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1 Abstract

Our project focuses on improving interaction capabilities in humanoid robots, specifically targeting
the facial expression system of Sophia, a sophisticated humanoid developed by Hanson Robotics.
Although Sophia is capable of mimicking a broad range of human facial expressions, her control
systems lag in real-time, dynamic expression replication, relying heavily on artist-created, prede-
fined expressions. We address these limitations by developing a transformer-based architecture to
map ARKit parameters to motor parameters for accurate reproduction of facial expressions from
videos or live captures. Additionally, we are establishing a real-time translation pipeline from text
to facial expressions, enabling Sophia to converse with dynamically generated expressions. These
advancements enhance Sophia’s responsiveness in interactions, contributing to the broader field
of robotics by improving humanoid robots’ interactive capabilities and facilitating more nuanced
human-robot communication.

2 Introduction

The intersection of robotics, artificial intelligence, and human-computer interaction has yielded
extraordinary developments in recent years, among which humanoid robots stand as a milestone of
technological advancement. Sophia, a humanoid robot developed by Hanson Robotics, encapsulates
these advancements. Since her debut in 2016, Sophia has been considered as one of the most
human-like robots by the public and researchers, symbolizing the potential of the humanoid robots’
capabilities to interact with human beings. Her ability to mimic human facial expressions through
a sophisticated array of motors embedded beneath a skin-like material called "Frubber” places her
at the forefront of interactive robotics. This innovative design allows Sophia to exhibit a range of
emotions and reactions, making her one of the most lifelike robots in existence.

Sophia’s expressiveness is facilitated by an advanced facial motion system with 33 Degrees
of Freedom (DoF). This system enables her to display a spectrum of emotions with remarkable
nuance, from joy and sorrow to curiosity and contemplation. Each movement is powered by
precisely coordinated actuators that replicate the actions of human facial muscles, such as the
zygomaticus major for smiling or the orbicularis oculi for blinking. These actuators presents the
robot’s mechanical sophistication and represent a significant step towards creating robots capable
of genuine human-like interactions.

Despite these advancements, a critical challenge persists: the gap between Sophia’s mechanical
capabilities and the sophistication of control systems needed for dynamic, real-time expression
replication. Currently, Sophia’s expressions are primarily pre-defined and created by artists, with
her control system limited to executing these preset expressions. This approach, while effective for
demonstrating a range of facial movements, falls short of achieving the spontaneous and responsive
interaction that characterizes genuine human expression.

Recognizing this gap, our project aims to pioneer a new frontier in humanoid robotics by
developing an expression control system for Sophia that leverages cutting-edge AI techniques for
real-time, dynamic expression generation and replication. Specifically, we propose to:
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e Develop a facial expression generation scheme using Deep Learning and other self-supervised
learning methods, enabling Sophia to autonomously generate expression driven by humans
in real-time.

o Create a control method capable of reproducing facial expressions from videos or live captures
with high fidelity, thus enhancing Sophia’s interactive capabilities.

o Establishing a real-time text-expression translation pipeline. Integrating ChatGPT’ s Al
response text and neural models to translate audio into expressions, this pipeline will allow for
real-time conversational capabilities, enabling Sophia to respond with dynamically generated
expressions during interactions.

This dual approach seeks not only to augment Sophia’s expressive abilities but also to con-
tribute to the broader field of robotics by exploring novel methods for improving the interactive
capabilities of robots. By advancing the underlying technology for expression control in humanoid
robots, our project endeavors to enhance human-robot interaction, paving the way for robots to
engage more naturally and effectively with humans. This initiative holds the promise of transfor-
mative impacts across diverse domains, including education, healthcare, and entertainment, where
enhanced human-robot interaction can deliver significant benefits.

3 State of the Art

The foundational work by Chuang et al. [CB02] introduces a method for generating realistic facial
animations using blendshape interpolation driven by performance data. This approach leverages
motion capture or keyframe animation to enhance the naturalness of facial expressions by interpo-
lating between different blendshapes. The methodology involves aligning performance data with a
character’s facial rig, mapping this data to blendshape weights, and generating smooth transitions
between expressions, forming the basis for realistic and expressive facial animations.

