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Abstract—This project aims to enhance the Fetch robot’s
capabilities for autonomous object grasping using a combination
of advanced robotic algorithms and sensory data integration.
The newly developed AnyGrasp system utilizes RGB-D images to
output precise grasp poses, a significant milestone towards robust
autonomous manipulation. Current efforts focus on integrating
obstacle detection to navigate and manipulate effectively within
cluttered environments. Utilizing the MoveIt package, the system
plans safe and efficient paths around these obstacles. This inter-
mediate report outlines the progress made and the forthcoming
objectives in system refinement and testing.

Index Terms—Fetch Robot, Grasping, MoveIt, AnyGrasp

I. INTRODUCTION

The integration of autonomous capabilities in robotics,
particularly in object manipulation, marks a significant leap
towards practical and efficient applications across various
industries. This project aims to enhance the Fetch robot’s
ability for autonomous fetching by incorporating software
tools like ROS, MoveIt for motion planning, and GraspNet for
grasp prediction. Through this integration, the Fetch robot will
be equipped to autonomously identify and manipulate objects,
bridging a crucial gap between theoretical advancements and
real-world applications.

II. STATE OF THE ART

A. Related Work

1) GPDAN: GPDAN [1] addresses the sim-to-real transfer
challenge in robotic grasping, emphasizing domain adaptation
for effective real-world application. The approach mitigates
the discrepancies between simulated training environments and
real-world scenarios, aiming to enhance the robot’s ability to
grasp objects in diverse and unpredictable conditions. This
method promises significant advancements in robotic manip-
ulation by focusing on the seamless transition of grasping
strategies from simulated to real environments.

2) CPPF: CPPF [2] introduces a robust framework for
category-level 9D pose estimation, leveraging point pair fea-
tures (PPFs) for enhanced generalization across unseen ob-
jects. This method stands out for its ability to perform in
’the wild,’ adapting to objects of various categories without
prior exposure. The novel Category-level PPF (CPPF) voting
mechanism underpins its success, offering precise, robust, and
generalizable pose estimation crucial for real-world robotic
applications.

3) L2G: This paper [3] presents an end-to-end solution,
Learning to Grasp (L2G), for robotic grasping, utilizing a
novel approach that samples from object point clouds. By
directly learning from the geometric shapes of objects, the
method sidesteps the need for extensive hand-engineered fea-
tures, promoting efficiency and adaptability. This advancement
signifies a leap forward in the domain of robotic grasping,
enabling robots to handle a broader range of objects with
increased precision and reliability.

4) PoseCNN: This paper [4] introduces PoseCNN, which
decouples 3D translation and rotation estimation in chal-
lenging environments. The approach utilizes object center
localization and quaternion representation for precise pose
estimation. The addition of the ShapeMatch-Loss function,
which compares the predicted 3D shape of an object with its
ground truth, significantly improves accuracy, particularly for
symmetric objects.

5) High-DOF Gripper: This study [5] introduces an in-
novative neural network-based method for generating grasp
poses, particularly effective for high-degree-of-freedom grip-
pers. Addressing the challenge of pose ambiguity in such
grippers, it integrates two specialized consistency loss and
collision loss, which can select optimal grasp poses and
prevent unrealistic gripper-object overlaps, respectively. This
approach is notably beneficial for complex robotic hands and
demonstrates robustness in handling noisy object models.
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6) CollisionNet: In [6], a novel 6-DOF grasp synthesis
method for cluttered environments is introduced. Employing a
learning based approach, it combines grasp generation using
a Variational Autoencoder (VAE) and collision detection with
CollisionNet. This method significantly enhances grasp accu-
racy in scenarios with obscured or densely packed objects.

7) S4G: This study [7] presents a novel approach for 6-
DoF grasp detection using a parallel gripper and a single
viewpoint depth sensor in cluttered environments. The study
introduces a single-shot network trained on synthetic data,
adept at efficiently predicting a modal grasp proposals. This
method, incorporating a unique gripper contact model for
dense grasp annotations, outperforms current state-of-the-art
techniques in both synthetic and real-world settings, marking
a significant advancement in robotic grasp detection.

