
Learning to Walk: Using Reinforcement Learning
for Humanoid Robot Mobility

zijie zhu* and xi zhang*,

Abstract—This project focuses on the development of bipedal
walking capabilities for humanoid robots using reinforcement
learning (RL). The primary objective is to enhance the autonomy
and adaptability of humanoid robots for real-world applications
such as assistance, disaster response, and autonomous service
robots. A key challenge addressed in this work is the ”sim-to-real”
transfer, where learned behaviors in simulated environments are
transferred to real-world scenarios. The project leverages RL
techniques, for example, Proximal Policy Optimization (PPO), to
teach the robot how to walk, turn, and avoid obstacles in diverse
environments, including varying terrains and under external
disturbances. The system is initially developed in simulation
environments (Isaac Gym and gazebo) and then transferred to
a physical robot, Dora2, for real-world testing. Through this
research, the project aims to bridge the gap between simulation
and real-world deployment, enabling humanoid robots to operate
autonomously in complex, dynamic environments.

I. INTRODUCTION

This project focuses on humanoid robots, particularly on
the development of bipedal walking capabilities using rein-
forcement learning (RL) techniques. The primary motivation
behind this research is to advance the field of robotics by
enabling humanoid robots to walk autonomously in a human-
like manner, which has significant implications for real-world
applications such as assistance robots, disaster response, and
autonomous service robots.

One of the key challenges in this domain is ensuring effec-
tive transfer of learned behaviors from simulated environments
to the real world, a problem often referred to as ”sim-to-real”
transfer. In this project, we investigate the use of reinforcement
learning to teach the robot bipedal locomotion, with an em-
phasis on improving the transferability of the learned policies
from simulations to real-world scenarios. Achieving successful
simulation-to-reality transfer will bring us closer to developing
practical humanoid robots capable of operating autonomously
in complex environments.

Another critical challenge is enabling the robot to navigate
in various outdoor terrains, endure external disturbances, carry
payloads, and adjust its gait based on different conditions.
This requires the robot to not only learn how to walk but
also how to adapt dynamically to changing environments and
tasks, making it more versatile and resilient in real-world
applications.

The motivation for this research stems from the need for
humanoid robots that can operate autonomously in complex,

Identify applicable funding agency here. If none, delete this.

dynamic environments. Current robots, while effective in con-
trolled settings, often struggle to handle the variability and
unpredictability of real-world conditions. This gap in robotic
capabilities highlights the importance of developing adaptive,
learning-based systems. By using reinforcement learning, this
research aims to create robots that can continuously improve
and optimize their behaviors, enabling them to better navigate
diverse terrains, handle external disturbances, and adjust to
changing environmental conditions. Ultimately, this work will
help pave the way for more capable, autonomous humanoid
robots that can perform a wide range of tasks in real-world
scenarios.

II. RELATED WORKS

Jonah Siekmann [9] introduces a novel probabilistic reward
framework for reinforcement learning that enables a bipedal
robot to learn a full spectrum of locomotion gaits.Following
his research,Helei Duan [2] propose a fully-learned system
that enables bipedal robots to react to local terrain while
maintaining commanded travel speed and direction through
sim-to-real learning for vision-based bipedal locomotion over
challenging terrains.And Xinyang Gu [3] proposed an open
source reinforcement learning framework designed to train
the motor skills of humanoid robots, emphasizing zero-shot
transfer from simulation to real environments.Jonah Siekmann
[1] also demonstrates how Deep Reinforcement Learning
(DRL) and Curriculum Learning (CL) can be employed to
train a hexapod robot in simulation, improving its walking
and obstacle avoidance performance when transferred to real-
world environments.In a similar vein, T. Huang [5] explores
the application of DRL for training a bipedal robot to develop
stable walking patterns in simulations, with the aim of trans-
ferring these behaviors to real-world hardware.Furthermore, V.
Gupta [4] presents a framework for robotic manipulation using
DRL, focusing on asynchronous policy updates to help robots
efficiently learn complex tasks from high-dimensional sensory
inputs like images.