To be specific, the paper provides an overview of blendshape interpolation techniques, which
involve creating a set of "blendshapes” or key shapes representing different facial expressions (e.g.,
smile, frown, raised eyebrows). These blendshapes are then linearly interpolated to generate inter-
mediate facial expressions. The paper introduces the concept of performance data, which includes
motion capture data captured from human actors or keyframe animation created by animators.
Performance data provides realistic motion and expressions that can be used to drive the blend-
shape interpolation process. The paper describes the proposed methodology for performance-driven
facial animation using blendshape interpolation. This involves aligning the performance data with
the target character’s facial rig, mapping the performance data to blendshape weights, and inter-
polating between blendshapes to generate smooth and natural facial animations. In our Sophia
system, one of our assumption is that we use blendshapes as a proxy to the movements of the
actuators in the Sophia’s face. We collect our data in the format of blendshapes of Apple’s ARKit,
and then map them into Sophia’s motor movements. This paper gives the fundamental theory of
how we might manipulate the blendshapes to create different facial animations initially.

Building on this foundation, Thambiraja et al. [THA 23] delve into personalized speech-driven
3D facial animation with their system, Imitator. This research focuses on the dynamic generation of
facial expressions synchronized with speech inputs. By analyzing speech signals and mapping them
to facial expression parameters, the system enables real-time animation, enhancing the interactivity
and expressiveness of digital avatars.

Shi et al. [SWJD23] further explore motion generation through deep reinforcement learning
(DRL), presenting a sophisticated method for producing diverse and high-fidelity human motion
sequences. This paper highlights the potential of DRL in controlling and generating complex
motion patterns, providing a robust framework for various applications in animation and robotics.

In the realm of mobile manipulation, Xia et al. [XLMM*21] propose ReLMoGen, an innovative
approach integrating motion generation with reinforcement learning for mobile manipulation tasks.
By defining tasks as time-discrete Partially Observable Markov Decision Processes (POMDPs) and
using subgoals for motion generation, this method improves the efficiency and effectiveness of visuo-
motor control in complex environments.

Specifically, the paper presents a new trajectory learning scheme for a limb exoskeleton robot de-
signed to assist patients with lower limb disabilities. This approach combines Dynamic Movement
Primitives (DMP) with Reinforcement Learning (RL) to generate walking motions. The exoskele-
ton has six degrees of freedom, focusing on the hip and knee and the ankle. A five-point segmented
gait planning strategy is employed for trajectory generation, ensuring stability via a Zero Moment



Point margin. The method effectively addresses joint uncertainties and interferences, enhancing
motion generation for exoskeleton-assisted walking.

The Deep Reinforcement Learning (DRL) in the study is used to refine the walking trajectories
generated by the Dynamic Movement Primitives (DMP) for an exoskeleton robot. RL helps in
adapting to uncertainties in joint movements by learning from interactions with the environment
to achieve optimal motion. This process involves iteratively improving the policy that dictates the
robot’s actions based on feedback from the environment, aiming to minimize errors and enhance
the stability and efficiency of the exoskeleton’s walking patterns.

Shifting the focus to robotics and exoskeletons, Zhang et al. [Z2Z22] address the development
of walking exoskeleton robots by combining Dynamic Movement Primitives (DMPs) with rein-
forcement learning to enhance motion generation capabilities. This study aims to optimize the
walking patterns of exoskeletons, significantly contributing to the field of rehabilitation robotics
by improving the safety and effectiveness of these assistive devices.

Zhang et al. [ZXCC23] investigate multi-objective optimal trajectory planning for robotic arms
using deep reinforcement learning. This research addresses the challenges of balancing multiple
objectives, such as accuracy, energy consumption, and smoothness of motion. By integrating these
factors into the reinforcement learning environment, the study showcases enhanced precision and
efficiency in robotic arm movements, pushing the boundaries of what can be achieved in robotic
trajectory planning.

Furthermore, Chen et al. [CHL"21] presents a significant advancement in animatronic robotics
and facial expression mimicry by developing Eva 2.0, an animatronic robotic face with soft skin
and flexible control mechanisms, capable of learning and imitating diverse human facial expressions
through a vision-based self-supervised learning framework. Previous works in animatronic robotics
have primarily focused on hardware design and pre-programmed facial expressions, as seen in
systems like Kismet [BBM 98] and Albert HUBO [OHK ' 06], which are limited by their reliance
on fixed sets of expressions and extensive human effort. Recent studies have introduced more
general motion control mechanisms, such as Affetto’s motor displacement modeling and XIN-
REN’s [RH16] facial feature tracking, but these approaches also face limitations in generalization
and online inference.

