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Abstract

Point clouds are widely utilized as a 3D mapping format for represent-
ing environments with high detail. The Faro scanner is a powerful device
capable of generating dense, accurate, and colorized point clouds by in-
tegrating LiDAR and camera data. Accurate localization is essential to
effectively merge point clouds and construct cohesive maps. This project
aims to enhance the Faro scanner’s localization capabilities by integrat-
ing an RTK sensor, utilizing processed RTK data to achieve precise and
reliable positioning.

1 Introduction

Point clouds have become an indispensable tool for 3D mapping, enabling highly
detailed environmental representation essential for fields such as land survey-
ing, construction, and autonomous navigation. The Faro scanner, a leading
device for point cloud generation, combines LiDAR and camera technologies to
produce dense, colorized, and high-resolution data. However, while the Faro
scanner excels in capturing spatial information, it currently lacks built-in local-
ization capability, limiting its effectiveness in scenarios where precise positional
alignment is required.

To address this, our project proposes to integrate a Real-Time Kinematic
(RTK) GPS sensor with the Faro scanner to achieve high-precision localiza-
tion for outdoor applications. RTK technology, known for its centimeter- or
millimeter-level accuracy, enhances standard GPS data by providing real-time
corrections from a stationary base station. The base station receives and cal-
culates discrepancies in GPS signals, then transmits these corrections to the
mobile RTK receiver, achieving significantly improved positioning accuracy.

Although RTK offers substantial accuracy improvements, this project seeks
to further reduce localization errors. During operation, the Faro scanner will
rotate horizontally from a fixed position, creating a circular path for the RTK
sensor, which will be mounted to the side of the scanner. This setup is expected
to generate a series of positional data points along a circular trajectory. By ap-
plying filtering techniques and geometric fitting algorithms to these data points,
we can refine the localization output, achieving an even more accurate and reli-
able position for point cloud alignment. This enhanced localization method will
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support the creation of high-fidelity 3D maps in outdoor environments, making
the integrated system suitable for advanced mapping and surveying applications
requiring precise spatial data.

2 State of the Art

2.1 Pingcong

2.1.1 Three papers

1. The paper ”Accurate and Resilient GPS-Only Localization With Velocity
Constraints” proposed an improved GPS-only localization method using
two velocity constraints based on Bayesian filtering to address ambiguity
issues in state variables. These constraints help enhance the accuracy
and reliability of localization, especially when assumptions in motion and
observation models are violated.

2. The paper ”Improving Positioning Accuracy Using GPS Pseudorange Mea-
surements for Cooperative Vehicular Localization” proposed the weighted
least squares double difference (WLS-DD) technique for intervehicle dis-
tance detection and the distributed location estimate algorithm (DLEA)
for improved vehicle positioning. Field experiments and comprehensive
simulations confirmed the effectiveness and superiority of these methods.
The integration of WLS-DD and DLEA shows significant promise for accu-
rate vehicle positioning without the need for traditional reference points.

3. The paper ”Improved Iterative Closest Point (ICP) Point Cloud Reg-
istration Algorithm based on Matching Point Pair Quadratic Filtering”
proposed an improved ICP algorithm based on matching point pair sec-
ondary filtering. By incorporating ground segmentation and point cloud
filtering in the preprocessing stage, this approach effectively filters ground
points and abnormal matching point pairs during the Kdtree ICP regis-
tration process. Experimental results with outdoor ground point cloud
data demonstrate that our proposed method significantly enhances com-
putational speed and accuracy.

2.1.2 One paper in detail

Since that the result of localization is a series of points and we are going to utilize
point cloud processing method on the result, it becomes an important problem
that how to obtain an accurate and efficient registration. The paper ”Speeding
Up Iterative Closest Point Using Stochastic Gradient Descent” proposed a novel
method called SGD-ICP to improve the performance of ICP algorithm with
stochastic gradient descent. In standard ICP, it will start with a initial guess
of the transformation. Then it will perform the transformation on the source
point cloud and compared to the reference point cloud to get the updating result,
usually from SVD. In this process, it will take every point in the point cloud
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into account, which leads to unacceptable time cost when facing a large dataset.
Besides, in order to get a good result from standard ICP, it’s important to fine
tune the parameters according to the property of different point cloud data.
In order to solve these problems, this paper proposed to complete the updating
process as an optimization problem and utilize an efficient algorithm called SGD
which is from machine learning. In each iteration, it will randomly choose a
small number of points call a mini batch instead of the whole point cloud. Then
it will perform the transformation on this mini batch and calculate the loss. The
loss function in the optimization process is based on the Euclidean distance from
transformed points to the reference points. To optimize this loss function, it will
calculate the partial derivatives about each parameter of the transformation
matrix. Then applying a learning rate, it can get a updating value to each
parameter of the transformation matrix. To improve the performance, it could
use an adaptive learning rate like the ADAM-SGD model. The experiment
shows that SGD-ICP significantly improves the efficiency while has no quality
loss. When the point cloud has bad properties such as an uneven distribution
or low density, the SGD-ICP will give a much better result since it doesn’t need
to be fine tuned like the standard ICP.