Ilija Radosavovic [7] propose a novel learning-based ap-
proach for controlling humanoid robots, focusing on real-
world locomotion. The controller utilizes a causal transformer
model that takes the history of proprioceptive observations
and actions as input, predicting the next action. This model
is trained through large-scale reinforcement learning in a
simulated environment with randomized parameters and then
deployed to a real-world humanoid robot zero-shot. The key
hypothesis is that the observation-action history implicitly

encodes information about the environment, allowing the
transformer to adapt its behavior in context without requir-
ing weight updates. Experiments demonstrate the controller’s
ability to navigate diverse outdoor terrains, withstand external
disturbances, carry payloads, and adapt its gait to varying
conditions. Notably, the controller exhibits emergent behaviors
like arm swinging and recovery from foot trapping, even
though these were not explicitly programmed. The researchers
highlight the controller’s robustness and adaptability, compar-
ing it favorably to a state-of-the-art model-based controller.
They conduct extensive experiments in both simulated and
real-world settings, including tests on slopes, rough terrain,
and under external forces. Ablation studies demonstrate the
advantages of the transformer architecture over other neural
networks, the benefits of a larger context window for the trans-
former, and the effectiveness of joint training with imitation
learning and reinforcement learning. Although acknowledging
limitations such as slight movement asymmetry and imper-
fect velocity tracking, the authors suggest that this scalable
learning-based approach holds promise for advancing real-
world humanoid locomotion and encourage future research
exploring the incorporation of additional input modalities.

Jonah Siekmann [10] addresses the simulation-to-real chal-
lenge, where simulation-trained policies often fail in real-
world applications due to discrepancies between simulated
and real-world environments. To overcome this, the authors
propose combining deep-reinforcement learning (DRL) with
curriculum learning (CL). The robot is trained in a simulated
environment, with the task complexity gradually increasing,
which allows the robot to first learn basic behaviors before
progressing to more complex tasks. This approach significantly
enhances the robot’s real-world stability and performance in
tasks like walking, turning, and obstacle avoidance. The study
demonstrates that the learned policies can be transferred to the
real robot, mitigating issues like sensor noise and unmodeled
dynamics. The paper highlights how CL can prepare robots
for real-world environments, providing a robust framework for
real-world robotic deployment.

There are many ros packages available for our project.The tf
package in ROS is a vital tool for managing coordinate trans-
formations in robotic systems. It allows robots to understand
and manage spatial relationships between different frames of
reference, such as sensors, actuators, and the environment.
This is essential for tasks like localization, sensor fusion, and
motion planning. Key components of tf include the Transform-
Listener, which listens for and queries transformation data, and
the TransformBroadcaster, which broadcasts transformation
data across the system. The tf package supports both 2D and
3D transformations and is crucial for integrating sensors like
cameras, LIDAR, and IMUs, ensuring data from these sensors
is aligned with the robot’s frame of reference. The package’s
ability to handle real-time transformations is key for enabling
accurate robot behavior in dynamic environments, supporting
tasks such as simultaneous localization and mapping (SLAM)
and multi-robot coordination.

And Gym-gazebo is an open source toolkit for developing

and comparing reinforcement learning algorithms using ROS
and Gazebo. It builds upon the original gym-gazebo, upgrading
it to use ROS and providing a more convenient architecture
tailored for industrial robotic applications. The toolkit consists
of three main software blocks: gym-gazebo, ROS, and Gazebo.
Create environments and register them in OpenAI’s Gym,
allowing interaction with simulated or real robots via ROS.
The environments provide core functions like initialization,
executing actions, and resetting, which are called by RL
algorithms. The package currently offers four environments for
the MARA modular robotic arm, with varying levels of com-
plexity regarding target reaching, collision avoidance, and end-
effector orientation. It provides command-line customization
options and uses a training-optimized Gazebo plugin for maxi-
mum simulation speed. The toolkit has been successfully used
to train policies using Proximal Policy Optimization (PPO),
achieving accuracies in the millimeter scale for target reaching
tasks. Gym-gazebo aims to advance reinforcement learning
methods to be applicable in real industrial tasks, bridging the
gap between research and production environments in robotics.