Significant progress in synthetic video generation and character face animation has focused
on motion re-targeting, with methods like Face2Face[TZS116] and X2Face[WSKZ18] transferring
motions across different subjects or domains, though these are restricted to digital avatars and
require detailed 3D knowledge. Imitation learning research typically centers on manipulation,
locomotion, and navigation rather than facial mimicry, posing unique challenges for achieving
precise and varied expressions. The authors of this paper propose a novel two-stage learning
framework comprising a generative model that synthesizes a robot self-image from normalized
human facial landmarks and an inverse model that outputs motor commands from the synthesized
image. This framework enables the robot to learn from a single motor babbling dataset without
requiring human labels or predefined expression sets, demonstrating accurate and diverse facial
mimicry with real-time response capabilities. Comprehensive evaluations show that this method
outperforms nearest-neighbor search-based algorithms and direct mapping methods, effectively
generalizing to diverse human subjects and expressions. The contributions of this work include an
advanced animatronic robotic face design, a vision-based self-supervised learning framework, and
a comprehensive human facial expression dataset, paving the way for more natural and engaging
human-robot interactions. Future research directions include incorporating additional modalities
such as speech signals to enhance interactive social behaviors in robots.

Specifically, it addresses similar challenges as our project in facial expression control and dy-
namic, real-time expression replication. Our project aims to enhance the interaction capabilities
of the Sophia Robot by bridging the gap between its advanced mechanical design and the sophis-
tication of its control systems. The approach taken in the paper, which utilizes a vision-based
self-supervised learning framework to enable real-time, adaptive facial mimicry, aligns closely with
our goal of developing a more responsive and nuanced control system for Sophia. By leveraging
techniques such as Deep Reinforcement Learning and self-supervised learning, we can draw on the
methodologies and findings presented in the paper to inform our development of a facial expres-
sion generation scheme. The dual-stage learning framework proposed in the paper—comprising
a generative model and an inverse model—offers a viable pathway for creating a control method
capable of high-fidelity expression replication from videos or live captures. Thus, the insights and
results from this paper provide a foundational basis for addressing the critical issues identified in
our project, paving the way for more advanced and effective facial expression control systems in
humanoid robots like Sophia.

Each of these studies contributes to the broader field of robotics and animation by advancing our



understanding and capabilities in motion generation, facial animation, and reinforcement learning.
The insights gained from these works provide a solid foundation for future research and development
in creating more realistic, efficient, and interactive robotic systems.

Also, there are several relevant ros packages to our project controling Sophia’s facial movement.
One way we would like to explore the Sophia’s facial expression control is to use the openai_ ros
package to do deep reinforcement learning. The openai_ ros package serves as a crucial bridge
between ROS and OpenAl’s Gym interface, facilitating the development and training of AT models
within the robotics context. This integration package allows us to apply state-of-the-art reinforce-
ment learning algorithms and techniques, provided by OpenAl Gym, directly to physical robots or
simulations in a ROS environment. The openai__ros package abstracts the complexities involved
in connecting ROS with the Gym interface, thereby enabling developers to focus on designing, train-
ing, and evaluating their models without worrying about the underlying communication layer. By
leveraging this package, developers can simulate real-world scenarios within a controlled environ-
ment, test their algorithms with various robotic sensors and actuators, and iterate rapidly through
the development cycle. This accelerates the process of creating intelligent behaviors for robots,
making it an invaluable tool for robotics research and development.

For the project aimed at enhancing the expression control of Sophia Robot, the openai_ ros
package presents a powerful platform for training and evaluating deep reinforcement learning or
self-supervised learning models. Utilizing this package, we can simulate Sophia’s facial expression
mechanisms and the associated control system within a ROS environment, allowing for extensive
experimentation and optimization. Furthermore, the ability of openai_ros to integrate with
real-world data and feedback loops enables the trained models to be finely tuned for accuracy and
responsiveness.

Besides, we can also leverage ROS RL packages to enhance the control of Sophia’s facial ex-
pressions. By setting up a ROS environment, we’ll simulate interactions with Sophia’s control
system and create a structured learning environment. Here, actions (altering facial expressions),
observations (feedback from expression motors or sensors), and rewards (expression accuracy) will
guide the development of a reinforcement learning model. This model will iteratively learn to
optimize Sophia’s expressions for increased accuracy and responsiveness, benefitting from the rich
resources and examples provided in ROS RL documentation.

4 System Description

4.1 Problem Statement

(1) Captured Sophia Image (2) MetaHuman Animation (3) Parameter Response

Figure 1: (1) shows the captured Sophia image x, which is driven by motor parameters m through
the forward kinematics process F. (2) shows the animated results of facial expression detector
MetaHuman A. (3) is the visualization of the distribution and magnitude of blendshape parameters
b.

