
Final report for Nonprehensile Object Transportation on a

Mobile Manipulator

Binling He∗, Jiawei You†, Xinlong Li‡

Jaunary 20, 2023

Abstract

The goal of this project is to control a manipulator with an mobile base to transport a
cup of water, which is a nonprehensile object transportation task, through Model Predictive
Control (MPC) and reinforcement learning. Nonprehensile object transportation is a
challenging task. In this project, we want to train the manipulator to transport a cup of
water using nonprehensile manipulation. We use a MPC method for nonprehensile object
transportation with a mobile manipulator, with a focus on transporting a cup of water
without spilling it. Also, we used a goal-conditioned reinforcement learning (GC-RL) based
method to train the robot arm to learn the kinematic. Our method optimizes the joint-space
trajectory online based on task-space objectives and constraints, and uses a fluid dynamics
model to prevent water sloshing. We show that our method can handle various scenarios,
such as moving to a desired location. Compared to traditional RL method, our RL method
can converge faster. Finally, we test our method in simulations and hardware experiments.

1 Introduction

Nonprehensile Object Transportation is a non-grasping manipulation task, where a robot balances
an object on its end-effector (EE) without grasping it, and transports it to a desired location while
avoiding obstacles. This is a challenging task, because it requires considering the dynamics, friction,
gravity, collision, and other factors of the object, as well as the motion constraints and control policies
of the robot. Nonprehensile Object Transportation is a hot research topic in robotics, with many papers
and projects related to it.

[1] proposed a trajectory-planning based method for nonprehensile manipulation. [2] proposes a
model predictive non-sliding manipulation (MPNSM) control approach to safely transport an object on
a tray-like end-effector of a robotic manipulator. The MPNSM controller uses a linear complementarity
problem (LCP) formulation to enforce the non-sliding constraint and a mixed-integer quadratic program
(MIQP) formulation to handle the robotic system constraints. [3] tackles the problem of nonprehensile
object transportation through a legged manipulator. It solves the quadratic optimization problem to
realize the sought transportation task while maintaining the contact forces between the tray and the
object and between the legs and the ground within their respective friction cones, also considering
limits on the input torques. Bernheisel and Lynch [4] introduced a variant of the Waiter’s Problem that
involves the stable transportation of object assemblies while accounting for inertial and gravity forces.
Among this, trajectory planning plays a crucial role and usually necessitates prior knowledge of the
robot’s starting and ending locations, as well as their respective postures. Moreover, specific techniques
for solving inverse kinematics (IK) and planning are also required In [1], a spherical pendulum model is
employed to counteract the sloshing effect caused by a serial robot’s movement. Some research focus
on the model of pouring liquid tasks, for instance, in [5] the accurate pouring task has been executed
using a pourer container in the shape of a cube and a target container in the shape of a cylinder. [6]

∗Student ID: 2022231012, Email: hebl2022@shanghaitech.edu.cn
†Student ID: 2022233291, Email: youjw2022@shanghaitech.edu.cn
‡Student ID: 2022231019, Email: lixl12022@shanghaitech.edu.cn

1



addressed the need for efficient and stable object transportation using robotic arms. The authors
propose the GOMP-FIT algorithm, which focuses on optimizing the grasp and motion planning process
while considering the constraints and dynamics of the system. The paper emphasizes the importance of
incorporating physics-based interaction models in motion planning to ensure better stability during
transportation. The GOMP-FIT algorithm considers forces applied during grasping and balancing,
as well as the weight and dynamics of the object. By doing so, it aims to improve the efficiency
and stability of object transportation. Bernheisel and Lynch [4] introduced a variant of the Waiter’s
Problem that involves the stable transportation of object assemblies while accounting for inertial and
gravity forces. Among this, trajectory planning plays a crucial role and usually necessitates prior
knowledge of the robot’s starting and ending locations, as well as their respective postures. Moreover,
specific techniques for solving inverse kinematics (IK) and planning are also required In [1], a spherical
pendulum model is employed to counteract the sloshing effect caused by a serial robot’s movement.
Some research focus on the model of pouring liquid tasks, for instance, in [5] the accurate pouring task
has been executed using a pourer container in the shape of a cube and a target container in the shape
of a cylinder.