2.1.3 One ROS package

In this project, it’s easy to complete the localization with RTK sensor. But for
robots, sometimes the task of localization may be challenging. Here shows a
localization package from ROS called ”robot localization” which provides non-
linear state estimation through sensor fusion of IMU, GPS, and odometry data.
It provides an ekf localization node which is an implementation of an extended
Kalman filter. It uses an omnidirectional motion model to project the state for-
ward in time, and corrects that projected estimate using perceived sensor data.
It also provides an ukf localization node which is an implementation of an un-
scented Kalman filter. It uses a set of carefully selected sigma points to project
the state through the same motion model that is used in the EKF, and then
uses those projected sigma points to recover the state estimate and covariance.
This eliminates the use of Jacobian matrices and makes the filter more stable.
However, it is also more computationally taxing than ekf localization node. It
contains a node, navsat transform node, that transforms GPS data into a frame
that is consistent with your robot’s starting pose (position and orientation) in
its world frame. This greatly simplifies fusion of GPS data.

2.2 Yuezhong

2.2.1 Three papers

1. The paper ”A Scalable Framework for Robust Vehicle State Estimation
with a Fusion of a Low-Cost IMU, the GNSS, Radar, a Camera and Lidar”
proposes a robust and scalable framework for vehicle state estimation by
integrating data from a variety of sensors, including a low-cost Inertial
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Measurement Unit (IMU), Global Navigation Satellite System (GNSS),
radar, a camera, and lidar. The framework employs an error-state ex-
tended Kalman filter (ESEKF) to fuse the data from these diverse sen-
sors, enhancing the accuracy and robustness of vehicle state estimation
under various driving conditions.The method leverages the strengths of
each sensor to compensate for their individual limitations, providing a
comprehensive solution for environmental perception, motion planning,
and control in automated driving scenarios. The paper demonstrates the
framework’s effectiveness through experimental results, showing improved
accuracy and robustness in dynamic driving maneuvers and different en-
vironmental conditions, compared to relying on a single type of sensor.

2. The paper ”Building a Reliable and Cost-Effective RTK-GNSS Infrastruc-
ture for Precise Positioning of IoT Applications” presents a solution for
creating a precise positioning system using Real-Time Kinematic Global
Navigation Satellite System (RTK-GNSS) technology. The paper details
the use of open-source software, RTKLIB, for processing rover and base re-
ceiver data to achieve high precision. The authors conducted experiments
in diverse environments and found that the system maintained approxi-
mately 91% consistency in cm-level accuracy. They concluded that the
accuracy, feasibility, and reliability of the system can be achieved with a
low-cost RTK-GNSS receiver and sensor network, which has the poten-
tial to support precise positioning applications and enhance technological
capabilities for IoT devices globally.

3. The paper ”An Extrinsic Calibration Method between LiDAR and GNSS/INS
for Autonomous Driving” introduces an efficient extrinsic calibration method
for LiDAR and GNSS/INS systems in autonomous driving, which is char-
acterized by its rapid and accurate calibration process, robustness against
initial error variations, and the ability to correct for z-axis errors typically
encountered in planar motion scenarios. This method stands out for its
streamlined approach to improving the precision of sensor fusion, leading
to enhanced autonomous vehicle navigation and localization capabilities.

2.2.2 One paper in detail

Accurate and reliable sensor calibration is critical for fusing LiDAR and iner-
tial measurements in autonomous driving. more accurate results. Due to the
lack of motion excitation in the vertical direction during planar motion, existing
calibration methods often struggle to correct for the z-axis errors of extrinsic
parameters. The paper “An Extrinsic Calibration Method between LiDAR and
GNSS/INS for Autonomous Driving” proposes a novel three-stage extrinsic cal-
ibration method between LiDAR and GNSS/INS for autonomous driving. They
use a vehicle collecting LiDAR and GNSS/INS sequence data at the intersec-
tion by walking three figure-8-shape trajectories and keeping the vehicle speed
between 10 km/h and 20 km/h. Then, the GNSS/INS pose data correspond-
ing to the LiDAR timestamp is obtained through the data processing module.
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The first stage is rough calibrate. This step can quickly calibrate the extrinsic
parameters between the sensors through point cloud surface features so that
the extrinsic can be narrowed from a large initial error to a small error range
in little time. The second stage is calibration refinement. To further enhance
the effect of mapping, authors use octree-based optimization to divide the three-
dimensional space into a voxel grid and use multi-frame point clouds for splicing
and construction. First, they use the result of rough calibration to remove the
point cloud motion distortion through the uniform speed model. Then, the ini-
tial calibration results are converted to the world coordinate system. After the
point cloud is transformed into the same coordinate system, the space is divided
into a voxel grid. If the calibration result is accurate, the space voxels occupied
by all point clouds in the same coordinate system are the smallest. The final
stage is the z-axis correction. In many cases, minor errors in the Z-axis will not
affect the automatic driving function because the car is walking on the ground
plane. Otherwise, some errors in the z-axis will cause misaligning in height.
The paper proposes to use fiducial points to optimize the calibration of the z
axis. They take K fiducial points of the whole map and project the map to the
global coordinate system to build a local map. Then the nearest neighbor of
each fiducial point is found on the local map for least square optimization to
obtain the final corrected offset on the Z axis. By using experiments, the paper
proves the three-stage can work more efficiently and accurately.