8) Edge Grasp Network: This study [8] proposes Edge
Grasp Network, using a graph neural network (KNN) to
evaluates the grasp quality for a set of edge grasps that have
a single approach point. It is a SE(3) grasp method that
incorporates SO(3) equivariance, leveraging SE(3) symmetry
to learn faster and generalize better on 6-DoF grasping. The
model works well with single-view pointclouds of a scene
taken from arbitrary directions.

9) Keypoint-GraspNet: This study [9] proposes a new
single-view grasp generation method, Keypoint-GraspNet
(KGN) using convolutional neural network (CNN) and
Perspectiven-Point (PnP) algorithm. Generate grasp directly
from the RGB-D image input. Training on dataset with prim-
itive shape.

B. Detailed Papers

1) RGBD-Grasp: Robotic grasping, particularly in complex
or cluttered environments, poses significant challenges due to
the intricacies of object shapes, sizes, and orientations. Tradi-
tional methods have struggled with limited degrees of freedom
in grasp detection and an over-reliance on depth information,
which can be unreliable under varying lighting conditions
or with reflective surfaces. ”RGB Matters” addresses these
issues by introducing a method that significantly enhances the
accuracy and reliability of robotic grasp detection by fully
utilizing both RGB and depth data to predict 7-DoF grasp
poses.

The paper [10] presents RGBD-Grasp, an innovative
pipeline that decouples the grasp detection task into two
key sub-tasks: orientation prediction and gripper positioning.
By leveraging an encoder-decoder neural network structure,
specifically designed to process RGB and depth data sepa-
rately, the system accurately predicts the SO(3) orientation of
the gripper for every image location. A subsequent module, the
Fast Analytic Searching (FAS), computes the optimal opening
width and distance of the gripper to the target grasp point. This
decoupling allows the system to mitigate issues associated with
depth sensor noise and enhances the robot’s ability to grasp a
wide variety of objects with high precision.

For our project, which aims to enable the Fetch robot to
autonomously grasp specific objects using APIs from ROS,

MoveIt, and GraspNet, the approach detailed in ”RGB Mat-
ters” is invaluable. The integration of RGB data alongside
depth information directly addresses and potentially over-
comes limitations faced by current robotic systems in varying
operational environments. The method’s proven effectiveness
in both single object scenes and cluttered settings provides
a strong foundation for developing more adaptive, efficient,
and reliable grasping capabilities in our robot. Furthermore,
the state-of-the-art performance on challenging datasets like
GraspNet-1Billion not only benchmarks the success of RGBD-
Grasp but also showcases its potential applicability and scal-
ability to real-world scenarios, aligning perfectly with the
objectives of our project.

2) REGNet: REgion-based Grasp Network(REGNet) is an
end-to-end network consisting of three stages: Score Network
(SN), Grasp Region Network (GRN), and Refine Network
(RN) [11]. It takes a single-view point cloud as input and
outputs grasp predictions with confidence scores. Each stage
serves a distinct but interconnected role in the process of
robotic grasp detection from point clouds.

The first stage, SN, is the foundational step. Utilizing
the robust PointNet++ architecture, SN processes the input
point cloud to estimate point grasp confidence. This is a
critical measure indicating the likelihood of successful grasps
around specific points. By identifying points with high grasp
confidence, SN effectively narrows down the vast point cloud
to a more focused set of potential grasp candidates, setting the
stage for more detailed analysis.

Following SN, the second stage, GRN is used to gen-
erate grasp proposals based on the high-confidence points
identified by SN. It achieves this by analyzing grasp region
features, which encompass a more comprehensive dataset than
single-point features, thus enabling a more effective grasp
prediction. Grasp regions, defined as spheres centered on
positive points identified by SN, are used to aggregate local
features from surrounding points, providing a richer receptive
field for model. Moreover, GRN introduces an anchor-based
mechanism, which pre-define orientations for grasp anchors to
enhance the accuracy. This method efficiently distills the sub-
set of positive points to the most promising grasp candidates.

The final stage, RN, refines these grasp proposals to ensure
precision and reliability. RN utilizes the preliminary proposals
from GRN and further analyzes the area within each proposed
grasp, known as the gripper closing area. By transforming
the points in this area to a grasp-centric coordinate system
and employing a feature fusion strategy that combines data
from both the grasp regions and gripper closing areas, RN
refines each grasp proposal. This process fine-tunes the details,
aligning the proposals more closely with real-world grasp
scenarios, thus markedly improving the final grasp detection
accuracy.