III. METHOD

A. Reinforcement Learning For Robot Control

Reinforcement Learning (RL) offers a structured approach
to optimize robot control by learning policies that map ob-
servations to actions to maximize cumulative rewards. The
control problem is modeled as a Markov Decision Process
(MDP), represented by the tuple (S,A,P,R, γ), where:

• S: State space, representing the robot’s configurations and
sensory inputs.

• A: Action space, corresponding to control commands.
• P(s′|s, a): State transition probability, describing the

likelihood of transitioning to state s′ from state s after
action a.

• R(s, a): Reward function, quantifying immediate feed-
back for action a in state s.

• γ: Discount factor, emphasizing long-term rewards.
The objective is to find an optimal policy π∗(a|s) that

maximizes the expected cumulative reward:

π∗ = argmax
π

Eπ

[∞∑
t=0

γtR(st, at)

]
.

We employ Proximal Policy Optimization (PPO) to itera-
tively improve the policy. PPO optimizes a clipped surrogate
objective to balance exploration and stability. The policy π is
parameterized by a neural network πθ, and the loss function
for PPO is defined as:

L(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,

where:
• rt(θ) = πθ(at|st)

πθold (at|st) is the probability ratio between the
updated and old policies.

• At: Advantage function, defined as At = Qπ(st, at) −
V π(st).

• ϵ: Clipping parameter to restrict policy updates, ensuring
stable learning.

The value function V π(s) is trained concurrently using a
mean-squared error loss:

LV (ϕ) = Et

[
(Vϕ(st)−Gt)

2
]
,

where Gt is the target return calculated from rewards.
Additionally, domain randomization is applied during train-

ing, varying physical parameters (e.g., friction, mass) to ensure
the learned policy generalizes to diverse scenarios. The learned
policy is first validated in simulation and then deployed on
the physical robot, demonstrating its capability to handle real-
world tasks.

B. System Description
The goal of this project is to enable the humanoid robot

Dora2 to achieve real-world walking by transitioning from
virtual environments to physical deployment. The system
design follows a structured pipeline, starting with simulation
and progressing to physical validation.

1) Simulation in IsaacGym: The process begins by incorpo-
rating Dora2’s URDF file into IsaacGym, a high-performance
simulation platform for reinforcement learning (RL). In this
phase, the robot’s walking behavior is trained by optimizing
motor torque values, with the reinforcement learning algorithm
Proximal Policy Optimization (PPO) used to stabilize policy
updates. PPO minimizes large policy changes by using a
”clipped objective function,” ensuring smoother and more
reliable updates.

2) State Representation and Control Framework: The
robot’s state is represented by a set of key variables:

• Base Pose and Joint Positions: The robot’s base pose,
denoted as Pb = [x, y, z, α, β, γ], includes the position
coordinates x, y, z and orientation angles α, β, γ in Euler
notation. The joint positions for each motor are repre-
sented by θ, and the corresponding joint velocities are
denoted by θ̇.

• Gait Cycle: The walking behavior follows a gait cycle,
which consists of two double support phases (DS) and
two single support phases (SS). The cycle time, CT ,
defines the duration of one full gait cycle. Sinusoidal
functions are used to generate reference motion, modeling
the repetitive movements of the pitch, knee, and ankle
joints.

• Foot Contact Mask: A periodic stance mask Ip(t)
indicates foot contact patterns in sync with the reference
motion. For instance, when the left foot is lifted, the right
foot enters the single support phase, represented as [0, 1],
while during double support phases, the mask is [1, 1].

• Proportional-Derivative (PD) Control: The joint po-
sitions are controlled using a PD controller, with the
target joint position chosen as the action. The policy
network integrates proprioceptive sensor data, a periodic
clock signal [sin(2πt/CT), cos(2πt/CT)], and velocity
commands Ṗx,y,γ . Input frames and their dimensions are
summarized in Table I.

3) Validation in gazebo: After training in IsaacGym, the
model is transferred to gazebo for validation. gazebo, with
its accurate physical dynamics, allows us to test the model
across various simulation environments, ensuring the learned
walking behavior generalizes beyond the training setup. This
sim-to-sim validation phase confirms the model’s adaptability
to diverse conditions.