Reinforcement learning (RL) is a subfield of machine learning that deals with how an agent interacts
with an environment to learn how to make optimal decisions. RL has been applied in various domains,
including robotics, where it has shown a lot of promise. In the field of robotics, RL algorithms can be
used to train robots to perform complex tasks that are difficult to program using traditional methods.
The use of RL in robotics is particularly relevant when the robot operates in environments that are
unpredictable or dynamic, making it difficult to pre-program all possible scenarios. In such cases, RL
algorithms can enable the robot to learn from its own experience and adapt to new situations, making it
more versatile and efficient. [7] proposed a RL method applied to robot manipulators with a workspace
invaded by unpredictable obstacles. [8] figured out that the prior experience is very import for the
robot to learning a reinforcement learning algorithm.

In this project, we propose a method for solving the waiter’s problem with a mobile manipulator,
with the additional requirement of transporting a cup of water without spilling it. Unlike previous
approaches that use sensor feedback or offline planning, our method uses a model predictive controller
(MPC) that optimizes the joint-space trajectory online based on task-space objectives and constraints.
We also incorporate a fluid dynamics model to account for the water motion inside the cup and prevent
sloshing. Meanwhile, a reinforcement learning (RL) based method is used to learn the kinematic of the
robot arm. We demonstrate the effectiveness of our method in simulations and hardware experiments,
where the mobile manipulator can transport a cup of water quickly and smoothly, without spilling or
dropping it.

2 System Description

2.1 Hardware platform

In this project, we utilized the Kinova Jaco2 and Clearpath Jackal as our hardware platforms. Addition-
ally, we employed the OptiTrack motion capture system for localizing the positions of the robot arm’s
end-effector, the object to be transported, and any obstacles. The Kinova Jaco2 robot is a versatile
robotic arm designed for various applications in research, industry, and assistive technology. Developed
by Kinova Robotics, the Jaco2 robot offers advanced capabilities and precision control. The Jaco2
robot features 6 degrees of freedom (DOF), allowing it to move in a highly articulated manner. It is
equipped with precise and responsive actuators that enable smooth and accurate movements, making it
suitable for delicate tasks requiring fine manipulation.

One notable feature of the Jaco2 is its lightweight and compact design. This makes it highly portable
and easy to integrate into different environments, whether it’s a laboratory, manufacturing facility, or
even a home setting. The robot arm is equipped with a range of sensors, including force/torque sensors
and position encoders, which enable it to perceive and interact with its surroundings. This allows
for safe and collaborative operation, as the robot can detect and respond to external forces, ensuring
human safety during interactions. The Jaco2 robot can be controlled using various programming
interfaces, such as ROS (Robot Operating System), which provides a flexible and powerful framework
for developing robotic applications. It also supports a wide range of programming languages, making it
accessible to developers with different backgrounds and preferences.

2



In our setup, we added a tray at the end of the robotic arm and grasped it using the fingers at
the end of the arm. Due to the limited strength of the robotic arm’s fingers, the mass of this board
needs to be as small as possible. At the same time, a cup is placed on top of the board. Our goal is to
transport the cup to a designated location without spilling the water, as shown in Fig 2. Meanwhile, in
order to capture the motion of the bottle, we use a motion capture.

Figure 1: Hardware platform: Kinova Jaco2 and Clearpath Jackal

3



Figure 2: Hardware platform: Kinova Jaco2 and Clearpath Jackal with a tray

2.2 Problem Formulation

Our task can be separated into two parts. First, after the robot gets a target destination, the Cleanpath
Jackal robot will go to a place where the distance between the target point and the end effector is
smaller than the length of the Kinova arm. This means that the car needs to get to a place where the
target point is in the reachable set of the end effector.

2.2.1 Robot Model

The type of robot we are targeting with our approach consists of a mobile base with a manipulator with
9 degrees of freedom (DOF). The base can turn in place but has a non-holonomic constraint and cannot
drive sideways. A kinematic model is used in the MPC. The arm joint positions describe the state of
the arm xarm ∈ Rdim(6), and the full base pose xbase = [x, y, φyaw ] is used in the system model. The
arm is controlled with joint angles uarm = [φ1, . . . , φn]. The base’s wheel speeds are calculated from
the desired base twist, the forward velocity, and the turning rate ubase = [v, φ̇base ].