This network is notable for its ability to predict grasps from
partial, noisy point clouds, addressing a common challenge in
robotic grasping. The REGNet can be integrated into the Fetch
Robot’s system to analyze point clouds and identify potential
grasps.



3) GraspNet-1Billion: The paper contribute a significant
dataset, GraspNet-1Billion [12], which consists of 97,280
RGB-D images across over 190 scenes, featuring over one
billion annotated grasp poses. This dataset is unprecedented
in scale and diversity, aimed at advancing the development
and evaluation of grasp pose detection algorithms.

Also, the paper Proposed an end-to-end 6-DoF grasp pose
prediction network, GraspNet. This network consists of two
modules: grasp generation and grasp evaluation. Initially,
the grasp generation module utilizes PointNet++ to process
the input point cloud of dimensions N × 3, extracting fea-
tures to identify M sample points, each augmented with
a C-dimensional feature vector, resulting in an output of
M × (3 + C). This module also employs an approach net-
work to assess each point’s graspability and determine V
predefined approaching vectors, yielding data structured as
M × (2 + V ). Subsequently, the grasp evaluation module
groups and aligns grasp candidate through Cylinder Region
Transformation, creating a standardized representation for each
one and categorizing the approaching distance into K bins.
OperationNet is then applied to estimate classification scores
across 10 distinct grasp scores and normalized residuals for
each binned rotation, and also predicts the grasp’s width.
Finally, the Tolerance Network assesses each grasp’s robust-
ness against perturbations through grasp affinity fields (GAFs)
thus improving the robustness of grasp poses prediction. This
network combines feature extraction, graspability assessment,
and robustness evaluation to optimize the robotic grasping
procedure.

The GraspNet approach grasp pose prediction on point
clouds as a classification problem rather than treating it as
a direct regression task. This strategy involves breaking down
the complex task of predicting the 6-DoF grasp pose into more
manageable, discrete components. By doing so, GraspNet
simplifies the prediction process and enhances its accuracy
and robustness.

The paper also introduces several novel metrics to evaluate
grasp pose predictions. Firstly, it determines if a prediction
is a true positive by examining the point cloud within the
gripper’s area. Following this, each grasp pose is assigned a
binary label based on the force-closure metric across varying
friction coefficients (µ). Then Precision@k better assesses the
accuracy of the top-k ranked grasps, with k ranging from 1 to
50, and considering different levels of µ. These metrics allows
for a more precise analysis of grasp prediction.

4) OK-Robot: Integrating Vision-Language Models for
Robotic Fetching: Robotic fetching, especially in dynamic
home environments, presents numerous challenges, including
accurate object recognition, navigation, and manipulation. The
paper ”OK-Robot: What Really Matters in Integrating Open-
Knowledge Models for Robotics” addresses these issues by
integrating state-of-the-art Vision-Language Models (VLMs)
with robotic capabilities, creating a robust system for pick-
and-drop operations.

The paper introduces OK-Robot, an open-knowledge-based
framework that leverages publicly available data and models

to perform autonomous fetching tasks. This system integrates
several key components: VoxelMap for Navigation:A semantic
memory module that creates detailed maps of environments
using pre-scanned data from an iPhone. This map aids in
navigating and locating objects accurately. Lang-SAM + Any-
Grasp for Grasping:This combines language-guided object
segmentation with a robust grasp generation model, enabling
the robot to handle a variety of objects effectively. Dropping
Heuristic:Ensures precise placement of objects in designated
locations, accommodating different types of drop-off points
such as flat surfaces and containers.

The framework’s performance was evaluated in 10 real-
world home environments, achieving a 58.5% success rate in
cluttered settings and 82.4% in cleaner environments. These
results highlight OK-Robot’s capability to handle complex,
cluttered environments, making it highly relevant for our
project.

For our project, which aims to enable the Fetch robot to
autonomously fetch specific objects using APIs from ROS,
MoveIt, and GraspNet, the approach detailed in ”OK-Robot”
is invaluable. The integration of VLMs alongside robotic prim-
itives addresses several limitations faced by current systems in
varying operational environments. Here’s how:

Enhanced Object Recognition: By using advanced VLMs
like CLIP and OWL-ViT, OK-Robot can accurately recognize
and locate objects based on natural language queries. This
capability is crucial for enabling our Fetch robot to identify
and fetch specified objects in diverse and dynamic settings.

