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IMAGE FEATURES
• Lines
• Points

•Harris
•SIFT



Example: Build a Panorama

This panorama was generated using AUTOSTITCH (freeware), available at
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Robotics ShanghaiTech University - SIST - May 08, 2025 3



How do we build panorama?
• We need to match (align) images
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Matching with Features
• Detect feature points in both images
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Matching with Features
• Detect feature points in both images
• Find corresponding pairs
• Use RANSAC to find inliers and outliers
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Matching with Features
• Detect feature points in both images
• Find corresponding pairs
• Use these pairs to align images
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Matching with Features
• Problem 1:

• Detect the same point independently in both images

no chance to match!

We need a repeatable detector
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Matching with Features
• Problem 2:

• For each point correctly recognize the corresponding one

?

We need a reliable and distinctive descriptor
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More motivation…  
• Feature points are used also for:

• Robot navigation 
• Object recognition
• Image alignment (panoramas)
• 3D reconstruction
• Motion tracking
• Indexing and database retrieval -> Google Images 
… other
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Most Famous Feature Detectors
• Overview

• Harris Detector (1988)

• SIFT Detector (2004)
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HARRIS CORNER DETECTOR

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



Finding Corners

• Key property: in the region around a corner, image gradient 
has two or more dominant directions

• Corners are repeatable and distinctive
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• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

• => define a corner response function

“edge”:
no change along the 

edge direction

“corner”:
significant change in 

all directions

“flat” region:
no change in all 

directions

The basic idea
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How do we implement this?
• Let I be a grayscale image. Consider taking an image patch centered on (u,v) and shifting it 

by (x,y). The Sum of Squared Differences between these two patches is given by:

•                              can be approximated by a first order Taylor expansion. Let       and        be 
the partial derivatives of I, such that

• This produces the approximation

• Which can be written in a matrix form as

!"# !"#$% ++ !" !"
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How do we implement this?

• M is the “second moment matrix”

• Since M is symmetric, we can rewrite M as

where λ1 and λ2 are the eingenvalues of M
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How do we implement this?
• As mentioned before, a corner is characterized by a large variation of in all directions of the 

vector (x,y). The Harris detector analyses the eigenvalues of M to decide if we are in 
presence of a corner or not.

• We can visualize M as an ellipse with axis lengths determined by the eigenvalues and 
orientation determined by R
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Corner response function
Based on the magnitudes of the eigenvalues, the following 
inferences can be made based on this argument:

•If both λ1 and λ2 are small, SSD is almost constant in all 
directions (i.e. we are in presence of a flat region).

•If either λ1 >> λ2 or λ2 >> λ1 , we are in presence of an 
edge: SSD has a large variation only in one direction, 
which is the one perpendicular to the edge.

•If both λ1 and λ2 are large, SSD has large variations in all 
directions and then we are in presence of a corner.

“Corner”
l1 and l2 are large,
 l1 ~ l2;

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

l1

l2

Because the calculation of the eigenvalues is computationally expensive, Harris and Stephens
suggested the use of the following “cornerness function” instead:

Where k is a between 0.04 and 0.15

§ Finally, the last step of the Harris corner detector consists in extracting the local maxima of the
cornerness function
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Harris Detector: Workflow
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Harris Detector: Workflow
• Compute 

corner 
response 
R
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• Find
points 
with 
large 
corner 
response: 
R > 
threshold

Harris Detector: Workflow
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• Take only 
the points 
of local 
maxima 
of R

Harris Detector: Workflow
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Harris Detector: Workflow
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Harris detector: properties
§ How does the Harris detector behave to image transformations?
§ Will we be able to re-detect the same corners under 

§ Rotations
§ View-point changes
§ Zoom changes
§ Illumination changes? 

§ In order to answer these questions, we need a model of these 
transformations.

§ The detector can then be modified to be invariant to such 
transformations
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Models of Image Change

Robotics ShanghaiTech University - SIST - May 08, 2025 27



Harris Detector: Some Properties
• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some Properties
• But: non-invariant to image scale!