We consider a velocity-controlled mobile manipulator with state x = [qT ,vT , v̇T ]T , where q is the
generalized position, which includes the planar pose of the mobile base and the arm’s joint angles,
and v is the generalized velocity. We include acceleration in the state and take the input u to be jerk,
which ensures a continuous acceleration profile [2]. The input is double-integrated to obtain the velocity
commands sent to the actual robot. We require only a kinematic model, which we represent generically
as

ẋ = a(x) +B(x)u,

with a(x) ∈ Rdim(x) and B(x) ∈ Rdim(x)×dim(u).

2.2.2 Kinematic Model of the Robotic Arm

The robotic arm mounted on the aforementioned mobile base is a 6-DOF arm. The end-effector pose of

the robotic arm is denoted by xa :=
[
pa⊤, θa⊤

]⊤
, where pa ∈ R3 is the end-effector position in the

4



robotic arm base frame represented in the Cartesian coordinates and θa is the end-effector orientation.
Here, we use the SO(3) group to avoid representation singularities and error definition discontinuities.
To do so, we define the mapping function f : SO(3) → F ⊂ R9, such that, for a rotation matrix
R ∈ SO(3),

where [R]i, i ∈ {1, 2, 3}, is the i-th column vector of the rotation matrix R. Thus, the orientation
vector θa is θa = f

(
Rb

E

)
∈ F , and Rb

E is the rotation matrix of the end-effector in the base frame of
the robotic arm.

Using such a representation, the kinematic model of the robotic arm can be described using the
analytical Jacobian Ja of the forward kinematics transformation matrix T ∈ SE(3) derived using the
DH-parameters of the robotic arm as

xa
k+1 = fra (x

a
k,qk, q̇k) = xa

k + τJa (qk) q̇k (1)

where xa =
[
pa⊤, θa⊤

]⊤ ∈ Xra ⊂ R12 is the state vector defined using θa from (1), q =

[q1, q2, q3, q4, q5, q6]
⊤ ∈ Q ⊂ R6 is the joint angles vector, q̇ ∈ Ω ⊂ R6 is the joint velocities vec-

tor, and, the analytical Jacobian Ja is given by Ja := ∂T/∂q.
The constraint sets for the end-effector Xra, joint angles Q, and joint velocities Ω are defined by

Xra := [xa, x̄a]×
[
ya, ȳa

]
× [za, z̄a]×F ,

Q :=
{
q ∈ R6 | q

i
≤ qi ≤ q̄i,∀i ∈ {1, . . . , 6}

}
Ω :=

{
q̇ ∈ R6 | ∥q̇∥∞ ≤ q̇max

} (2)

where q
i
and q̄i denote the lower and upper limits of the joint angles, respectively.

In order to be able to keep track of the joint angles and consider joint constraints, we extend system
(1) to [

xa
k+1

qk+1

]
=

[
xa
k

qk

]
+ τ

[
Ja(q)
I6×6

]
q̇k (3)

where
[
xa⊤,q⊤]⊤ ∈ X̄ra ⊂ R19 is the concatenated state vector, and X̄ra is the state constraint set

for the new augmented model and is defined as X̄ra := Xra ×Q.

3 Model Predictive Control Method

A model predictive control (MPC) module generates control inputs for the robot to follow an end-effector
trajectory while respecting several constraints. In the following sections, we describe the algorithm, the
system model used, the cost-function, and our soft constraints mechanism.

3.0.1 NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we formulate an NMPC scheme for the end-effector pose stabilization of the mobile
manipulator. To this end, we define

UN :=

([
uk

q̇k

]
,

[
uk+1

q̇k+1

]
, . . . ,

[
uk+N−1

q̇k+N−1

])
and

XN := (xk,xk+1, . . . ,xk+N )

(4)

as the sequences of controls and states over the prediction horizon N ∈ N, respectively. As standard
in NMPC, these sequences are used to form the quadratic cost function

J (UN ,XN ) = ∥Ep
N∥2Sp +

∥∥Eθ
N

∥∥2
Sθ︸ ︷︷ ︸

Jf

+

k+N−1∑
i=k

∥Ep
k ∥

2

Qp +
∥∥Eθ

k

∥∥2
Qθ +

∥∥∥∥ ui

q̇i

∥∥∥∥2
R

(5)