Robust Navigation: The VoxelMap module provides detailed
environmental mapping, which aids in precise navigation. This
feature ensures that the Fetch robot can move efficiently to
the target object, avoiding obstacles and navigating cluttered
spaces effectively.

Reliable Grasping: The combination of Lang-SAM for ob-
ject segmentation and AnyGrasp for grasp generation enhances
the robot’s ability to grasp a wide variety of objects with
high precision. This is particularly important for our project
as it ensures that the Fetch robot can handle different objects
reliably, even in cluttered environments.

Adaptive Placement: The dropping heuristic ensures that
objects are placed accurately in designated locations, accom-
modating various types of drop-off points. This adaptability
is essential for the Fetch robot to perform tasks in diverse
real-world scenarios.

Overall, the state-of-the-art performance of OK-Robot in
challenging home environments demonstrates its potential
applicability and scalability to real-world scenarios, aligning
perfectly with the objectives of our project. By adopting the
methodologies and components outlined in this paper, we can
develop a more adaptive, efficient, and reliable fetching system
for the Fetch robot.

C. Packages and dataset

1) Darknet ros: Darknet ros is an open-source package
that brings real-time object detection to the Robot Operating
System (ROS) ecosystem, using the Darknet neural network



framework. At its core, Darknet ros allows robots to recognize
and locate objects in their environment in real-time, using the
highly efficient YOLO (You Only Look Once) algorithm. This
package acts as a bridge between the advanced object detection
capabilities provided by Darknet and the versatile communi-
cation infrastructure of ROS, enabling robots to perceive their
surroundings with remarkable accuracy and speed.

Integrating Darknet ros into a robotic project involves a
few key steps, beginning with its installation on a ROS-
enabled system. After cloning the Darknet ros repository into
a ROS workspace, users can compile the package using ROS’s
build system, catkin make. The package subscribes to image
topics over ROS, where the robot’s cameras publish the visual
data. It then processes these images using the YOLO object
detection model and publishes the detection results, which
include the identities and positions of detected objects, as ROS
topics. These results can be visualized in RViz, ROS’s 3D
visualization environment, allowing users to see the detected
objects overlaid on the camera feed in real-time.

For our project, which aims to enable autonomous object
grasping with the Fetch robot, Darknet ros serves as a critical
component for identifying and localizing objects to be grasped.
By providing real-time, accurate object detection, it enables
the Fetch robot to:

• Identify Specific Objects: Within a cluttered environment,
Darknet ros can help the Fetch robot to pinpoint the location
of specific objects that need to be grasped, recognizing them
from a myriad of other items.

• Facilitate Precise Grasping: With the detailed localization
data (bounding boxes) provided by Darknet ros, the robot can
calculate the optimal approach for grasping detected objects.
This information is crucial for planning the arm movement
and adjusting the gripper’s position and orientation.

• Combine Detection and Grasping: By seamlessly integrat-
ing object detection data from Darknet ros with the motion
planning capabilities of ROS packages like MoveIt, our project
can achieve a cohesive operation where the robot not only
identifies and locates objects but also plans and executes
grasping actions autonomously.

• Adapt to New Objects: Thanks to the YOLO algorithm’s
robustness and the ability of Darknet ros to work with custom-
trained models, our system can easily adapt to new objects or
environments, ensuring the robot’s operational flexibility.

In summary, Darknet ros empowers our Fetch robot project
with sophisticated vision capabilities, making it possible to
recognize and accurately locate objects in real-time. This func-
tionality is indispensable for autonomous grasping tasks, en-
abling the robot to interact intelligently with its environment.
By harnessing the power of Darknet ros, our project takes
a significant leap forward in realizing a fully autonomous,
vision-guided robotic grasping system.

2) moveit planners/ompl: MoveIt stands as a prominent
software in robotic motion planning and manipulation, notable
for its ability to integrate various planners. Among these, the
Open Motion Planning Library (OMPL) plays a significant

role as MoveIt’s default planner, offering a powerful collection
of state-of-the-art sampling-based motion planning algorithms.