4) Modifications for ROS1 and Gazebo: Next, the official
ROS1 source code is modified to enable handheld control
in Gazebo, a widely-used robot simulation platform. These
modifications allow practical testing and fine-tuning of the
system in a simulated environment, facilitating the transition
to physical deployment.

5) Deployment to Physical Hardware: Finally, the trained
and validated model is deployed to the physical Dora2 robot
for real-world testing and performance evaluation. This final
step is crucial for assessing the robot’s ability to walk in
dynamic and unpredictable real-world environments.

TABLE I
SUMMARY OF OBSERVATION SPACE

Components Dims Observation State
Clock Input (sin(t), cos(t)) 2 ✓ ✓

Commands Ṗx,y,γ 3 ✓ ✓
Joint Position θ 12 ✓ ✓
Joint Velocity θ̇ 12 ✓ ✓

Angular Velocity Ṗb(α, β, γ) 3 ✓ ✓
Euler Angle Pb(α, β, γ) 3 ✓ ✓

Last Actions at−1 12 ✓ ✓
Frictions 1 ✓

Body Mass 1 ✓
Base Linear Velocity 3 ✓

Push Force 2 ✓
Push Torques 3 ✓

Tracking Difference 12 ✓
Periodic Stance Mask 2 ✓
Feet Contact Detection 2 ✓

6) Control Framework: The control policy operates at a
high frequency of 100Hz, providing enhanced granularity and
precision compared to standard RL locomotion approaches.
The internal PD controller operates at an even higher fre-
quency of 1000Hz, ensuring precise control over joint move-
ments. For training simulations, IsaacGym is used, while
gazebo, known for its accurate physical dynamics, is used
for sim-to-sim validation. This hybrid approach leverages the
high-speed GPU-based parallel simulation of IsaacGym and
the accurate but slower CPU-based simulation of gazebo.

C. Reward design for walking
The reward function is a critical component of reinforce-

ment learning, guiding the agent towards desirable behaviors.
In this work, we define the reward function based on several
aspects of robot performance, including joint positions, foot
distances, velocity tracking, and more. Each individual reward
term is designed to address specific aspects of the robot’s
behavior and is multiplied by a scaling factor to modulate
its impact on the overall reward.

Joint Position Reward: The reward based on joint positions
is calculated as:

rjoint = exp
(
−2 · ∥pjoint − ptarget∥2

)
− 0.2 · ∥pjoint − ptarget∥2 ,

(1)
where pjoint and ptarget are the current and target joint positions,
respectively. The term penalizes large deviations from the
target positions.

Foot Distance Reward: The reward for maintaining an
optimal foot distance is:

rfeet =
1

2
(exp(−|dmin| · 100) + exp(−|dmax| · 100)) , (2)

where dmin = max(0, foot dist − fd) and dmax =
max(0, foot dist−max df) represent the minimum and max-
imum deviations of foot distance from the target range.

Knee Distance Reward: The reward based on knee distance
is computed as:

rknee =
1

2
(exp(−|dmin| · 100) + exp(−|dmax| · 100)) , (3)

where dmin and dmax are similar to those in the foot distance
term, but applied to the knee joints.

Foot Slip Reward: To minimize foot slip, the following
reward is calculated:

rslip =
∑
i

√
∥vi∥ · contacti, (4)

where vi is the velocity of the foot and contacti is the contact
condition for foot i.

Feet Air Time Reward: The reward based on foot air time
is:

rair =
∑
i

(air timei · 1first contacti) , (5)

where air timei represents the time the foot is in the air, and
1first contacti indicates the first contact with the ground.

Feet Contact Number Reward: This reward term is
computed as:

rcontact =
1

N

∑
i

1contacti==stancei , (6)

where N is the number of feet, and 1contacti==stancei penalizes
mismatches between foot contacts and the expected gait phase.

Base Height Reward: The reward for maintaining the
robot’s base height is:

rheight = exp (− |hbase − htarget| · 100) , (7)

where hbase is the robot’s base height and htarget is the target
height.

Base Acceleration Reward: To promote smooth motion,
we calculate the reward for base acceleration:

racc = exp (−∥abase∥ · 3) , (8)

where abase is the robot’s base acceleration.

