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Abstract. Traditional robot navigation has primarily relied on occupancy
grid maps and laser-based sensing, as exemplified by the widely-used
move_base ROS package. Unlike robots, humans navigate using not only
spatial maps and physical distances but also incorporate external informa-
tion such as elevator maintenance notifications from emails or experiential
knowledge like the need for special access through certain doors. With the
development of Large Language Models (LLMs), which can comprehend
and process textual information, there is now an opportunity to infuse
robot navigation systems with human-like understanding. In this project,
we propose using osmAG( Area Graph in OpensStreetMap textual for-
mat), an innovative semantic topological hierarchical map representation
to bridge the gap between move_base capabilities and contextual interpre-
tation ability of LLMs. Our approach facilitates a more intelligent approach
to robot navigation that leverages a broader range of informational inputs
and yet still remain the robust capabilities of traditional robotic navigation.

1. Introduction
Recently, Large Language Models (LLMs) have demonstrated great potential in
robotic applications by providing essential general knowledge for situations that can
not be pre-programmed beforehand. Generally speaking, mobile robots need to
understand maps to execute tasks such as localization or navigation. In contrast to
commonly used map representations, such as occupancy grid maps or point clouds,
osmAG (Area Graph in OpensStreetMap format) is stored in a XML textual format
naturally readable by LLMs. Furthermore, conventional robotic algorithms such
as localization and path planning are compatible with osmAG, facilitating this map
representation comprehensible by LLMs, traditional robotic algorithms and humans.

Motivated by those, our project involves the integration of osmAG(Area
Graph in OpensStreetMap format)[1] with ROS(Robot Operating System) to re-
place the traditional grid map used in move_base to implement a move intelligent
path planning. In this project, We used a LLM (large language model) –ChatGPT
as copilot to understand exteral information like emails and the semantic map to
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make navigation more intelligent. First given starting point and destination, path
planning will be done by osmAG planning return areas and passages for robot to
go through, then the planning results will be confirmed or rejected by LLM which
aware of current situation from previous information like emails. After confirmed
by LLM, the path would be send to ROS move_base to execute. The actual nav-
igation is been done by move_base within a grid map rendered by osmAG with a
LiDAR which is a robust and well-developed ros package. And during navigation,
the system would document doors are successfully passed by robot or not, since not
all doors are opened in a building all the time, this document would be considered as
experience for navigation next time. Path planning algorithms should be intelligent
to change with respect to environment change, for example:

1. A robot should avoid a crowded lobby during a graduation party.
2. A robot should avoid a elevator during its maintenance.

2. State of the Art

2.1. ROS Navigation and move_base

Figure 1. ROS navigation workflow

ROS (Robot Operating System) navigation is a powerful framework within
the ROS ecosystem designed to facilitate autonomous robot navigation in various
environments. It provides a collection of packages and tools that enable robots
to perceive their surroundings, plan safe paths, and navigate autonomously. The
workflow of ROS navigation is shown in Fig 1.

One of the key components of ROS navigation is the move_base package.
move_base is a ROS node that serves as the core of the navigation stack. Its
primary function is to take in the robot’s current position, a goal position, and
other relevant sensor information, then plan a collision-free path to navigate the
robot from its current location to the goal location.

Here’s how move_base typically works:

1. Global Planner: move_base utilizes a global planner to compute a high-level
path from the robot’s current position to the goal position. This path is
generated based on a global costmap, which represents the environment’s
static obstacles.



2. Local Planner: Along the way, move_base employs a local planner to handle
real-time obstacle avoidance and fine-tune the robot’s trajectory to navigate
around dynamic obstacles. The local planner operates within a local costmap,
which provides information about obstacles in the robot’s immediate vicinity.

3. Sensor Integration: move_base integrates data from various sensors such
as laser scanners, depth cameras, or odometry to accurately perceive the
environment and update the costmaps.

4. Feedback and Control: Throughout the navigation process, move_base pro-
vides feedback to the higher-level systems and controllers, adjusting the
robot’s velocity commands based on sensor inputs and path tracking errors.