Both MoveIt and OMPL are extensive applications within
ROS. The integration of these tools in ROS is exempli-
fied by the package ”moveit planners/ompl”, which effec-
tively combines OMPL’s diverse planning algorithms with
MoveIt’s robust framework. This package enables MoveIt
to utilize OMPL’s capabilities for complex robotic arm
motion planning, enhancing functionality and allowing for
efficient, precise control in various challenging scenar-
ios. The ”moveit planners/ompl” package thus demonstrates
the seamless integration and broadened practical utility of
OMPL and MoveIt in the ROS ecosystem. Using the
”moveit planners/ompl” package will enable Fetch Robot to
efficiently plan and execute complex motion trajectories in var-
ious environments, particularly in scenarios requiring intricate
arm movements and obstacle avoidance. This functionality
is crucial for precise and efficient robotic grasping tasks,
enhancing the robot’s capability to handle objects in cluttered
or constrained spaces.

3) GraspNet-1Billion: The GraspNet-1Billion dataset is a
comprehensive and large-scale dataset specifically designed
for robotic object grasping.

This dataset contains 88 daily objects with high quality 3D
mesh models. The images are collected from 190 cluttered
scenes, each contributes 512 RGB-D images captured by two
different cameras, bringing 97,280 images in total. Among
190 scenes, 100 scenes are used for training and 90 are used
for testing. For each image, the dataset has dense annotation
of 6-DoF grasp poses. The grasp poses for each scene varies
from 3,000,000 to 9,000,000, and in total the dataset contains
over 1.1 billion grasp poses. The dataset also provide accurate
object 6D pose annotations, rectangle based grasp poses,
object masks and bounding boxes. Also, the dataset provided
an unified evaluation system.

The GraspNet-1Billion dataset’s grasp pose annotation in-
volves four detailed steps:

• Mesh Model Downsampling: Objects are represented with
downsampled mesh models to uniformly distribute potential
grasp points across their surfaces in voxel space.

• View Sampling around Grasp Points: For each grasp point,
multiple views are uniformly sampled in spherical space,
ensuring a comprehensive evaluation from all possible angles.

• Grasp Evaluation via Analytical Computation: Each grasp
is assessed using the force-closure metric, determining its
viability based on the ability to securely hold the object.

• Projection onto Objects with Annotated 6-DoF Poses:
Evaluated grasps are then accurately mapped onto the objects
based on their annotated 6-DoF poses, ensuring the grasp
annotations are realistic and applicable to the dataset’s scenes.

III. SYSTEM DESCRIPTION

A. System Overview

The project integrates various technologies to enhance the
Fetch robot’s ability to autonomously identify, grasp, and
manipulate objects. The cornerstone of this system is the



AnyGrasp [13] algorithm, which processes RGB-D images to
determine viable grasp poses.

B. AnyGrasp Implementation

AnyGrasp has been successfully implemented to interpret
RGB-D sensor data from the Fetch robot’s camera. It outputs
the coordinates for grasp poses, enabling the robot to interact
physically with objects based on visual and depth cues.

C. Integration with MoveIt

The grasp poses generated by AnyGrasp are fed into the
MoveIt planning framework to execute the physical grasping.
MoveIt also receives input from the obstacle modeling module
to navigate around the obstacles effectively. This integration
is vital for coordinating the robot’s arm movements with
environmental constraints.

D. Technical Challenges

Significant challenges include syncing the data flow be-
tween AnyGrasp and MoveIt and ensuring accurate obstacle
detection and avoidance. These challenges are being addressed
through iterative testing and system optimization.

IV. SYSTEM EVALUATION

The system’s performance is assessed through a multi-
faceted approach, employing metrics like success rate, time
efficiency, precision, prediction accuracy, time efficiency, an-
tipodal score and force-closure. We want to evaluate our
system in in various settings using multiple measures. We
focus on four key metrics:

A. Success Rate

Success rate is a key indicator of grasping proficiency. It is
the proportion of successful grasps out of total attempts. For
single object scene, our system aims to achieve at least a 90%
success rate, corresponding to successfully grasping 9 out of
10 objects. As for relatively complex and cluttered scene, we
hope to achieve at least a 75% success rate.

B. Time Efficiency

Time efficiency is critical for dynamic or real-time applica-
tions, measuring the speed of task completion. The system’s
objective is to grasp 3 objects within 5-minute , demonstrating
its rapid response capabilities.

C. Antipodal Score

Focusing on stability in parallel-jaw gripping, the antipodal
score assesses mechanical stability, with higher scores indicat-
ing a stronger likelihood of successful object retention. This
score is derived from the geometry and orientation of contact
points, making it vital for grasp quality assessment.