5



where Sp ∈ R3×3 ≻ 0,Sθ ∈ R9×9 ≻ 0,Qp ∈ R3×3 ≻ 0,Qθ ∈ R9×9 ≻ 0 and R ∈ R10×10 ≻ 0 are
the weighting matrices of the quadratic cost function, and Jf is the terminal cost of the cost function.
Ep ∈ R3 is the translational error of the end-effector pose defined as Ep := p − pr, where pr is the
reference position, and Eθ ∈ R9 is the orientation error of the end-effector pose defined as

Eθ :=

 [I3×3]1
[I3×3]2
[I3×3]3

−


[(
RI

E

)⊤
Rr

]
1[(

RI
E

)⊤
Rr

]
2[(

RI
E

)⊤
Rr

]
3

 (6)

where Rr is the reference orientation, and RI
E is the orientation of the end-effector in the inertial

frame calculated as RI
E = RI

bR
b
E ·RI

b is determined using a localization algorithm of the mobile robot
and Rb

E is the rotation matrix from the mobile robot to the end-effector and is calculated from the
forward kinematics of the robotic arm, i.e. T.

Using the cost function in Eq. (13), the NMPC optimal control problem can be formulated as:

(U∗
N ,X ∗

N ) = argmin
UN∈U,XN∈X

J (UN ,XN ) (7a)

subject to
[
xk+1 qk+1

]⊤ − fmm (xk,qk,uk, q̇k) = 0, (7b)

XN ∈ X ⊆ R19, (7c)

UN ∈ U ⊆ R10, (7d)∣∣det (JaJ
T
a

)∣∣ > ϵ (7e)

where ϵ is a threshold for avoiding singular configurations of the robotic arm.
OCP (7) is converted to a nonlinear programming problem (NLP) using the direct multiple-shooting

method. Here, both the control sequence UN as well as the state sequence XN are considered as decision
variables in the optimization problem. Moreover, the system model is considered as an optimization
constraint as formulated by Eq. (7c). Multipleshooting discretization technique provides a more
computationally efficient solution to OCP when compared with other discretization techniques, e.g.
single-shooting, see for more details. Finally, state and control constrains are considered by means of
Eq. (7d) and (7e). Note that the inequality constraint (7a) is added to avoid kinematic singularities of
the robotic arm through operation. This is accomplished through ensuring that the pseudo-inverse of
the robot arm Jacobian matrix is always invertible and, thus, singular configurations are avoided.

The feedback control law can now be stated as[
u∗
k q̇∗

k

]⊤
:= U∗

N (0) (8)

i.e. the feedback control is the first element in the optimal control sequence U∗
N . Moreover, the

resulting feedback system can be stated as[
xk+1 qk+1

]⊤
= fmm (xk,qk,u

∗
k, q̇

∗
k) . (9)

3.1 Goal-Conditioned Reinforcement Learning Method

We used a goal-conditioned reinforcement learning (GC-RL) method to learn the kinematics of the
kinova robot arm. The GC-RL method set the target as an additional information to the state of the
agent. The original state of the arm is a 12 dimension vector contains the angle and velocity of the 6
joints. However, in GC-RL, we add the position of the target into the state, including the coordinate of
x, y, z. Therefore, the state dimension of the agent is 15. Also, for the waiter problem, we need to
transport the water without sliding it, the position of the cup is in the state. The full state is a 16
dimension vector. The advantage of GC-RL is that it can transform to other goal easily, which means
it is data efficient. As we all know, one of the problem to apply RL to robotic is that there is limited
training data. For example, in this robot arm reaching task, the traditional method need to generate
target randomly, pushing the training data into replay buffer and then train the model. However, it
is not efficient and needs huge episode to converge. For the GC-RL, we can use the reward reshape
method to easily transform one goal from another.

6



For the RL algorithm, we choose the soft actor critic (SAC). SAC is a reinforcement learning
algorithm that combines the principles of deep Q-learning and policy gradient methods. It is designed
to solve continuous control tasks, where the action space is continuous and requires finding optimal
policies. SAC is known for its ability to handle both exploration and exploitation efficiently.