Given an input image of a real human, we want to achieve a robust expression transfer from



the real human to our humanoid robot Sophia.

To digitalize expression and the process of transfer, we use a reliable commercial facial detector
N (in our case, it is MetaHuman) to obtain the blendshape parameters b from captured image x.
Since Sophia is fully controlled by motors. Her expression is described by motor parameters m.
Taken motor parameters as input, we can drive Sophia by a forward kinematics process F, then
use a camera to capture the expression on Sophia. To simplify, we denote the output of F is the
captured expression image x driven by the motor parameters m. The core problem lies in solving
the mapping from the blendshape params to the motor parameters. We denote the mapping to be
learned as ®.

We can use the following equations to formulate our problem:

N(x)=b (1)
®(b) =m (2)
F(m) =x (3)

Figure 2: In this figure, we show our captured expression dataset. It contains the captured RGB
frames and the corresponding blendshape parameters detected by MetaHuman. We visualize the
blendshape parameters in the Unreal Engine, as shown in the second row.

4.2 Algorithm

We developed an facial expression generation scheme for the humanoid robot Sophia based on a
deep learning method. Furthermore, we create a pipeline for automatic expression generation from
text, while Sophia is chatting with humans, she can talk with various generated facial expressions.

4.2.1 Offline expression transfer using a recorded dataset

In this stage, we adopt a Transformer network as the mapping ®. It takes in the blendshape
parameters m and predicts the motor parameters m.

To perform the training process, we first captured an expression dataset, as shown in 2. The
dataset has ground truth motor parameters and pair-wise blendshape parameters detected by
MetaHuman. We use about 50 preset animation clips of Sophia. The total lengths of the clips
amount to around 1 hour. Plus that, we randomly sampled Sophia’s motor space to generate more
expressions. The distribution of the sampled motor parameters is shown in 3. Then we put an
iPad in front of the humanoid robot Sophia to capture the animation videos in 30 fps.

The first problem we have overcome is the synchronization of blendshape parameters and motor
parameters. Since there are accumulated errors in the timestamp and the motor parameters. Every
10 seconds, we perform a synchronization using the "Eye Blink” expression as an obvious signal.
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Figure 3: The distribution of training motor parameters.

Once in the parameter graph, we detect the "Eye Blink” signal, we can automatically align the
motor parameters and blendshape parameters. The error of our synchronization is around 1-2
frames. Once we have successfully synchronized the data, we can capture the ground-truth dataset
of Sophia’s expression in a long sequence without any stops.

Next, given the recorded dataset, we trained an Transformer network, with embedding size
64, to learn the mapping between blendshape parameters to the motor parameters. We split the
dataset into a training set and a testing set by a ratio 7:3. The network’s forward process can be
formulated as:

mMyred = (I)(b)

The loss function we use is:
Ly = MSE(®(b),mg)

The loss function L directly supervised the predicted motor parameters using the captured ground
truth dataset.
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4.2.2 Text-expression Translation Module

To enable real-time facial expressions for Sophia while chatting with humans, we utilize a method-
ology inspired by the FaceFormer model[WZZ22]. FaceFormer is a state-of-the-art approach for
speech-driven 3D facial animation using a Transformer-based autoregressive model. It processes
raw audio input and generates a sequence of animated 3D face meshes by encoding long-term audio
context and autoregressively predicting facial movements. Key features of FaceFormer include the
use of self-supervised pre-trained speech models for robust audio feature extraction and specialized
attention mechanisms to align audio and facial motion modalities effectively.

Our pipeline builds on these principles to generate facial expressions from text inputs. Here’s
how our pipeline works:

e Text to 3D Mesh Conversion. We employ a text-to-3D mesh model similar to FaceFormer,
where the input is text rather than audio. The text input is processed using a pre-trained
language model, such as GPT-4, to generate intermediate embeddings that capture the se-
mantic content of the text. By post-processing, we can get ARKit parameters from 3D face
meshes.

¢ Real-Time Expression Generation. With the ARKit blendshape parameters, Sophia’s fa-
cial motor system can generate real-time expressions. This process is synchronized with the
conversational responses generated by ChatGPT, providing a seamless and interactive expe-
rience for users. As humans chat with Sophia, they can see her facial expressions change in
real-time, reflecting the emotional tone and content of the conversation.

This pipeline leverages advanced deep learning techniques and the principles of the FaceFormer
model to enhance Sophia’s interactive capabilities. By bridging the gap between textual input and
dynamic facial expressions, we aim to create a more engaging and lifelike interaction experience
with humanoid robots. The results are shown in 6.