Velocity Mismatch Reward: The reward for velocity mis-
match is:

rvel =exp (− |vlin − vcommand| · 10)
+ exp (−∥vang − vcommand∥ · 5) .

(9)

Low Speed Reward: The low speed reward is defined as:

rlow speed =

−1 if |vlinear| < 0.5 · |vcommand|
0 if |vlinear| > 1.2 · |vcommand|
1.2 otherwise.

(10)

Action Smoothness Reward: Finally, the action smooth-
ness term is given by:

rsmooth =
∑
i

(
∥ai − ai−1∥2 + ∥ai + ai−1 − 2 · ai−2∥2

)
+ 0.05 ·

∑
i

|ai| .

(11)
Total Reward For Walking
The total reward rtotal is a weighted sum of the individual

reward components:

rtotal =
∑
i

scalei · ri. (12)

Each term ri corresponds to one of the individual reward
functions described above, and scalei represents the scaling
factor for that term.

D. Reward design for standing

The reward function is a fundamental aspect of reinforce-
ment learning, driving the agent toward achieving stable and
desirable standing behavior. In this work, we define the reward
function based on several performance criteria, such as orienta-
tion stability, joint position tracking, and contact balance. Each
individual reward term addresses specific aspects of standing
performance and is modulated by a scaling factor to balance
its influence on the overall reward.

Orientation Maintenance Reward: The reward for main-
taining an upright orientation is defined as:

rori = exp (−σori · ∥ocurrent − otarget∥) , (13)

where ocurrent and otarget represent the current and target
orientations, respectively, and σori is a sensitivity parameter.

Joint Position Reward: To encourage the robot to maintain
its default posture, the joint position reward is given by:

rjoint = exp (−σjoint · ∥pcurrent − pdefault∥) , (14)

where pcurrent and pdefault are the current and default joint
positions.

Feet Contact Balance Reward: The reward for maintaining
balanced foot contact is calculated as:

rfeet =
1

N

N∑
i=1

1contacti=stable, (15)

where N is the number of feet, and 1contacti=stable indicates
whether foot i maintains stable contact.

Collision Penalty: A negative reward is applied if any
collision is detected:

rcollision =

{
−1 if collision detected,
0 otherwise.

(16)

Stability Maintenance Reward: To ensure the robot re-
mains stationary and resists external perturbations, the follow-
ing reward is defined:

rstability = exp (−σstability · ∥vbase∥) , (17)

where vbase is the linear velocity of the robot’s base.
Action Smoothness Reward: To discourage abrupt joint

movements, the action smoothness reward is given by:

rsmooth = −σsmooth · ∥acurrent − aprevious∥2, (18)

where acurrent and aprevious are the current and previous actions.
Total Reward For Standing
The overall reward is a weighted sum of the individual

components:

rtotal =
∑
i

scalei · ri, (19)

where ri represents each individual reward term, and scalei is
the corresponding scaling factor.

E. System Evaluation

To evaluate the system, several testing methods will be em-
ployed. In simulation vs reality comparison, we will first train
the Dora2 robot to perform basic walking tasks (e.g., straight-
line walking, turning, obstacle avoidance) in Isaac Gym [6],
then compare the performance in simulation with real-world
performance. This will involve measuring deviations between
the simulated and real walking paths to evaluate the model’s
adaptability. Additionally, the trained model will be validated
in gazebo under different environment settings to assess ro-
bustness across various conditions. In real-world testing, the
trained control policy will be deployed onto the actual Dora2
robot and tested in varying environmental conditions (e.g.,
different terrains, obstacles) to assess the robot’s ability to
walk stably and adapt to external disturbances.

Evaluation will be based on task completion, stability
metrics, performance comparison, and real-time response. A
successful walking task is defined as completing a predefined
path (e.g., walking 5 meters in a straight line, with at least
8 successful runs out of 10 trials) without falling. Stability
metrics will focus on the number of falls and the deviation
from the path, with acceptable tolerances set for both. Per-
formance comparison will involve comparing motor torque

data between simulation and real-world tasks, ensuring that
the control strategy transferred from simulation to reality is
effective. Finally, real-time response will measure the robot’s
response time and control system’s performance, ensuring
quick execution of commands.

