity
of actions to complete the placement mission is also called
modality. Diffusion model is currently the state-of-the-art
method ensuring a high level of modality to motion gener-
ation. On the other hand, increased modality also causes
the instability of the system which can be decreased using
control barrier function layer.

So we propose an external damping(or constraints re-
laxation) system, attempt to increase the interaction, or re-
duce the safe distances between given solutions and the ob-
stacles. For a further improvement, we also want to estimate
the contact force that may be exerted onto the obstacle, and
calculate their contact trajectory on the obstacle surface, this
trajectory includes the pose, velocity and acceleration of the
joint end in contact with the obstacle surface. Our system
also requires a ground truth handwriting trajectory of a large
range used as an optimization target for inverse kinematics
problem. This training process is based on conditional dif-
fusion model.

For a traditional control barrier function in [3],

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (CLF-CBF QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lfh(x) + Lgh(x)u ≥ −α(h(x))
(1)

where here H(x) is any positive definite matrix (pointwise
in x), and δ is a relaxation variable that ensures solvability
of the QP as penalized by p > 0 (i.e., to ensure the QP has
a solution one must relax the condition on stability to guar-
antee safety). In [2] it was established that this controller is
Lipschitz continuous.

As for the state dynamics constraint which are denoted in
the form of Lie derivatives, we can illustrate it in the original
form of Newton-Euler equation as follows:

M(q)q̈ +B(q̇) + C(q, q̇)q̇ = τg(q) + τu(q)

Where M(q) stands for the inertia matrix, B(q̇) is the
damping torque related to the system, C contains the cori-



olis forces and centripetal forces, on the right side are the
gravity torque and robot’s motor torque.

Since we’re modeling a dissipation system, the energy
loss comes from the internal and external damping and
contact forces, which leads to the dynamics constraints
changes, because action can be regarded as the descent gra-
dient of system energy function. Conventional method use
Bayesian filter or other kinds of observation and prediction
fusion methods to estimate and track the robot pose. While,
as we will prove later in chapter 3, conditioning score-based
diffusion model has the ability to fuse different sources of
observations.

2. Related Work
The work from [13] encodes the environment and em-

beds it with the robot’s joint states and target poses as in-
puts to train a reinforcement neural network, the output is
action sequece in the robot’s configuration space. After the
output layer, they use an optimization layer which enforces
the output to follow the initial trajectory in the configura-
tion space. Basically, this is an RL-based inverse kinemat-
ics solver leveraging multiple rewards to shrink the config-
uration searching space and implicitly impose the dynamics
constraints. To accelerate both the training and predicting
processes, they also sample some initial IK poses for the
first frame of the target trajectory, as a warm up for the train-
ing. Another group proposed an architecture to simultane-
ously solve the upper-limb and lower-limb control policy.
An RL algorithm for one stage manipulation and locomo-
tion is provided and adopted to a four-legged robot dog with
an robotics arm on its back. The control of hands and legs
or wheels is so tied together that they form low-dimension
synergies. For instance, the robot bends or stretches its
legs with the movement of the arm to extend the reach of
the end-effector. This system perfectly solve the conflict-
ing objectives and local minima problems. When the arm
tilts to the right, the robot needs to change the walking gait
to account for the weight balance. They use both manipu-
lation and locomotion rewards including command follow-
ing, lower energy dissipation and keeping alive, which en-
courages command following while penalizes positive me-
chanical energy consumption to enable smooth motion and
guarantee the robot keeps in balance.

[5] also leveraged multi-agents system which make co-
operation between two agents’ arms. However, such a
seemingly common skill introduces a lot of challenges for
robots to achieve: The robots need to operate such dy-
namic actions at high-speed, collaborate precisely, and in-
teract with diverse objects. This paper proposes a system
with two multi-finger hands attached to robot arms to solve
this problem. They train the system using Multi-Agent Re-
inforcement Learning in simulation and perform Sim2Real
transfer to deploy on the real robots. In conclusion, they are

training robots to predict environment changes like flying
objects which give us the intuition on environmental energy
loss constraints for control barrier functions. Besides en-
vironment or external variation prediction, perception for
the above changes is equivalently significant. According
to [12], detecting objects, and estimating their 3D position,
orientation and size is an important requirement in virtual
and augmented reality, robotics, and 3D scene understand-
ing. These applications require operation in new environ-
ments that may contain previously unseen object instances.
In [7], they proposed a novel differentiable framework for
the uncertain pose estimation during contact, so that it can
be solved in an efficient and accurate manner with gradient-
based solver. To achieve this, they introduce a new geomet-
ric definition that is highly adaptable and capable of pro-
viding differentiable contact features. They approach the
problem from a bi-level perspective and utilize the gradient
of these contact features along with differentiable optimiza-
tion to efficiently solve for the uncertain pose.