5. Behavior Configuration: move_base offers extensive configuration options to
tailor its behavior to different robot platforms and navigation scenarios. This
includes parameters for obstacle avoidance strategies, motion constraints,
recovery behaviors, and more.

Overall, move_base plays a critical role in enabling ROS-powered robots to
navigate autonomously in complex and dynamic environments, making it a fun-
damental component for robotics applications ranging from mobile robots to au-
tonomous vehicles.

2.2. RViz
RViz is essentially a 3D visualizer for displaying sensor data and state information
from ROS. It can show data from a wide array of sources, including cameras, lasers,
depth sensors, and more, all in real time. This capability makes it an invaluable tool
for robotics developers who need to understand how their robots are interacting with
their environments or for those who wish to simulate how a robot would perceive
its surroundings.

The tool’s interface is divided into displays and panels. Displays are used for
visualizing different types of data, such as 2D and 3D data, including laser scans,
images, and point clouds. Panels, on the other hand, provide a way to interact with
this data, offering controls for viewing, managing the displays, and configuring the
visualization settings. This arrangement allows for a highly interactive and flexible
visualization environment that can be tailored to the needs of any ROS project.

RViz is not just for passive visualization; it can actively interact with ROS
messages. For example, it can subscribe to topics, display sensor data as it’s being
published, and even publish messages to topics, allowing users to interact with
a robot or simulation in real-time. This makes RViz an essential tool for tasks
such as debugging complex robotics algorithms or planning and monitoring robot
trajectories in both simulated and real-world applications.

In our project, we will use RViz to visual Area Graph, LLM global path,
move_base local path, and use it to interact with our software by specified start
area or goal area.

2.3. LLM Guided Robotics
The integration of robots with natural language models to enhance human interac-
tion and decision-making in robotics has been studied in recent research. PaLM-E[2]



is an innovative multimodal language model that integrates real-world sensor data,
like images and robot state estimations, into language models, allowing for more
grounded and effective decision-making in robotics and multimodal reasoning tasks.
[3] fine-tunes PaLM-E[2] with robotic trajectory data to output robot actions. [4]
uses LLM to help with object rearrangement. [5] utilizes LLM’s ability to generate
code to resolve a task and generates step for robots to execute, presenting a novel
approach in robotics automation.[6] utilizes LLMs to build a semantic cost map
that guides a motion planner to produce trajectories that meet motion constraints
provided by a user in text format. [7] explores using LLM to encode human’s high-
level semantic instruction and output actionable trajectories using a transformer
decoder. [8] is a visual-language navigation framework that enables robot agents to
follow human navigation instructions and to generate route descriptions to humans.

[9] introduces Autonomous GIS as a revolutionary approach in geographic
information systems (GIS) leveraging Artificial Intelligence (AI), specifically Large
Language Models (LLMs) like GPT-4, to automate spatial data collection, analy-
sis, and visualization. Autonomous GIS, as conceptualized, stands on the brink of
transforming how spatial problems are addressed, making GIS technologies more
intuitive and accessible to a broader audience beyond the confines of expert users.
Central to the Autonomous GIS framework is its AI-powered autonomy, aiming for
self-generating, self-organizing, self-verifying, self-executing, and self-growing capa-
bilities. The authors present a prototype system, LLM-Geo, which encapsulates
these ambitions by demonstrating the ability to take on spatial questions and au-
tonomously navigate through the necessary geoprocessing steps to yield accurate
results. This is achieved through a blend of natural language understanding, rea-
soning, and coding prowess inherent in LLMs. LLM-Geo’s proficiency was validated
through various case studies, showing its potential to accurately perform tasks like
population analysis near hazardous sites, visualizing human mobility trends, and
COVID-19 impact assessments with minimal human input. This paper heralds a
paradigm shift in GIS, from traditional, heavily manual systems to AI-driven, au-
tonomous systems. The envisioned Autonomous GIS aims not only to automate
routine tasks but also to unlock new possibilities in spatial analysis by making it
more efficient, reducing errors, and enabling complex task handling that would be
challenging or impossible for humans alone. This transition towards an AI-powered
GIS is seen as a crucial step towards democratizing GIS technologies, making spatial
analysis more accessible, and potentially fostering innovation across a wide array of
applications from urban planning and environmental monitoring to disaster man-
agement and public health. Our project also try to utilize LLM to handle GIS
information related to robotics, this studies collectively highlight the versatility of
LLMs in enhancing map or GIS (Geographic Information System) comprehension,
which could benefit future robotics applications.