All points will be 
classified as edges

Corner !
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Harris Detector: Some Properties
• Quality of Harris detector for different scale changes

Repeatability rate:
# correspondences

# possible correspondences
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Summary on Harris properties
• Harris detector is an approach for detecting and extracting corners (i.e. points 

with high intensity changes in all directions)

• The detection is Invariant to 
• Rotation
• Linear intensity changes
• However, to make the matching invariant to these we need an opprtune matching criterion 

(for example, SSD in not Rotation nor affine invariant!)

• The detection is NOT invariant to 
• Scale changes
• Geometric affine changes (Intuitively, an affine transformation distorts the neighborhood of the feature along the x and y 

directions and, accordingly, a corner can get reduced or increased its curvature)
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Scale Invariant Detection
• Consider regions (e.g. circles) of different sizes around a point
• Regions of corresponding sizes will look the same in both images
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Scale Invariant Detection
• The problem: how do we choose corresponding circles independently in 

each image?
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Scale Invariant Detection
• Solution:
• Design a function on the region (circle), which is “scale invariant” (the same for 

corresponding regions, even if they are at different scales)

• For a point in one image, we can consider it as a function of region size (circle radius) 

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same.

scale = 1/2
f

region size

Image 1 f

region size

Image 2
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Scale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!
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Scale Invariant Detection
• A “good” function for scale detection:

    has one stable sharp peak

• For usual images: a good function would be a one which responds to contrast (sharp 
local intensity change)

f

region size

bad

f

region size

bad

f

region size

Good !
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Scale Invariant Detection
• Functions for determining scale

! !
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Kernels:

where Gaussian

Note: This kernel is invariant to 
scale and rotation

(Difference of Gaussians)
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Scale Invariant Detectors
• SIFT

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

¬ DoG ®

¬
 D

oG
 ®
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Scale Invariant Detectors
• Experimental evaluation of detectors 

w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences
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What is SIFT ?
• Scale Invariant Feature Transform (SIFT) is an approach for detecting and 

extracting local feature descriptors that are reasonably invariant to changes in:
• rotation
• scaling
• small changes in viewpoint
• illumination
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Invariant Local Features
• Image content is transformed into local feature coordinates that are invariant 

to translation, rotation, scale, and slight view-point and illumination changes
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SIFT Descriptor
• SIFT matching features between different images invariant to:
• Rotation
• Small image scale
• Small view point changes

• This is made possible by the use of an opportune feature descriptor 
(remember, Harris does not use a descriptor for matching)

• What is a descriptor? A descriptor is a “description”, identity card, which allows 
to recognize a given feature uniquely among many others!
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Generation of Keypoint Descriptor
• Keypoint descriptor: computing gradient magnitude and orientation 

at each image sample point in a region around the keypoint location 
• Samples are accumulated into orientation histograms with the length 

of each bin corresponding to the sum of the gradient magnitudes 
near that direction within the region.

• The descriptor is therefore a vector containing the values of all the 
orientations histogram entries

• This vector is normalized to enhance invariance to changes in 
illumination

• Peaks in the histogram correspond to dominant orientations. If more 
than one peak is found, a separated feature is assigned to the same 
point location.

• All the properties of the keypoint are measured relative to the 
keypoint orientation, this provides invariance to rotation.

! "π

! "π
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Key point localization
• Final keypoints with selected orientation and scale

Robotics ShanghaiTech University - SIST - May 08, 2025 44



Feature stability to view point change
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Planar recognition

• Planar surfaces can be reliably recognized at 
a rotation of 60° away from the camera

• Only 3 points are needed for recognition
• But objects need to possess enough texture 

(i.e. no monochrome objects!)
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Recognition under occlusion
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Place recognition
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Multiple panoramas from an unordered image set
SIFT is used in current consumer cameras and smart phones to build 

panoramas from multiple shots!
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DEEP LEARNING FOR ROBOTIC 
VISION
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Deep Learning
• Hot trend in Machine Learning / AI
• Traditional approaches: Hand tuned features, e.g.:
• Feature extraction (Computer Vision); 

Hidden Markov Models & Statistics (Natural Language Processing)
• Deep Learning approach:
• Learning of parameters for Artificial Neural 

Network (ANN) based on training data

• Recent success based on:
• Huge amounts of (training) data
• Lots of computing power
• Better DL architectures

Image Source: Matthew Mayo
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NIPS’2015 DL Tutorial   http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf 
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Convolution operator