The key idea behind SAC is to learn a stochastic policy that maximizes the expected cumulative
reward while simultaneously learning an estimate of the state-action value function. SAC achieves
this by using an entropy regularization term that encourages exploration and prevents premature
convergence to suboptimal policies. By explicitly maximizing policy entropy, SAC can strike a balance
between exploration and exploitation, leading to more robust and diverse policy search. One of the
advantages of SAC is that it can handle environments with high-dimensional state spaces and continuous
action spaces effectively. It achieves this by employing a deep neural network as a function approximator
to represent the policy and value function. The neural network is trained using a combination of policy
gradient and Q-learning techniques, enabling SAC to learn directly from raw sensory inputs. Another
notable feature of SAC is the use of twin Q-networks and target networks. Twin Q-networks help
reduce overestimation biases in estimating the state-action value function, improving the stability and
performance of the algorithm. Target networks, on the other hand, are used to compute target values
during the training process, providing more stable and accurate value estimates. To build the RL
environment for the kinova robot arm, we register a openai Gym environment kinova-gym. It achieves
an environment with feedback and updates by inheriting the standard OpenAI Gym class.

The action for the arm is the radian of the joint, it is a gym.space.box object with the range between
-1 and 1. Then, the actions of the joints will be mapped to the degrees as ′0 − 360′,′ 0 − 180′,′ 90 −
270′,′ 0− 360′,′ 0− 360′,′ 0− 360′. The second joint has a range limits of 0 to 180 degrees because when
the angle is bigger than 180 degree, it may touch the ground or the mobile base.

For the state of the robot, it is a gym.spaces.box object. We can subscribe the the topic
”/gazebo/link− states” to get the state information. This topic can return a object contains the name
list of the joints, the position information and the velocities of the joints. The list is a 14 items long
list contains all the arm and fingers. The details are as follow:

[′ground−plane :: link′,′ j2n6s300 :: root′,′ j2n6s300 :: j2n6s300−link−1′,′ j2n6s300 :: j2n6s300−
link − 2′,′ j2n6s300 :: j2n6s300− link − 3′,′ j2n6s300 :: j2n6s300− link − 4′,′ j2n6s300 :: j2n6s300−
link − 5′,′ j2n6s300 :: j2n6s300 − link − 6′,′ j2n6s300 :: j2n6s300 − linkfinger − 1′,′ j2n6s300 ::
j2n6s300− link−finger− tip−1′,′ j2n6s300 :: j2n6s300− link−finger−2′,′ j2n6s300 :: j2n6s300−
link − finger − tip − 2′,′ j2n6s300 :: j2n6s300 − link − finger − 3′,′ j2n6s300 :: j2n6s300 − link −
finger − tip− 3′]

For the reward function of this task, we have two types of reward function: continuous and sparsed.
For the continuous setting, we calculate the negative value of the L2 norm of the position of the end
effector. For the sparsed setting, we set a threshold of the minimum distance of the end effector and
the target point. Then we will calculate the negative value of the L2 norm of the distance then do a
item based comparation for the x, y ,z dimension. Also, as we want to achieve a nonprehensile control,
we add the tilt angle of the bottle to the reward function, it is calculated by the motion capture.

For the SAC algorithm, we achieve it by ourselves. For the critic network, we use a 3 layers neural
network with RELU as the active function. Meanwhile, we use the Gaussion policy to approximate
the bolzman function. Therefore, in order to let the two function close enough, we need to minimize
the KL divergence. To update the critic network, we minimize the TD error. To update the policy
network, we use the policy gradient equation.

3.2 Challenge

Due to performance limitations of our platform compared to the one used in the reference paper, we
acknowledge that we may not be able to achieve all the objectives outlined in the paper. However, we
are committed to tackling challenging tasks within our capabilities. For instance, we aim to develop a
platform that can successfully transport a bottle of water to a predefined location while ensuring no
water spillage. To achieve this, key components such as real-time control, accurate perception of the
bottle’s state, and precise End-Effector(EE) translation and attitude adjustments are crucial. We are
aware that these challenges require considerable effort, but we are confident that through dedication
and hard work, we will be able to address them.

7



Figure 3: Training Kinova With Reinforcement learning in gazebo

4 System Evaluation

We test our algorithm for both the MPC and GC-RL.

4.1 Water’s problem Experiment

We plan to use a real velocity-controlled mobile manipulator balancing up to seven objects; balancing an
assembly of stacked objects; and avoiding static and dynamic obstacles, including a thrown volleyball.
Our goal is that the EE achieves speeds and accelerations up to 2.0 m/s and 7.9 m/s2, respectively.
However, due to the out-of-control project progress management, although we have made a lot of efforts,
we still do not have the expected functions.

