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Al for Robotics vs Embodied Al

- Al for Robotics:

- Improve Robot Capabilities by employing various Al techniques
- E.g.: https://www.nvidia.com/en-us/industries/robotics/

- Embodied Al:
- Improve Al Capabilities by giving it a body
- Increase intelligence through interaction with the physical world:
- See; Talk; Listen; Act; Reason
- https://embodied-ai.org/



https://www.nvidia.com/en-us/industries/robotics/
https://embodied-ai.org/
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Previously in Robotics

- Everything hand-coded
- Computer vision (e.g. SIFT, SURF, ...)
- Control (e.g. PID, MPC, ...)
- Voice Recognition, Dialogue Systems
- Planning
- Navigation
- SLAM

- Needs to be carefully tuned
- E.g. DARPA Robotics Challenge 2015
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= https://www.youtube.com/watch?v=g0TaYhjpOfo



https://www.youtube.com/watch?v=g0TaYhjpOfo
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Modern Robotics with the help of Learning/ Al

- Learning for Robotics: Train a Neural Network to do the things that are too
hard to program by hand, e.g.:

- DL based computer vision and recognition (e.g. also 3D point clouds)
- Reinforcement Learning for control
- LLM for human robot interaction and intelligence
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Overview of Learning Approaches in Robotics

- Goal: To explore various learning
paradigms that enable robots to
perform tasks autonomously.

- Categories:

- Model-Free vs. Model-Based
Learning

- Supervised vs. Unsupervised
Learning

- Passive vs. Active Learning

- Reinforcement Learning (RL)
- Imitation Learning

- End-to-End Deep Learning

- Actor-Critic Learning

- Evolutionary Algorithms

- Transfer Learning

- Self-Supervised Learning

- Few-Shot and Zero-Shot Learning
- Multi-Agent Learning

- Curriculum Learning

- LLM

- Foundation Models

- Other types of “learning”
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ROBOTIC LEARNING
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Model-Based vs Model-Free Learning

Model-Based Learning: Model-Free Learning:

- Involves learning a model of the - Directly learns a mapping from
environment or dynamics (e.g., states to actions or rewards without
using physics or system dynamics). modeling the environment.

- Robot can plan and predict actions
based on this model. - Example: Q-learning or policy

gradient methods in Reinforcement

- Example: Planning with a learned Learning.
dynamics model in robotic control
tasks.




Robotics
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Supervised vs. Unsupervised Learning

Supervised Learning:

- Learning from labeled data (input-
output pairs).

- Requires large datasets and human
supervision.

- Example: Image classification for
object detection in robotics, such as
recognizing "graspable” objects in a
scene.

Unsupervised Learning:

- Learning from unlabeled data to

find hidden patterns (e.g., clustering
or representation learning).

- Example: A robot exploring its

environment autonomously to
cluster sensory data (e.g., LIDAR or
visual data) into distinct regions like
walls, furniture, or open spaces.
This clustering can later help the
robot map its environment for
navigation.



Robotics ShanghaiTech University - SIST - May 13, 2025

Passive vs Active Learning

Passive Learning:

- The robot learns from a fixed
dataset (either labeled or
unlabeled).

- Example: Supervised learning with
a fixed dataset.

Active Learning:

- The robot queries the environment

for more informative data based on
its current knowledge or uncertainty.

- Example: A robot selects which

objects to interact with in order to
maximize learning.
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End-to-End Deep Learning in Robotics

- Definition: Learning a direct mapping from raw input (e.g., images, sensory
data) to the output (e.g., control commands).

- Example: A robot controlling a gripper using only camera images.
- Advantages: Simplifies the pipeline by learning a direct mapping.

- Challenges: Requires large amounts of labeled data.
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Reinforcement Learning (RL)

- Definition: An agent learns to take actions in an environment to maximize
cumulative reward over time.

- Key Components: States, actions, rewards, policy.

- Example: Training a robot to navigate using trial-and-error.

- Types:
- Model-Free: Methods like Q-learning, policy gradients.
- Model-Based: Use of learned models to simulate and plan actions.
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Imitation Learning

- Definition: Robots learn by observing and imitating human demonstrations or
expert behaviors.

- Approaches:
- Behavior Cloning: Supervised learning from demonstrations.

- Inverse Reinforcement Learning (IRL): Learning the underlying reward
function from expert demonstrations.

- Example: Teaching a robot to grasp objects by mimicking human actions.
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LLM for Robotics

- Definition: LLMs are Al systems trained on massive text corpora to process,
understand, and generate human-like text.