𝑘(𝑥, 𝑦)
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(filter, kernel)

?
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Convolutional Layer (with 4 filters)

Output: 4x224x224

if zero padding, 
and stride = 1

weights: 
4x1x9x9

Input: 1x224x224
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Convolutional Layer (with 4 filters)

Output: 4x112x112

if zero padding, 
but stride = 2

weights: 
4x1x9x9

Input: 1x224x224
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Multiple Layers: Levels of Abstraction
Source:
NIPS’2015 Tutorial
Geoff Hinton, Yoshua Bengio & Yann LeCun
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Alexnet

the paper that started the 
deep learning revolution!
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Image Classification
Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, 
Chickadee,

red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat(0.71) 
Egyptian cat (0.22)
red fox (0.11)
…..

train on the ImageNet 
challenge dataset,
~1.2 million images
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https://www.saagie.com/fr/blog/object- detection-part1 
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Alexnet

https://www.saagie.com/fr/blog/object-%20detection-part1


conv+pool
conv+pool

conv conv conv
linear linear

linear+ 
softmax
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https://www.saagie.com/fr/blog/object- detection-part1 
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What is happening?

https://www.saagie.com/fr/blog/object- detection-part1 
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Slide by Mohammad Rastegari
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Computer Vision in Autonomous Driving
• DL for Computer Vision for detection of:
• Cars (Truck; Bus; Police car!; …)
• Pedestrian; Bicycle; …
• Lane; curb
• Markings on the road
• Traffic Signs
• Traffic Lights

• From Cameras AND Lidars
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https://becominghuman.ai/computer-vision-
applications-in-self-driving-cars-
610561e14118 
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Computer Vision for Robotics
• DL for Computer Vision for detection of:
• Doors; Door handle
• Signs; Read door signs
• Objects
• Other Robots
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Amazon Picking Challenge
• Robot stow and take (pick) products from shelves 
• Challenges in: Computer vision (find object and its pose [ position & 

orientation ] ) and Manipulation (planning, grasping)
• Since 2015 – now co-located 

with RoboCup
• Winner 2016: Team Delft
• Suction gripper (easy!)
• 100 items per hour (human: 400)
• Failure rate: 16.7 %
• Deep learning to find objects:

• Stereo camera for 3D
• ROS Industrial
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Deep Learning for Scene Understanding
• Semantics Segmentation

1. single RGB image as input

2. semantic labeling at pixel-level

3. divide scene to different regions and objects

• semantic SLAM

• help to remove dynamic object (Chen et al. SuMa++)

• provide cues for loop closing (Chen et al. OverlapNet)
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Poudel, Rudra PK, Stephan Liwicki, and Roberto Cipolla. "Fast-scnn: Fast semantic segmentation network." arXiv 
preprint arXiv:1902.04502 (2019).
Guo, Jian, et al. "GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language 
Processing." Journal of Machine Learning Research 21.23 (2020): 1-7.
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Deep Learning for Feature Extraction
• Optical Flow Estimation

1. two frames as input

2. output the optical flow

3. generating the 2D-2D correspondences

• Monocular Depth Estimation
1. single RGB image as input

2. output the depth map

3. provides 3D information, recover scaling factor
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Hui, Tak-Wai, Xiaoou Tang, and Chen Change Loy. "Liteflownet: A lightweight convolutional neural network 
for optical flow estimation." Proceedings of the IEEE conference on computer vision and pattern recognition. 
2018.

Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." Proceedings of the IEEE 
international conference on computer vision. 2019.
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Deep Learning in Visual Odometry

Robotics 69

Zhan, Huangying, et al. "Visual odometry revisited: What should be 
learnt?." 2020 IEEE International Conference on Robotics and 
Automation (ICRA). IEEE, 2020.
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Point Cloud Segmentation
• ”SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation.”Chenfeng Xu, Bichen Wu, Zining Wang, 

Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.
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Feature Descriptors => Registration
• "D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features", by Xuyang Bai, Zixin Luo, Lei 

Zhou, Hongbo Fu, Long Quan and Chiew-Lan Tai.
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Vision Language Models

Transformer encoders for vision

Mohit Iyyer
College of Information and Computer Sciences University of 
Massachusetts Amherst
https://people.cs.umass.edu/~miyyer/cs685/slides/vision_nlp.pdf 
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2

