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Abstract—Large Language Models (LLMs) have
demonstrated impressive language understanding abil-
ities and have been applied to a variety of domains
beyond traditional language tasks. These include di-
alogue systems, visual understanding, reasoning, code
generation, embodied reasoning, and robot control.
Building on the significant advancements in LLMs for
comprehending complex natural language instructions,
this project seeks to investigate the use of LLMs in
robot mission planning and autonomous navigation,
specifically within the information-rich and structured
environment of university campuses. The approach
involves integrating the text-based map representation,
osmAG, with the high-level understanding capabilities
of LLMs. By adding descriptive tags to osmAG and
utilizing LLMs to interpret these descriptions, we aim
to enhance navigational tasks. This method enables
robots to handle complex, description-based queries and
perform comprehensive path planning based on the
map’s topological structure.

I. INTRODUCTION

“Make me a coffee and place it on my desk.” The
successful execution of such a seemingly straightfor-
ward command remains a daunting task for today’s
robots. The associated challenges permeate every
aspect of robotics, encompassing navigation, per-
ception, manipulation, and high-level task planning.
However, recent advances in Large Language Models
(LLMs) have led to significant progress in incorpo-
rating common sense knowledge into robotics. This
enables robots to plan complex strategies for a diverse
range of tasks that require substantial background
knowledge and semantic comprehension.

This project focuses on integrating LLMs into
robotic systems, specifically for mission planning and
autonomous navigation in complex and structured
environments like university campuses. We employ
a text-based map representation, osmAG, which con-
tains both spatial structural information and descrip-
tive information that can be interpreted by LLMs.
By introducing a “description” tag in osmAG and

leveraging the advanced understanding and reason-
ing capabilities of LLMs, our system can execute
complex navigational tasks based on users’ natural
language instructions.

Specifically, this research explores two applica-
tion scenarios: description-based task planning and
topology-based path planning. In the first scenario,
LLMs use the provided descriptive tags to determine
the best destination. In the second, LLMs utilize the
topological structure in osmAG to plan paths that
include multiple target locations. Both approaches
demonstrate the vast potential of LLMs in interpret-
ing spatial descriptions and executing task planning
based on those descriptions.

Through this integration, we aim to develop a
new type of robotic system capable of understanding
complex task requirements, autonomously planning
routes, and interacting with human users in a more
natural and intuitive manner. This will not only
advance the development of robotic technology in au-
tonomous navigation but also open new possibilities
for human-robot interaction, enabling robots to play a
more significant role in education, research, and daily
life.

In an era marked by technological advancements,
robotics technology is becoming ever more prevalent
across various sectors, enhancing our daily lives and
work with new conveniences and possibilities. In-
spired by our keen interest in Large Language Models
and fueled by our participation in robotics courses,
this project aims to apply our deep understanding
of robotics principles to innovative task planning for
robots.

II. RELATED WORK

[1] Large language models (LLMs) have
undergone significant expansion and have been
increasingly integrated across various domains.
Notably, in the realm of robot task planning, LLMs
harness their advanced reasoning and language
comprehension capabilities to formulate precise and
efficient action plans based on natural language
instructions.

[2] This paper demonstrates how ChatGPT can
be used in a few-shot setting to convert natural
language instructions into a sequence of executable
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robot actions. The paper proposes easy-to-customize
input prompts for ChatGPT that meet common
requirements in practical applications, such as
easy integration with robot execution systems
and applicability to various environments while
minimizing the impact of ChatGPT’s token limit.

[3] There are some attempts of ChatGPT to
robots, however, general usage of ChatGPT in
robotics presents certain drawbacks, such as the
inability to guarantee system stability and safety
in the execution code it generates. ChatGPT’s
responses can vary for the same task, leading to
unpredictability in outcomes. This inconsistency
makes direct integration of ChatGPT into robotic
manipulation loops challenging.

This paper introduces RobotGPT, an innovative
decision  framework  designed for  robotic
manipulation, addressing these limitations by
emphasizing stability and safety. The framework
leverages ChatGPT’s problem-solving capabilities
while ensuring reliability through a structured prompt
and a robust learning model.

Moreover, the paper outlines an effective prompt
structure with a self-correction module and
experiments on tasks of varying difficulty to
explore ChatGPT’s capabilities in robotic tasks. It
proposes a novel framework where an agent, rather
than executing ChatGPT-generated code directly,
learns the planning strategies from ChatGPT, thus
enhancing system stability. This approach does not
solely rely on ChatGPT for direct action but uses it
as a guide for an agent to learn and execute tasks,
offering a solution to the limitations and security
risks associated with direct code execution from
language models.