2.2.3 One ROS package

pcl ros is a powerful ROS package that provides a direct ROS interface to the
Point Cloud Library (PCL), making the processing, analysis, and visualiza-
tion of 3D point cloud data convenient and efficient in a ROS environment.
pcl ros supports the acquisition of point cloud data from a variety of 3D sen-
sors ( FARO laser scanners) and can easily publish, subscribe, and save these
data in a ROS system. pcl ros supports the acquisition of point cloud data
from various 3D sensors (e.g., LiDAR, RGB-D cameras, FARO laser scan-
ners, etc.), and the publishing, subscribing, processing, and saving of such
data in ROS systems. It seamlessly integrates with the PCL point cloud for-
mat through sensor msgs/PointCloud2, allowing powerful algorithms from PCL,
such as filtering, segmentation, feature extraction and alignment, to be applied
in point cloud processing.pcl ros provides several useful ROS tool nodes such as
pcd to pointcloud and pointcloud to pcd to easily convert between point cloud
files (e.g. .pcd files) and ROS point cloud messages for easy data logging, stor-
age and debugging.In our project,we need to transform the data that collect by
Faro scannar to .pcd files, and then deal with it.
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3 System Description

3.1 Hardware

Our system is based on a integrated RTK sensor which consists of an antenna,
a receiver, a mini-computer, a battery and so on. And there is a handbook to
receive, record and process the localization data. The handbook is connected to
the RTK sensor with bluetooth. The RTK sensor will be attached to a 3D-print
component to be employed on the top Faro scanner. And the handbook will be
employed on the tripot of the scanner. During working, the RTK sensor will
spinning with the Faro scanner and the handbook will record the data.

3.2 Software

The localization data will be represented as a series of points. Since that the Faro
scanner will stand on a static position while working, the points in the result
forming a circular trajectory represents each working spot. In our algorithm, it
firstly perform a coordinate transformation to convert the RTK data into a point
cloud. Then it will repeatedly use the RANSAC method to detect circles. The
distance threshold should be correctly configured to perform a proper fitting.
Since that the mechanic structure of the hardware is determined, which means
the proper fitted circle is expected with a radius in a specific range. Thus,
we can filter the improper fittings according to the prior data. Finally, it will
convert the point cloud of the result back into the RTK data.

4 System Evaluation

During scanning with Faro, we obtain precise positioning information. Each
scan yields a point cloud map of the surrounding area. In one scenarios, by
conducting multiple scans, we can stitch the individual maps into a larger,
comprehensive 3D point cloud map. The accuracy and smoothness of the final
cloud map serve as indicators of the project’s success. We will test in various
scenarios to ensure adaptability across different environments.

5 Result

5.1 Hardware

Initially, we planned to use a wired dGPS, which required addressing issues
related to power supply and data transmission. However, in subsequent research,
we discovered standalone dGPS devices, which shifted the challenge to how
to securely mount the dGPS onto the Faro scanner so that it could rotate
together with the scanner. To achieve this, we needed to meet three conditions:
First, the mounting device had to be detachable to facilitate disassembly during
transportation. Second, the position of the mount had to be consistent each time
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Figure 1: RTK sensor

to prevent interference with our positioning algorithm. Third, the mounting
device should not interfere with the operation of the Faro scanner or obstruct
its field of view.

Since the Faro scanner’s platform features two prominent raised stripes, we
planned to use these stripes for alignment. Specifically, our mounting device
would include special components that could align with a part of the stripes,
ensuring that the device could be mounted in the same position each time.
Additionally, to ensure the strength and stability of the device, we added a
lower section and secured it with four screws. For the dGPS mounting, we
designed two platforms: the first platform is the base, used for connecting and
securing the dGPS base. However, to prevent shaking that might occur during
rotation, we added a top platform to stabilize the dGPS receiver and prevent it
from affecting the final results. The final presentation and the assembled effect
are shown in the figure.
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Figure 2: Carrier version 1

Figure 3: Carrier version 2
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5.2 Software

Depending on the condition of the specific task, some parameters need to be
configured again to improve the performance. In the test, our algorithm pro-
vided good results. Here are some example images. In the images, the blue
points are the original data and red points are the centers of the circles.

Figure 4: Result of 3 positions

Figure 5: One of the 3 positions

9



6 Conclusion

In this project, we employed a RTK sensor on the Faro scanner to complete the
localization task. We designed a carrier to carry the sensor. During the scanning
process, the sensor will rotate with the scanner and result in a circular trajectory.
We designed an algorithm using PCL to process the RTK data and calculate
the position of the center of the circle to find the position of the scanner. In
the experiment, we found that our first version of implementation might affect
the sensor performance. Thus, we modify the structure and also the material
to improve the performance. In the future, according to the requirement of the
specific mission, we may have to configure several parameters or even implement
more filtering algorithms to ensure the accuracy.
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