IV. EXPERIMENTS

A. Training Details

Reinforcement learning (RL) training was conducted in
Isaac Gym using the Proximal Policy Optimization (PPO)
algorithm [8]. Policies were trained with a batch size of 64
trajectories (400 timesteps per trajectory), a learning rate of
0.0003, and 5 epochs per update. Training was terminated after
250 million samples, which required approximately 40 hours
on an NVIDIA RTX 4090 GPU.

The observation space consisted of joint positions, veloc-
ities, angular velocities, and command inputs (e.g., linear
and angular velocities). To synchronize motion phases, a
periodic clock signal was included in the observations. Domain
randomization was applied to enhance the sim-to-real transfer-
ability by introducing variations in robot and environmental
parameters.

The initial goal was to train a walking policy capable of
forward, backward, and turning maneuvers. Once the walking
policy achieved satisfactory performance, it was exported as a
TorchScript JIT model for further validation.

Fig. 1. Mean reward for walking policy during training in Isaac Gym.

Fig. 2. Mean reward for standing policy during training in Isaac Gym.

B. Sim-to-Sim Validation

The trained walking policy was imported into gazebo for
cross-environment validation. This step was crucial to ensure
the policy’s robustness and consistency when tested in a more
accurate physics engine. Validation metrics included trajectory
alignment, phase portraits, and foot-ground contact patterns.

Once validated in gazebo, the policy was converted to
ONNX format for compatibility and deployment. Rigorous
testing of the ONNX model’s input-output integrity ensured
that no critical bugs occurred during real-world implementa-
tion.

C. ROS and Gazebo Simulation

The ONNX policy was integrated into a ROS-based control
framework and tested in Gazebo, where proprietary company
code was adapted to support the new walking policy. Gazebo
simulations replicated real-world conditions, including uneven
terrain and external disturbances.

The walking policy demonstrated satisfactory performance,
successfully navigating complex terrains and recovering from
minor disturbances. With consistent results in Gazebo, the
policy was deemed ready for real-world deployment.

D. Real-World Testing and Iterative Refinements

Initial real-world tests revealed significant discrepancies
between simulation and physical performance, attributed to
unmodeled dynamics and environmental factors. To address
this, the environment configuration parameters were updated,
and the policy was retrained with refined domain randomiza-
tion settings. The revised policy underwent repeated validation
in Isaac Gym and Gazebo before redeployment.

Certain aggressive maneuvers observed during real-world
tests posed potential risks to the robot’s hardware. A safety-
focused policy was trained to prioritize stability and reduce
impact forces, resulting in improved hardware safety and
robustness in both simulated and real-world environments.

E. Standing Policy and Autonomous Control

Following the validation of the walking policy, a standing
policy was trained using a similar approach. This policy
aimed to enable the robot to maintain balance and resist
external perturbations independently. The training process for
the standing policy included domain randomization and safety
considerations to ensure real-world applicability.

Control transitions between walking and standing poli-
cies were implemented through a handheld controller, en-
abling seamless switching during operation. The final system
achieved fully autonomous control, allowing the robot to tran-
sition between walking and standing with minimal operator
intervention. This demonstrated the system’s versatility and
robustness in real-world scenarios.

F. Discussion

The experiments confirm the effectiveness of our approach
in training and deploying robust walking and standing policies.
The sim-to-sim validation in Gazebo played a critical role

in bridging the sim-to-real gap, while iterative refinements
during real-world testing addressed discrepancies caused by
unmodeled dynamics.

Future work will focus on further optimizing domain ran-
domization techniques and safety measures to enhance deploy-
ment reliability. Additional efforts will be directed towards im-
proving the policies’ performance on diverse and challenging
terrains to extend the robot’s operational capabilities.

V. CONCLUSION

This work presents a comprehensive framework for training,
validating, and deploying locomotion policies for humanoid
robots in both simulated and real-world environments. By
leveraging reinforcement learning in Isaac Gym, followed
by cross-environment validation in Gazebo, we successfully
minimized the sim-to-real gap, enabling zero-shot transfer to
real hardware.