2.4. LLM in path planning

[10] explores an innovative approach to task planning in robotics using scene graphs
and large language models (LLMs). It addresses the challenge of interpreting natu-
ral language tasks in robotics, leveraging recent advancements in semantic, metric,
and topological mapping to enhance the understanding and execution of complex



tasks by autonomous robots. The primary contribution of the paper is the integra-
tion of LLMs with hierarchical metric-semantic models to translate natural language
tasks into Linear Temporal Logic (LTL) formulas. This translation enables optimal
hierarchical LTL planning over scene graphs, which represent the environment in
a structured format comprising nodes and edges linked with semantic labels. The
authors develop a hierarchical planning domain that encapsulates the attributes and
connectivity of the scene graph and the task automaton. They also propose an LLM
heuristic function to provide semantic guidance, aiming to enhance planning effi-
ciency. The environment is depicted as a scene graph, capturing various elements
like rooms, objects, and occupancy in a unified hierarchical format. This graph fa-
cilitates the grounding of semantic concepts from natural language instructions into
the physical elements of the scene. LLMs, such as GPT-3 and BERT, are utilized
to translate the structured representation of tasks into LTL automata. This step
is crucial for linking natural language commands to specific semantic and metric
elements within the scene graph. The planning system employs a hierarchical ap-
proach, where the tasks are broken down into sub-tasks at different levels of the
scene graph. This structure allows for detailed and efficient planning, considering
both high-level objectives and low-level operational constraints. The authors intro-
duce a novel heuristic function based on LTL that complements the LLM heuristic.
This multi-heuristic approach aims to balance the admissibility and consistency of
the planning process, ensuring both optimality and efficiency.

2.5. osmAG
The osmAG (Area Graph in OpensStreetMap format) is stored in a XML textual
format naturally readable by LLMs.

1. osmAG is a 3D hierarchical, topometric and semantic map representation
that just stores the most important aspects of an environment crucial for
robotic algorithms.

2. osmAG is stored in OpenStreetMap XML textual format, which is naturally
readable by LLMs.

3. osmAG is a very compact representation that LLMs with limited token num-
ber can benefit from.

4. osmAG only stores permanent structures, so it is stable over time.
5. osmAG is easy to acquire using 3D point clouds, 2D occupancy grid maps

or CAD files. Possible generation through CAD files enables robots to pro-
cess prior information of places that itself or other robots have not visited
beforehand.

6. Conventional robotic algorithms such as localization and path planning based
on osmAG have been developed, so LLMs’s behavior is easy to be monitored
and verified by traditional robotic algorithms, e.g. to detect and prevent
dangerous behavior.

7. osmAG can be easily visualized by JOSM (Java OpenStreetMap Editor) and
in ROS’s rviz, which makes it easy for humans to visualize and edit the map,
which bridges the gap between map visualization and map representation.
This way humans can interact with LLMs through the map.
One example of osmAG is shown in Fig ??.



3. System Description
An overview of the pipeline is illustrated in Fig. 3 There are several element of the

Figure 2. An overview of entire pipeline

entire pipeline:
1. Natural Language Command: The process starts with a user issuing a natural

language path planning command.
2. LLM Processing: This command is interpreted by a large language model,

which is responsible for understanding the command and translating it into
’start area’ and ’end area’ to send to a traditional A* algorithm on osmAG
map. Also, this part takes previous saved experience as consideration to give
cost to each passage.

3. Area Graph: semantic map representation that only capture permanent
structure like walls or doors.

4. Simplified Area Graph: The area graph is simplified, delete unmecessary
information in order to send to a LLM.

5. General information: information such as current time, weather, campus
news that could effect path planning task is given to LLM.