[4] The letter presents robust lifelong indoor

LiDAR global localization and pose tracking using
the hierarchical, semantic topometric Open Street
Map Area Graph map representation.
[5] The article presents osmAG, a hierarchical
semantic topometric map format based on the OSM
XML format, designed to enable efficient path
planning for mobile robots in complex indoor and
outdoor environments.

[6]The paper delves into the utilization of Large
Language Models (LLMs) to enhance map compre-
hension for mobile robots, with a focus on the o0smAG
map representation. The document highlights the im-
portance of LLMs, such as ChatGPT and LLaMA,
in providing extensive general knowledge capabilities
that can aid in the development of intelligent robots.

The introduction sets the stage by illustrating a
real-life scenario where a delivery robot faces an

obstacle due to a closed intersection, emphasizing
the need for robots to comprehend map hierarchy
and topology for effective navigation. The authors
stress the potential of LLMs to process real-time
information and plan paths based on prior knowledge,
thereby enabling robust decision-making in dynamic
environments.

To improve LLM performance in understanding
osmAG maps, the paper discusses three levels of
description in the prompt, each varying in the depth of
explanation and inclusion of examples. Additionally,
the authors introduce osmAG variants that simplify
the representation of connections between areas, mak-
ing relationships more explicit for LLMs. By refining
prompts, adopting effective map representations, and
fine-tuning LLMs, the study aims to enhance map
comprehension capabilities for robotic applications.

The methodology section outlines the creation of
datasets for fine-tuning LLMs and the process of
fine-tuning the LLaMA2 model to surpass the per-
formance of ChatGPT-3.5. The use of Low Rank
Adaptation (LoRA) accelerates the training process,
resulting in a more efficient model for map under-
standing tasks. The authors emphasize the importance
of prompt engineering, which involves providing a
detailed task description and osmAG context to opti-
mize LLM responses.

Furthermore, the paper discusses the limitations of
token size and the decision to omit metric informa-
tion from osmAG, focusing solely on connections
and hierarchy for evaluating LLM proficiency. By
employing hand-drawn layout templates, the study
aims to assess LLMs’ understanding of topological
and hierarchical relationships without the need for
detailed shape information.

In conclusion, the paper underscores the potential
of LLMs in enhancing map comprehension for mo-
bile robots, paving the way for improved navigation,
decision-making, and adaptability in dynamic envi-
ronments. By leveraging advanced language models
and innovative map representations, researchers can
unlock new possibilities for intelligent robotic sys-
tems in various real-world scenarios.

[7] This paper introduces a novel method of inte-
grating OpenAl’s ChatGPT with robotics to handle
a wide range of tasks. By using Large Language
Models like ChatGPT, it translates natural language
commands into robot actions through detailed prompt
engineering and a specialized functional library. The
study shows ChatGPT’s strengths in understanding
detailed dialogues, creating code, and making deci-
sions through interactions with users. It also show-
cases how ChatGPT can manage tasks involving
space-time reasoning, manipulation, and flying based
on textual commands and visual data.

[8]Recent advances in large language models have



highlighted their potential to encode massive amounts
of semantic knowledge for long-term autonomous
decision-making, positioning them as a promising
solution for powering the cognitive capabilities of
future home-assistant robots. Inspired by ChatGPT
for Robotics, the authors propose a novel framework
that integrates a large language model with visual
perception and motion planning modules for robotic
grasping.

Their approach uses natural language prompts, com-
bined with visual information, to provide high-level
guidance to the robot and enable accurate and ef-
ficient object grasping in unstructured environments.
The perception module processes visual observations,
extracts semantic information, and feeds it to the large
language model with user instructions. Based on this
input, the large language model makes decisions that
inform the perception module to calculate the robot
end-effector’s grasping pose. The motion planning
module then generates a trajectory for the robot to
complete the action and grasp the target object.
This proposed framework can handle personalized
user instructions and perform tasks more effectively
in home scenarios, unlike traditional methods that
focus solely on generating stable grasps. It under-
stands imprecise language commands, allowing the
robot to grasp objects without the need for fine-
tuning or demonstration, significantly lowering the
deployment costs and making it well-suited for real-
world applications.