Once we have constructed the forward kinematics for the j2n6s300, obtaining the angles of the
six joints will yield the corresponding Cartesian position. With this model, we can evaluate whether
each trajectory planned by MoveIt! will result in spillage. If it does, we discard the current path
planning and initiate a re-planning process. Our method requires the forward kinematic model of the
Kinova Jaco2 j2n6s300 robotic arm for predicting the end-effector position iteratively to obtain the
optimal solution. Therefore, an accurate model is crucial. The computation of the end-effector position
of the robotic arm can be achieved using the Denavit-Hartenberg (DH) parameters and the forward
kinematics equation.

8



Figure 4: DH parameters

The transformation matrices associated to each link could be obtained following the DH convention.
That transformation matrix from frame i to frame i− 1 is given by

T i−1
i =


cos (θi) − cos (αi) sin (αi) sin (αi) sin (θi) ai cos (θi)
sin (θi) cos (αi) cos (θi) − sin (αi) cos (θi) ai sin (θi)

0 sin (αi) cos (αi) di
0 0 0 1


As soon as the DH parameters are known, the transformation matrices associated to each link could

be calculated by applying the equation, then the forward kinematics can be calculated through the
equation depicted as follows.

T b
e (q) = T b

1 (q1)T
1
2 (q2) . . . T

n−1
n (qn) (10)

where n = 6 for the robotic manipulator. The experimental results are showcased in the video, and the
implementation details can be found in the README.

4.2 GC-RL Experiment

For the RL experiment, we didn’t test it on the hardware (in the real environment). We only test our
RL algorithm in the gazebo simulation. We compared our method with the general RL method. We
trained both algorithm for 1000 episode and max horizon is 128. The result is shown in Fig and table.
As we can see, our method realize a faster convergence rate and higher success rate,

Table 1: The success rate of the task

GC-RL General RL
Average Success Rate in 20 second 0.98 0.86

5 Conclusions

In this project, we want to reappearance an MPC-based approach for balancing objects with a velocity-
controlled mobile manipulator and demonstrated its performance in simulated and real experiments in
a static scenario. Based on several reference materials, we choose the [9] as our main reference. In real
experiments part, we use Kinova JACO2 and control it by using MoveIt ROS package.

Also, we tried a goal-conditioned reinforcement learning method to learning the kinematic and the
waiter problem. The experiment result shown our method can achieve the goal well.

9



Figure 5: Reward of different RL method

References

[1] P. Acharya, K.-D. Nguyen, H. M. La, D. Liu, and I.-M. Chen, “Nonprehensile manipulation:a
trajectory-planning perspective,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 527–
538, 2021.

[2] M. Selvaggio, A. Garg, F. Ruggiero, G. Oriolo, and B. Siciliano, “Non-prehensile object transporta-
tion via model predictive non-sliding manipulation control,” IEEE Transactions on Control Systems
Technology, vol. 31, no. 5, pp. 2231–2244, 2023.

[3] V. Morlando, M. Selvaggio, and F. Ruggiero, “Nonprehensile object transportation with a legged
manipulator,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 6628–6634,
2022.

[4] J. Bernheisel and K. Lynch, “Stable transport of assemblies: pushing stacked parts,” IEEE
Transactions on Automation Science and Engineering, vol. 1, no. 2, pp. 163–168, 2004.

[5] M. Kennedy, K. Queen, D. Thakur, K. Daniilidis, and V. Kumar, “Precise dispensing of liquids
using visual feedback,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1260–1266, 2017.

[6] J. Ichnowski, Y. Avigal, Y. Liu, and K. Goldberg, “Gomp-fit: Grasp-optimized motion planning for
fast inertial transport,” in 2022 International Conference on Robotics and Automation (ICRA),
pp. 5255–5261, 2022.

[7] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and M. Piastra, “Deep reinforcement
learning for collision avoidance of robotic manipulators,” in 2018 European Control Conference
(ECC), pp. 2063–2068, 2018.

[8] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning parametric dynamic movement primitives
from multiple demonstrations,” Neural Networks, vol. 24, no. 5, pp. 493–500, 2011.

[9] A. Heins and A. P. Schoellig, “Keep it upright: Model predictive control for nonprehensile object
transportation with obstacle avoidance on a mobile manipulator,” IEEE Robotics and Automation
Letters, vol. 8, no. 12, pp. 7986–7993, 2023.

10