D. Force-closure

Force-closure is an effective metric in grasp evaluation:
given a grasp pose, the associated object and a friction coeffi-
cient µ, force-closure metric outputs a binary label indicating
whether the grasp is antipodal under that coefficient.

V. HOW TO

This section provides detailed instructions on how to repli-
cate the autonomous object grasping project with the Fetch
robot. It includes information about the required hardware,
software, and the steps to compile and run the system.

A. Hardware Requirements

• Fetch Robot equipped with an RGB-D camera.
• A computer running Ubuntu 18.04 with ROS Melodic,

capable of supporting ROS and MoveIt.
• A computer running AnyGrasp

B. Software Requirements

• ROS: Install ROS on Ubuntu system using the official
ROS installation guide.

• MoveIt: Install the MoveIt package via ROS using the
command.

• AnyGrasp: Available in our project repository, details on
installation are provided below.

C. Code Availability

• AnyGrasp: the related SDK can be found at https://github.
com/graspnet/anygrasp sdk

• MoveIt: the related code can be found at https://github.
com/moveit/moveit

• Codebase: the complete codebase can be found
at https://star-center.shanghaitech.edu.cn/gitlab/
robotics2024/projects/fetch/-/tree/main/

D. Installation and Running

To run the fetch robot to pick up an object, we need to
perform the following steps:

1) In terminal 1, run MoveIt Group:
roslaunch fetch_moveit_config \
move_group.launch

2) (Optional) In a new terminal 2, run Visualization:
rviz -d fetch.rviz

3) In a new terminal 3 and codebase, save RGB and depth
images:

source devel/setup.sh
rosrun env_detection save_rgbd.py

4) In a new terminal 4 with the proper environment, run
Anygrasp on the saved image:

sh demo.py --debug false

5) In terminal 3, move the arm to fetch the object:
rosrun env_detection move_arm.py

https://github.com/graspnet/anygrasp_sdk
https://github.com/graspnet/anygrasp_sdk
https://github.com/moveit/moveit
https://github.com/moveit/moveit
https://star-center.shanghaitech.edu.cn/gitlab/robotics2024/projects/fetch/-/tree/main/
https://star-center.shanghaitech.edu.cn/gitlab/robotics2024/projects/fetch/-/tree/main/


VI. RESULT

We tested ten different object-placing scenarios and ran
Anygrasp on RGBD images to calculate the potential poses.
The success rate was 20%. The entire process, including
initializing the Fetch robot, capturing and transferring RGBD
images, running the Anygrasp model, and having the Fetch
robot pick up the object, took 70 seconds. The suggested pose
achieved a high antipodal score and met force-closure criteria.

We analyzed the reasons for the low success rate. The main
causes of failure were:

• MoveIt Planning Errors: MoveIt could not generate a
correct plan for many poses. In our experiment, 6 out of
8 failed cases were due to this issue.

• Gripper Width Not Considered: Anygrasp did not take
into account the width of the Fetch robot’s gripper. One
out of 8 failed cases occurred because the gripped place
was too thin to fetch.

• Depth Image Errors: Errors in the depth image led to
one out of 8 failed cases, due to a misalignment of about
2 cm.

VII. CONCLUSIONS

As of this final report, significant progress has been made
on the autonomous object grasping project for the Fetch
robot. The development and implementation of AnyGrasp have
marked a pivotal step towards achieving autonomous robotic
manipulation. AnyGrasp successfully takes RGB-D images
as input and outputs coordinate grasp poses, demonstrating
robust integration of vision and manipulation capabilities.
The MoveIt package is employed to process the obstacle
models along with the target fetch poses to generate feasible
movement paths for the Fetch robot.

Future work includes:

• Completing the obstacle modeling to ensure accurate
environment representation.

• Enhancing the integration between AnyGrasp outputs and
MoveIt’s path planning to refine the robot’s operational
efficiency.

• Extending system capabilities to handle more complex
scenarios and a wider range of objects.

• Conducting extensive testing to validate and optimize the
system under varied conditions.

This project not only aims to enhance the Fetch robot’s
autonomy but also seeks to contribute valuable insights into
the integration of perception and action in robotics, potentially
influencing future developments in the field.
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