4.3 ROS package and code explaination

For the project aimed at enhancing the expression control of Sophia Robot, the openai_ ros
package presents a powerful platform for training and evaluating deep reinforcement learning or
self-supervised learning models. Utilizing this package, we can simulate Sophia’s facial expression
mechanisms and the associated control system within a ROS environment, allowing for extensive
experimentation and optimization. Furthermore, the ability of openai_ros to integrate with
real-world data and feedback loops enables the trained models to be finely tuned for accuracy and
responsiveness.

For the mapping network from blendshape parameters b and motor parameters m. We use the
PyTorch framework to do the training optimization and evaluation. The network is Transformer
with embedding size 64,and the optimizer is Adam. We set the learning rate at le-5. The total
learning epoch is 1000. For our recorded expression dataset, there are around 108k pair-wise data.
In the end, there are around 75.6k frames for Stage I’s training. We use ROS’s recording function
to record the values of Sophia’s motor parameters and their corresponding timestamps.

5 System Evaluation

5.1 Expression Accuracy

Experiment. We trained our model using a dataset of approximately 30,000 expressions, each
with corresponding ground truth motor parameters and ARKit parameters. The dataset was split
into an 80% training set and a 20% test set. For evaluation, we recorded Sophia performing a set
of predefined expressions and captured the corresponding ARKit parameters. We compared these
parameters with the target ARKit parameters using mean absolute error (MAE) as the similarity
metric.

Key Performance Measure. The primary measure of performance was the similarity score
between Sophia’s expressions and the target ARKit parameters, quantified by the MAE.

Success Criteria. Success was defined as achieving a low loss (e.g., >0.9) between Sophia’s
expressions and the ground truth ARKit expressions, indicating accurate reproduction of facial
movements. We can see that, the mae loss in the table and figure is relative small to the motor
params’ range from (-1, 1). This indicates that our training is a success.
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Figure 5: Comparison of predicted and ground truth motor parameters using MAE.

The results are summarized in the figure 5. The table presents the calculated loss values, and
the figure illustrates the loss across all 30 motor parameters.

P

(a) Directly Control of Sophia’s (c) Chat with Sophia, using
Facial Expression with iPhone, (b) Sophia Imitates Actors’ per- GPT-40 and Azure TTS Ser-
and Apple ARKit. formance from film clips. vice.

Figure 6: Various Interactions with Sophia.

Analysis: Upon reviewing the loss values, we observed that the two checksquint motors had
relatively higher losses compared to other motors. Additionally, the smileright motor exhibited
a notably high loss. The elevated loss for the checksquint motors could be attributed to the
complexity and subtlety of these expressions, which might be more challenging for the model to
replicate accurately. In the case of the smileright motor, the high loss is likely due to a mechanical
issue, as the motor is currently broken and needs to be fixed. This discrepancy highlights the
importance of maintaining the mechanical integrity of the robot to ensure accurate expression

replication.
5.2 Expression Range

Experiment. Provide Sophia with a series of commands to express a variety of emotions spanning
a broad spectrum (e.g., happiness, sadness, surprise) and record her responses.

Key Performance Measure. Number of distinct expressions successfully performed by Sophia.

Success Criteria. Sophia demonstrates the ability to produce a wide range of emotions, covering
the intended emotional spectrum.

In Fig.2, we show our preliminary captured dataset. It contains a diversity of expressions, which
can be useful for our training process.
5.3 Naturalness

Experiment. We evaluated the naturalness of Sophia’s expressions by driving her with a real
human, a film clip and through real-time conversations. Videos of these expressions were shown



to human observers, who were then asked to rate the naturalness of each expression on a scale
from 1 to 10.

Key Performance Measure. The key performance measure was the average rating of natural-
ness for each expression, collected from the observers.

Success Criteria. Success was defined as achieving a high average rating across all expressions,
indicating that observers perceive Sophia’s expressions as natural and lifelike.

Expression Film Clip Rating (Avg) | Real-Time Chat Rating (Avg)
Smile 9.2 8.8
Surprise 8.7 8.5
Anger 8.5 8.3
Sadness 9.0 8.6
Neutral 8.8 8.4
Overall Average 8.84 8.52

Table 1: Average ratings of naturalness for Sophia’s expressions as evaluated by human observers.