A novel structure dealing with safety constraints was
also proposed by [8]. This paper provides deterministic
methods for motion planning guarantee safety amidst un-
certainty in obstacle locations by trying to restrict the robot
from operating in any possible location that an obstacle
could be in. We may optimize the opposite loss function
to maximize the probability for end joint meeting an ob-
stacle, at the meanwhile, still keep the other parts of the
robot safe. The objective-function-based method actually
introduce soft constraints to the robotics system, while con-
trol barrier functions introduce hard constraints. Accord-
ing to [10], grasping in cluttered environments is a funda-
mental but challenging robotic skill. It requires both rea-
soning about unseen object parts and potential collisions
with the manipulator. Most existing data-driven approaches
avoid this problem by limiting themselves to top-down pla-
nar grasps which is insufficient for many real-world scenar-
ios and greatly limits possible grasps.

As for a complete pipeline which includes all of the
learning, optimizing, pose updating processes, the paper[6]
coming from 2023, Nature, proposed a engineering feasible
architecture for reinforcement learning with tremendous re-
duced sim-to-real gap. The drone system consists of two
key modules: a perception system that translates visual and
inertial information into a low-dimensional state observa-
tion and a control policy that maps this state observation
to control commands. Control commands specify desired
collective thrust and body rates, the same control modality
that the human pilots use, The perception system consists
of a VIO module that computes a metric estimate of the
drone state from camera images and high-frequency mea-
surements obtained by an inertial measurement unit (IMU).
The VIO estimate is coupled with a neural network that de-
tects the corners of racing gates in the image stream. The



corner detections are mapped to a 3D pose and fused with
the VIO estimate using a Kalman filter, We use model-free
on-policy deep RL to train the control policy in simulation.
During training, the policy maximizes a reward that com-
bines progress towards the centre of the next racing gate
with a perception objective to keep the next gate in the field
of view of the camera. To transfer the racing policy from
simulation to the physical world, we augment the simulation
with data-driven residual models of the vehicle’s perception
and dynamics. This system is similar to a visual servoing
or any other close-loop structure which adjust correspond-
ing actions based on the target and current estimated states.
This gives us the motivation to improve servoing system or
state filter system by subsituting with conditional diffusion
model. In next chapter, we will prove the equivalence of
this substitution.

3. Method
In this section, we first give the fundamental frameworks

we used for robotics development which includes ROS mes-
sage delivery and state machine structure. Based on the low
level integration works, we then connect the built blocks to
the diffusion model layer and control barrier function layer.
Detail proof about

3.1. FlexBe state machine

For the basic code architecture, we follow the demand
of FlexBe framework which leverages the ROS subscriber
and publisher mode. FlexBe uses behaviour and state to
assemble and manage robot skills and actions. The robot
system first initialize in a starter state like stably standing or
looking-down. Then every state provides feasible actions
triggered by the message topic subscribed by itself. After
actions execution, robot configuration updates and the con-
tents in corresponding topic messages related to cameras
and motor sensors also change. When FlexBe state receives
the changing messages, state transformation occurs and the
new current state provides another set of actions and skills.
All the states are integrated into a behaviour model with
transformation linkage. The behaviour maintains the topol-
ogy between various states.

Thus, our neural network can finish the high-level plan-
ning mission, and leave the detail control problems to the
FlexBe state machine.

3.2. Langevinized Ensemble Kalman Filter (not im-
plemented)

In this sub-section, we try to look for the connection
between diffusion and denoising Gaussian filtering system
from another aspect. The ensemble Kalman filter under
Langevan motion actually reveals the same intrinsic as a
score-based diffusion model. First of all, let’s look at the
following simple Kalman filter process, x is the random

variable of the system state, y represents the system obser-
vation measurement,

xt = g(xt−1) + ut, ut ∼ N(0, Ut), (2)

yt = Htxt + ηt, ηt ∼ N(0,Γt), (3)

where the function g is the state transition equation from
time t− 1 to time t, and there is Gaussian noise in both the
observation process and the evolution process of the system.
In the past, the filtering system was based on the prior prob-
abilities of x and y, and the updated state and the observed
measurements were fused, during which the two distribu-
tions would present an adversarial situation, and we would
judge the credibility of each distribution, then adopt an in-
terpolation operation between the two distributions, so as
to obtain the maximum posterior probability. However, in
many cases, we are not able to retrieve the distribution of
the accurate prior probability of a system state, or this prior
probability needs to be continuously adapted in the process
of system iteration. Therefore, the ensemble Kalman fil-
ter achieves this adaptive effect by forecasting and analyz-
ing the real-world data in batches to gradually approximate
such a distribution. There are many ways to approximate it,
one of which is based on Langevinized dynamics. Through
the gradient ascend of the hypothetical distribution at the
previous time, the mean of the distribution at the next mo-
ment is moving closer to the mode of the real system. Look-
ing at the process of forecasting, we would find that the iter-
ation process of it is basically the same as that of score base
diffusion model.