6. Area Graph A Path Planning*: Using the A* path planning algorithm, the
system attempts to find an optimal path from a start area to an end area
using osmAG. The output of this path planning algorithm is a sequence of
room names, for example: [”E1d-F1-06”, ”E1d-F1-COR-01”, ”E1-F1-COR-
01”, ”outside”, ”E1b-F1-COR-01”, ”E1b-F1-07”]

7. LLM path evaluation: LLM need to check traditional planned path is valid
or not according to current information, for example during elevator main-
tenance, a path going through elevator is invalid. If the path is valid
(”is_Valid”: true) determinated by LLM, it proceeds by sending it to lo-
cal planner to execute. If not valid, the LLM would tell path planning which
area is not valid, and the path planning algorithm would plan a path without
the invalid area.

8. move_base Planner: The move_base planner takes the results from the LLM
and preceed. If unsuccessful due to door close or not enough space for the
robot to go through, it report back, save this fail experience, go back to path
planning algorithm to plan a new path.

And our main tasks can be divided into following parts:



Figure 3. osmAG example

1. Align osmAG map with map used in ROS move_base.
2. Given path planned from LLM to global planner, integrate the path to ”Base-

GlobalPlanner” of move_base 1

3. Utilize move_base’s local planner to navigate through crowd or clutters.
4. Path may change during operation, the local planner needs to provide inter-

face.
5. Provide response to LLM, for example, success or error message to record

experience.
Our goal is to achieve intelligent path planning that could handle external textual
information like news or e-mails, we have done some tests already, shown in Fig. 3.
The yellow path in the image is the shortest path that a traditional A* algorithm
gives. In the first example, a elevator maintenance is announced vis e-mail, LLM
understands this information and tell the path planning algorithm to avoid this
elevator. The second example is that a graduation party is schudeled in the lobby,
therefore a lot of people would gather in the lobby, the LLM catches this information
and avoid the lobby by taking a detour outside the building. The third example is
that according to some general information, people know to try to avoid some room
for example a VIP conference room, the LLM could capture this information and
tell the path planning algorithm to try to avoid these rooms by adding path length.

4. System Evaluation
Our algorithm could plan a path based on the map and current situation, for example
in the experient video, a notification of graduation party in SIST lobby would result
in LLM to reject path including pass through the lobby, and the osmAG planner
would use another path before execuate the navigation, where a vanilla move_base
planner would first go through the lobby, find that is not accessible and turn back
to find another path. In our project, the system is tested using gazebo, with a
robot using vanilla move_base planner given a occupancy grid map and a robot

1http://wiki.ros.org/navigation/Tutorials/Writing



using osmAG and get informantion from external source and previous experience.
The test is from room ’E1d-F1-13’ to room ’E1b-F1-04’, normally the path would
include the lobby, but with external constrain like party in the lobby, the robot
should navigate avoid the lobby.

Figure 4. intelligent navigation experiment

5. How To
1. You need to have a opanai api key, put your key in config.json file
2. Properly build and source your workspace, and run

roslaunch mobile_manipulator_body base_gazebo_control_post_office_two_robot .
launch

this will start the gazebo world.
3. Then run

rosrun call_openai simple_command_move_base . py

this script will send goals to both robot and start navigation.

6. Conclusions
In this project, we utilize osmAG, a semantic topometric and hierarchical map rep-
resentation to achieve intelligent navigation not only receive distance information
from Laser but also from external source with the help of LLM. Our approach not
only exploit the intelligence from LLM but also maintain the robustness of classical
robotic algorithms, which effectively ground the LLM to real world.

In the rapidly evolving field of artificial intelligence, LLMs are becoming in-
creasingly prevalent, opening new opportunities for enhancing robots’ intelligence.
However, effectively leveraging LLMs in robotics to augment the intelligence of
robots remains an active area of research. This project aims to introduce osmAG
as a versatile map representation for future LLM-robot systems, designed to be
interpretable by LLMs, compatible with traditional robotic algorithms, and under-
standable to humans.



In contrast to traditional robotics, which has been studied for decades, the ex-
ploration of integrating traditional robotic algorithms with Large Language Models
(LLMs) is just beginning. With osmAG, a map representation that is understand-
able by LLMs, compatible with robotic algorithms, and comprehensible to humans,
we aim to expedite this research process.
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