Analysis: The results from the rating table indicate that Sophia’s expressions were perceived
as highly natural by human observers, with an overall average rating of 8.84 for the film clip-driven
expressions and 8.52 for the real-time chat-driven expressions. These high ratings suggest that our
approach successfully enhances the naturalness and lifelike quality of Sophia’s facial expressions.
The slight variation between film clip and real-time chat ratings could be due to the more controlled
and polished nature of pre-recorded film clips compared to the spontaneous nature of real-time
interactions.

5.4 Application and Results

We present three key demonstrations as results, shown in Fig. 6. Firstly, we utilize iPhone ARKit
to control Sophia’s facial expressions in real-time. ARKit tracks facial movements via the phone’s
camera, mapping these parameters to Sophia’s motor system for dynamic replication of user ex-
pressions. It significantly improves the naturalness of human-robot interactions by providing a
responsive and empathetic interface. Secondly, we enable Sophia to imitate actors’ performances
from movie clips using a transformer-based architecture. This system accurately maps facial ex-
pressions from ARKit parameters from video footages to Sophia’s motor parameters, allowing for
precise reproduction of subtle emotions depicted by the actors. This capability highlights the
potential for nuanced emotional expressions in enhancing human-robot interaction. Lastly, we
enhance Sophia’s conversational abilities using the latest GPT-40 language model and Microsoft
Azure’s Text-to-Speech (TTS) API. This integration allows Sophia to engage in dynamic conver-
sations, with real-time facial expressions reflecting the emotional context of the dialogue. These
advancements collectively contribute to creating more lifelike and interactive humanoid robots,
with potential applications in customer service, entertainment, and personal companionship.

6 How To

6.1 Hardware Information

The Sophia Robot used in this project is located at the MARS Lab, School of Creativity and Arts.
Sophia is a humanoid robot equipped with an embedded microcomputer with ubuntu system that
controls its various functions, including facial expression mimicry.

6.2 Software and Code

All the necessary code and scripts for running the facial expression control system are stored on the
embedded microcomputer within Sophia. No external hardware or additional software installations
are required as the environment is pre-configured.



6.3 Step-by-Step Instructions
6.3.1 Powering On Sophia Robot
1. Turn on Sophia Robot’s Power:
e Locate the main power switch on Sophia’s power system.

e Turn on the power switch.

o Wait for approximately 30 seconds to ensure the system initializes properly.
2. Activate the Sophia System:

e Locate the switch for the Sophia System on Sophia’s back.
e Turn on this switch.

e Allow the system to boot up, which takes about 60 seconds.

6.3.2 Accessing the Embedded Microcomputer
3. SSH into Sophia’ s Computer:
e Use an SSH client to connect to Sophia’ s embedded microcomputer.

ssh user@sophia_ip_address

o Replace user with the actual username and sophia_ip_address with the IP address
assigned to Sophia’ s microcomputer. We will fill in this part when we finalize all the
things in the final week.

4. Navigate to the Project Directory:

e Once connected via SSH, change the directory to the project folder:

cd ~/sophia_dev

6.3.3 Running the Code
5. Execute the Facial Expression Demo:

e Run the pre-configured Python script to start the facial expression control demo:

python demo_11f.py

6.4 Notes

¢ Pre-configured Environment: The required software environment, including necessary
libraries and dependencies, is already set up on Sophia’s microcomputer. There are no
additional prerequisites or installations needed.

e Code Repository: All relevant code is stored locally on Sophia’s embedded microcomputer
under the sophia_dev directory under the home directory.

By following these steps, you can reproduce the facial expression control project on the Sophia
Robot, leveraging its advanced hardware and pre-configured software environment to achieve dy-
namic and real-time expression replication. We also note that this is only a intermediate version
of our Sophia project. The final version is subject to change.
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7 Conclusion

This project aimed to enhance the facial expression capabilities of the Sophia Robot, developed
by Hanson Robotics, by addressing the limitations of pre-defined, artist-created configurations.
Despite Sophia’s sophisticated mechanical design, there was a significant gap in the control systems
needed for dynamic, real-time expression replication.

We used a dataset of approximately 30,000 expressions with ground truth motor parameters
and ARKit parameters to train a Transformer network. This network learned the mapping from
blendshape parameters to motor parameters. Inspired by the FaceFormer model, we created a
pipeline that translates text input into corresponding ARKit blendshape parameters.

Our methodology demonstrated significant improvements in the fidelity and responsiveness of
Sophia’s facial expressions. The results showed high accuracy in replicating natural interactions,
with detailed analysis revealing some areas for future improvement, such as the checksquint motors
and addressing mechanical issues with the smileright motor.
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