[9] The authors introduce SayPlan, which leverages
3D Scene Graph (3DSG) representations to handle
complex, multi-room, and multi-floor environments.
This is achieved through a hierarchical process that
allows for efficient semantic searches within a col-
lapsed representation of the full graph, reducing the
planning horizon via classical path planning, and
refining plans iteratively with feedback from a scene
graph simulator.

The key contributions of the paper include:

1) Hierarchical Semantic Search: Utilizing the hi-
erarchical nature of 3DSGs to enable LLMs
to perform semantic searches for relevant sub-
graphs efficiently.

2) Integrated Path Planning: Combining LLMs
with classical path planners to manage the
navigational components of task planning.

3) Iterative Replanning: Introducing a replanning
pipeline that uses feedback from a scene graph
simulator to correct infeasible actions and avoid
planning failures.

The effectiveness of SayPlan is demonstrated
through experiments in large-scale environments, in-
cluding scenarios with up to three floors and 36
rooms, showing its capability to execute long-horizon
task plans from natural language instructions. The

approach is validated with real robot demonstrations,
emphasizing its practical applicability in real-world
settings.

ITII. SYSTEM DESIGN
A. System Description

We download the html file of faculty website
and shorten it into a brief text file, then start a
conversation with LLM by providing a text file that
containing information of professors, such as offices
labs and so on. Secondly we teach LLM some basic
functions that we can use, go-to(), wait(), hear(), stop-
hear() as well as parameters of them.

It become easy to program a simple routine as we
don’t have to care about the navigation details. We
simply need to extract “passage” number of the
particular room in osmag map and put it into go-
to() function then we can go to that room carefree.
And here we can set up an example of cakes delivery
task.

1) Long task planning based LLM: We want to
add a new tag named “description” on osmAG, as
show in Fig 1. It is some information about this
area. This can be understood by LLM and do some
reasoning based on this. For example, I can take to
LLM ”T don’t know much about ICP. Please find a
professor to explain it to me. ” Then the robot can
take me to soren office.

Figure 1. osmAG

Its workflow is like this:

1) LLM acts as a high-level planner. Because it
can have a good comprehension of the osmAG
and description gived by us. As show in Fig
8, LLM can inferre that I need to go to your
office instead of others’. Then let LLM return
the ID of your office in osmAG.

© You

| don't know much about ICP. please tell me which professor should i think of for help

1. wang yang: Her research topic is Nonlinear system, adaptive control, parameter prediction,
active noise reduction and shock absorption control.

2.soren: his research topic are Mobile robot, map representation, simultaneous localization and
mapping (SLAM).

3.liusong: his research topic is Advanced Micro-Nano Robot Systems and Operations

@) chataPT

Based on the research topics provided, if you need help with ICP (lterative Closest Point) or related
topics such as point cloud registration and 3D mapping, Soren would likely be the best professor
toapproach. His expertise in mobile robots, map representation, and SLAM align closely with
these areas. However, if your query involves aspects such as adaptive control or advanced micro-
nano robot systems, Wang Yang or Liu Song might be more suitable options respectively.

Figure 2. ChatGPT



2) Execute a low-level path planner. Give a path
from my current location to soren office based
on the ID obtained in the previous step.

3) Finally let the robot execute the path and take
me to the office

B. System Evaluation

1) Scenario and Testing: We first provide the large
language model with a specific scenario to test its
application in mission planning. We assign it a role,
assuming it is a robot with the task of delivering ten
cakes to the professors on the second floor of the
Star Center. The robot can execute action commands
including go fo, wait, hear, stop hear, and done.
During the delivery process, it needs to adjust its
delivery plan based on sounds from the environment.
We will play the role of people interacting with it
in the environment. The large language model needs
to understand our instructions and make decisions.
Each time it executes the hear command, the robot
will stop generating and wait for people to input
commands via the keyboard, thus training it to replan
its tasks.

Example Experimental Steps:

1) The robot receives the command and then go
to the professor’s office or labs.

2) After arriving at the designated rooms, the
robot uses speak() to inform the people in the
room what it came for.

3) Then it executes the wait() command and hear
command for instructions from people. It may
change its planning based on human require-
ments. If no one in the room it will automati-
cally go to the next place.

4) Based on the conversation, it can decide if the
task has been done and return to its starting
point by executing the done command and
generates the log and conversations during the
mission.

2) Definition of Success Criteria:

o The robot successfully receives user commands
and reacts appropriately.

« The robot is able to replan tasks based on sound
inputs from the environment and complete the
delivery tasks correctly.