∇ log p(xt|y) = ∇ log

(
p(xt)p(y|xt)

p(y)

)
= ∇ log p(xt) +∇ log p(y|xt)−∇ log p(y)

= ∇ log p(xt)︸ ︷︷ ︸
unconditional score

+∇ log p(y|xt)︸ ︷︷ ︸
adversarial gradient

(4)
The filtering process described in the popular under-

standing is actually a process of fusion of multiple signal
sources, and the adversarial term is actually the same as the
objective function of the Kalman filter, not only as an addi-
tion to fitting the predicted prior distribution, but also trying
to maximize the likelihood estimation of the observations.
The gradient direction of the score function is actually the
direction in which the posterior probability of the function
rises.

We now give some prove and intuitions about improv-
ing a Bayesian filter system. Consider a Bayesian inverse
problem for the linear regression

y = Hx+ η, (5)

where η ∼ N(0,Γ) for some covariance matrix Γ, y ∈
RN ,andx ∈ Rp is an unknown continuous parameter vec-



tor. To accommodate the case that N is extremely large, we
assume that y can be partitioned into B = N/n indepen-
dent and identically distributed blocks {y1, . . . , yB}, where
each block is of size n and has the covariance matrix V such
that Γ =diag[V, · · · , V ].

Let π(x) denote the prior density function of x, which is
assumed to be differentiable with respect to x. Let π(x|y)
denote the posterior distribution. To develop an efficient al-
gorithm for simulating from π(x|y), which is scalable with
respect to both the sample size N and the dimension p, we
reformulate the model as a state-space model through sub-
sampling and Langevin diffusion:

xt = xt−1 + ϵt
n

2N
∇ log π(xt−1) + wt, yt = Htxt + vt,

(6)
where wt ∼ N(0, n

N ϵtIp) = N(0, n
NQt), i.e., Qt =

ϵtIp, yt denotes a data block randomly drawn from
{y1, . . . , yB}, vt ∼ N(0, Vt) with Vt = V,and Ht is a sub-
matrix of H extracted with the corresponding yt In the state-
space model, at each stage t, the state evolves according to
an Euler-discretized Langevin equation of the prior distri-
bution, and the measurement varies with subsampling. As
shown in [14] of the Supplementary Material, the filtering
distribution of the state-space model converges to the target
posterior π(x|y) → ∞, provided that ϵt decays to zero in an
appropriate rate and the matrix V satisfies some regularity
conditions.

3.3. classifier-free diffusion(not implemented)

We use classifier-free guidance with low-temperature
sampling, which we hypothesize to implicitly perform dy-
namics programming to capture the best behaviors in the
dataset and glean return maximizing trajectories. Our
straightforward conditional generative modeling formula-
tion outperforms existing approaches on standard D4RL
tasks[4]

As conventional reinforcement learning groups always
propose, action sequence prediction without future reward
estimation becomes meaningless. In another word, it may
be simpler to think of the problem differently, we are try-
ing to solve a non-episodic problem here, in that there is
no natural separation of the process into separate meaning-
ful episodes. While no physical process is actually infinite,
action prediction without any computed loss is just a the-
oretical nicety. As a consequence, when we’re running a
environment in simulation, or multiple versions of it for
training purposes, we don’t treat them as episodes mathe-
matically(abandon the pseudo episode), there is no termi-
nal state, then we can never obtain a simple episodic return
value and can’t get the action distribution transfer model
conditioned on the sensor inputs.

Because the above properties, we must train our planning
generation model with specific targets labeled for each input

sequence. The conditional information includes the robot’s
pose prediction generated from last episode, and the current
timestamp’s sensor signals as observations. According to
[9], score-based diffusion model intrinsically represents a
form of Langevin dynamics, which can be embedded into
a probabilistic filter system, for example, a Kalman filter
system. This gives us the insight, that our pipeline actually
substitutes the Langevin dynamics with diffusion model in
a embedding Kalman filter.
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