The iterative refinement process proved crucial for address-
ing discrepancies between simulation and real-world perfor-
mance, particularly for dynamic walking and turning maneu-
vers. The introduction of a safety-focused policy significantly
improved hardware protection during real-world deployment.
Furthermore, the standing policy and autonomous control
transitions between standing and walking demonstrate the
versatility and robustness of the trained models.

While the proposed framework achieves stable and reli-
able locomotion, further improvements are needed to enhance
adaptability and responsiveness to external disturbances. Fu-
ture work will focus on integrating tactile sensors into the
robot’s feet, enabling precise feedback on ground contact
forces. This advancement is expected to significantly improve
gait stability, enhance adaptability to uneven terrains, and
allow for more dynamic behaviors. Additionally, efforts will
continue to optimize domain randomization techniques and
hardware-specific adaptations to bridge the sim-to-real gap
more effectively.

APPENDIX

This appendix provides a comprehensive summary of the
parameters and scaling factors used in the reward functions
for both walking and standing tasks.

A. Walking Task Reward Parameters

Table II lists the parameters and scaling factors for the
walking reward terms.

B. Standing Task Reward Parameters

Table III summarizes the parameters and scaling factors for
the standing reward terms.

REFERENCES

[1] J. Albrecht, A. Sutton, B. Lee, and J. Hurst. Learning to walk via deep
reinforcement learning. IEEE Transactions on Robotics, 35(4):872–884,
2019.

[2] Helei Duan, Bikram Pandit, Mohitvishnu S. Gadde, Bart Jaap van
Marum, Jeremy Dao, Chanho Kim, and Alan Fern. Learning vision-
based bipedal locomotion for challenging terrain. 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 56–62,
2023.

TABLE II
REWARD PARAMETERS FOR WALKING

Term Scale Parameter Value
Joint Position 0.8 σjoint = 2.0
Foot Distance 1.0 fd = 0.15, max df = 0.25
Knee Distance 0.9 Same as Foot Distance Parameters

Foot Slip 1.2 -
Feet Air Time 0.6 -

Feet Contact Number 1.0 -
Base Height 1.5 htarget = 0.8

Base Acceleration 0.5 -
Velocity Mismatch 2.0 -

Low Speed −1.0 Speed Thresholds: 0.5, 1.2
Action Smoothness 0.05 σsmooth = 0.1

TABLE III
REWARD PARAMETERS FOR STANDING

Term Scaling Factor Parameter Value
Orientation Maintenance Reward 1.5 σori = 5.0

Joint Position Reward 0.7 σjoint = 3.0
Feet Contact Balance Reward 1.5 -

Collision Penalty −1.5 -
Stability Maintenance Reward 3.0 σstability = 2.0
Action Smoothness Reward −0.002 σsmooth = 0.1

[3] Xinyang Gu, Yen-Jen Wang, and Jianyu Chen. Humanoid-gym: Rein-
forcement learning for humanoid robot with zero-shot sim2real transfer.
ArXiv, abs/2404.05695, 2024.

[4] V. Gupta, J. Lee, A. Shia, and J. Y. Chen. Deep reinforcement learning
for robotic manipulation with asynchronous policy updates. IEEE
International Conference on Robotics and Automation (ICRA), pages
5314–5320, 2021.

[5] T. Huang, Y. Li, R. A. Knepper, and R. D. S. Mellinger. Learning
to walk in 2d with deep reinforcement learning. IEEE Robotics and
Automation Letters, 5(2):4258–4265, 2020.

[6] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle
Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur
Allshire, Ankur Handa, et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint arXiv:2108.10470,
2021.

[7] Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra
Malik, and Koushil Sreenath. Real-world humanoid locomotion with
reinforcement learning. Science Robotics, 9, 2023.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[9] Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan W. Hurst.
Sim-to-real learning of all common bipedal gaits via periodic reward
composition. 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 7309–7315, 2020.

[10] Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan W. Hurst. Sim-
to-real: Six-legged robot control with deep reinforcement learning and
curriculum learning. 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 7309–7315, 2020.