¢ In the simulated environment, the robot success-
fully completes the delivery of ten cakes.

C. Experiments Result

o Background setup by telling room number for-
mat, room information and basic functions.

<]

Figure 3.

Professors Center.pdf

Labs STAR Center.pdf

You are a mobile robot, | will give you the actions that the robot
can perform and some additional information and ask you to
make a step by step task planning for me based on these actions
and information. You can use several available actions to achieve
mission planning; go_to(PLACE): means go to some place;
wait(TIME): stop for TIME ms; hear(): hear from microphone;
stop_hear(): means that you stop hearing. you need to execute
stop_hear() before using go_to(); done(): The task is complete or
no further action can be performed Please clarify my
requirements first. | will put forward my requirements in the next
conversation. Additional information: two files with information
about some professors and their labs.

Teach ChatGPT Rules and Provide Rooms Info

when you want to some places, you need to clarify the room
number, such as go_to(1D-203); by the way you only need to
work in floor 2, the room number format is like 1+-20*

Got it! Here's the revised task planning script for delivering cakes to professors on the
second floor using specific room numbers

O S8R

professors_offices = [

Figure 4. Let GPT remember Room Numbers

Scenario: Deliver the mail to Prof. Jiahao Chen,
as well as 9 pieces of pizza to him. Then
deliver some fried chicken and potato chips to
professors’ office rooms in floor 2.

Start the task

python O SBRE

go_to(
wait(500)
speak(
hear()

[Awaiting the p s o

Thanks, | took my mail and please give these pizza to another
professor, | don't like them

python O swrE

speak(
go_to(

wait(

speak(
hear()

Thanks, I'll take all of them.

Figure 5. Assign a Mission



Thanks, I'll take all of them.

python & EaIE

speak(

go_to(

wait(
speak(
hear()

Please give me the potatochips. Fast!

python @ EBE

speak(
go_to(
wait(

speak(
hear ()

» e Q<

Leave me alone - | am busy.

python O =9RE

speak( )
go_to(

wait(

speak(
hear()

Figure 6. Planning based on requirements

Give me the potato chips please.

python O saiE

speak(
hear()

Figure 7. It remembers objects information

Give me the potato chips please.

python O S8R

speak(
()

Go back to room 1D200 and get me more potato chips back.

python O =B

speak(
go_to(
wait(

speak(

hear ()

Here you are, some potato chips.

python O =8B

speak(
go_to(
wait(

speak(

hear ()

Figure 8. It remembers core missions

IV. EVALUATION

Since er cannot operate on a real robot, we evaluate
it by counting how many times it forgets room and
professor information or goes to a wrong door in a
test:

Task Food 1 Food 2 Food 3 Mail and Food
Forget Info 0 1 1 1
Wrong Door 0 1 0 0

It sometimes forgets names of professors, if you let
it goes to someone’s room, it may go to the wrong
door. If it remembers then it hardly ever goes a wrong
way.

V. CONCLUSIONS

In this project, we successfully utilized a large
language model to achieve mission planning and
tested its capability as a delivery robot in a simulated
environment. By assigning the robot the task of
delivering ten cakes to professors’ offices on the
second floor of the Star Center, we validated the
large language model’s ability to interact and make
decisions in complex environments.

During the experiments, the large language model
correctly understood and executed user commands
such as go to, wait, hear, stop hear, and done, and
it replanned tasks based on received sound inputs.
The model demonstrated the ability to stop at each
task node, accept new instructions, and adjust the
task plan accordingly. In the simulated environment,
the robot successfully completed the delivery of ten
cakes, proving the effectiveness and flexibility of the
large language model.

Our test results indicate that the large language
model can accurately receive user commands and
respond appropriately. Additionally, it can replan
tasks through interaction with users and successfully
execute them. This showcases the potential of large
language models in real-world applications, espe-
cially in tasks requiring dynamic plan adjustments
and responses to environmental changes.

Future work can focus on the following areas:

1) Enhancing Planning Capabilities: Design
more scenarios for the large language model
to practice, thereby improving its planning
and decision-making abilities in more complex
tasks.

2) Implementation on Physical Robots: Deploy
our mission planning system onto actual robots.

However we also encounters with some problems:

1) The first problem is that LLM can not handle
with such large information like o0smAG map or
processing unminified web page html file. We
need some pre-process so that LLM can better
comprehend better and remember well.

2) The second problem is that we haven’t received
the navigation API yet, so we don’t have a
chance to try out on a real robot.
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