Image captioning

a red truck is
parked on a street
lined with trees
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3

Visual question answering

•

•
•

Is this truck considered 
“vintage”?
Does the road look new? 
What kind of tree is 
behind the truck?
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An Image is Worth 16x16 words, Dosovitskiy et al., ICLR 2021

Self-attention on pixels
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Slides from Justin Johnson
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Slides from Justin Johnson

Robotics ShanghaiTech University - SIST - May 08, 2025 77



Slides from Justin Johnson
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Slides from Justin Johnson
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Slides from Justin Johnson
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Slides from Justin Johnson
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16x16 patches = 16*16*3 = 
768d embedding
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Vision Transformers (ViT)outperform 
ResNets with larger datasets
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OpenAI’s CLIP: Contrastive language-image
pretraining

• OpenAI collect 400 million (image, text) pairs from the web

• Then, they train an image encoder and a text encoder with a simple 
contrastive loss:  given a collection of images and text, predict which (image, 
text) pairs  actually occurred in  the  dataset

Radford et al., 2021 (“CLIP”)
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https://openai.com/blog/clip/
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Similar to GPT-3, you can use 
CLIP for zero-shot learning
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LAION-5B: a dataset of 5 billion 
image/text pairs!

Schuhmann et al., 2022
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Major copyright issues…
Stable Diffusion and other image-generating AI products could not 
exist without the work of painters, illustrators, photographers, 
sculptors, and other artists. Stable Diffusion was trained on
the LAION-5B dataset. LAION-5B contains 5.85 billion image-text 
pairs. Most of the images contained in the dataset are copyrighted, 
and LAION claims no ownership in them. As it notes, “The images 
are under their copyright.”
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End-to-End Deep Learning

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building
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Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

Sensing

Raw data

Acting

Actuator Commands

Deep Learning
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End-to-End Deep Reinforcement Learning

• From sensors to actuation: one layered or recurrent neural network! =>
• NOT classical general control scheme (Perception, SLAM, Cognition & Planning, Navigation)

• Needs reward signal: sparse, noisy, delayed!
• Take time into account: input frames are related!

• Gained interest 2013 again with:
• Deep Mind (google) playing ATARI 2600 games
• Video: Breakout
• Learned 7 games
• Surpasses human expert in 3
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BRETT: Berkeley Robot for Learning Tedious Tasks: 
Deep Reinforcement Learning

• ”There are no labeled directions, no examples of how to solve the problem in advance. There 
are no examples of the correct solution like one would have in speech and vision 
recognition programs” 

• Learn simple tasks in 
10 minutes; 
learn vision and control 
together in 3 hours

• Pieter Abbeel of 
UC Berkeley; 

• 2015
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Google Door Opening Project
• Learn to open doors using Reinforcement learning

• Learning reward: opening the door
• Much harder than purely digital learning: very slow iterations!
• Simulation only helps a bit:

real world much more complex

• Google and
UC Berkeley Sergey Levine

• Google very secretive …
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Nvidia end-to-end deep 
learning self driving car
• Raw pixel of single camera => 

steering command of car
• 30 FPS; single-image control 

(no history)
• Nvidia Drive PX car computer 

(ARM cores and Nvidia GPU)
• Human steering angle for training

• End-to-end: NO explicit:
• Lane detection
• Road detection
• Obstacle detection
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deep-learning-self-driving-cars/ 
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• Training:
• Additionally use left and right camera:

negative examples!
• Highway, residential roads, unpaved roads, car parks
• Different weather conditions

• Result: Autonomous 98% of the time =>
2% driver intervention

Robotics ShanghaiTech University - SIST - May 21, 2024 95



Problems with Deep Learning
• 99% success rate sounds good, but 1% failure is often unacceptable (e.g. autonomous car)
• Failures are unavoidable => 
• need quality estimate/ uncertainty of the result!
• Often not available for DL L 

• Lack of theory regarding deep learning
• Acts like a black box…

• No introspection of how or why a DL system is behaving like it is =>
• No safety guarantees possible

• Deep learning only part of an overall AI system
• Hand-crafted methods can still be very powerful
• Modelling useful (with input from DL)
• Statistical methods
• Reasoning
• Planning
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