- Key Capabilities in Robotics:
- Natural Language Understanding: Interpreting commands and queries.

- Knowledge Integration: Retrieving and applying knowledge to tasks (e.g., assembly
instructions).

- Reasoning and Task Decomposition: Breaking down complex instructions into actionable
steps.

- Advantages:
- Provides high-level reasoning and task planning.
- Reduces the need for detailed programming in language-based tasks.
- Can handle diverse instructions using pre-trained knowledge
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How LLMs Are Used in Robotics

- Applications:

- Human-Robot Interaction: Robots can interpret and execute natural
language instructions (e.g., “Bring me a cup of water”).

- Task Planning: Combining linguistic reasoning with real-world task
execution.

- Multi-Modal Integration: Enhancing decision-making by linking text, vision,
and sensory inputs.

- Challenges:

- Ensuring grounding in physical environments (e.g., interpreting "left" in a
spatial context).

- Real-time response constraints due to the size of models.
- Domain-specific fine-tuning for robotics applications.
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Robotics Foundation Models

- Definition: Large-scale Al models pre-trained on diverse, multi-modal
datasets (e.g., text, images, videos).

- Core Characteristics:
- Versatile Pre-training: Serve as a base for fine-tuning on specific tasks.

- Multi-Modal Understanding: Integrate text, vision, and other sensory
inputs for broader applicability.

- Key Advantages for Robotics:
- Generalize across multiple tasks with minimal retraining.
- Simplify the training pipeline by leveraging shared representations.
- Adaptable to new tasks without extensive data collection.
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How Foundation Models Empower Robotics

- Applications:
- Perception: Models like CLIP interpret visual data for scene understanding.

- Control: Leveraging shared representations for motion planning and
actuation.

- Task Generalization: Performing varied tasks without task-specific training.

- Simulation-to-Real Transfer: Reducing the gap between simulated and
real-world performance.

- Challenges:
- High computational costs for pre-training and fine-tuning.
- Limited grounding in physical dynamics without additional modeling.
- Potential biases from pre-training on non-robotic data.
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RL Algorithms

- Finite Markov Decision Processes MDP

- Temporal-Difference Learning TD Learning
- State-Action-Reward-State-Action SARSA TD Learning

- Q-learning: Off-policy TD Control
- Deep Q-Networks DQN

- Policy Gradient Methods
- Actor-Critic Methods

- Asynchronous Reinforcement Learning
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Some Examples

Robot Learning

Cognitive Intelligence Athletic Intelligence

Locomotion/

Manipulati
anipulation Control
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Do As | Can, Not As | Say:
Grounding Language in Robotic Affordances

Customers want a
robot that handles

all household tasks
and is

commanded by
natural language
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Learning Fine-Grained Bimanual Manipulation with Low-

Cost Hardware (ACT /ALOHA)

Bl top camera
ViperX 6dof Arm (follower)
wrist camera wrist camera
#Dofs 6+gripper
Reach 750mm
Span 1500mm
Repeatability 1lmm
— 1 = Accuracy 5-8mm
— e ——— Working Payload 7509

red: bimanual workspace
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Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware (ACT /ALOHA)
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L

Athletic Intelligence (quadruped robot)

0.375 m/s

Legged Locomotion in Challfg

(a) Walking Gait
Waking. trotting and bouncing (galio Ananye Agarwa.l'1 AShlSh

2020: RL is able to work on quadruped locomotion
2021: RL is simple enough to train quadruped robot

2022: quadruped robot can utilize vision to guide the gait
2023: quadruped robot outperforms all other mobile robots



Robotics ShanghaiTech University - SIST - May 13, 2025

Athletic Intelligence (bipedal robot)

swrm | Learning Humanoid Locomotion with Transformers
Robust and Versat

Ilija Radosavovic*  Tete Xiao* Bike Zhang*  Trevor Darrelll  Jitendra Malik!  Koushil Sreenath’

thI'Ou gh Re University of California, Berkeley

Zhongyu Li', Xue Bin Peng?, Pieter Abl
!'University of California, Berkeley,

Email: zhongyu_li@berkeley.edu, xbpeng

glen.berseth €

Athletic Intelligen

Connections between perceptio
control allow Atlas to adapt—q

literally—on the fly.
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Robot Parkour Learning

- end-to-end vision-based parkour learning (depths images)

- RL pre-training with soft dynamics constraints +
- RL fine-tuning with hard dynamics constraints

Climb Leap Crawl

Soft
Dynamics
Constraints

Hard
Dynamics
Constraints

a °°"ii:?n'; Penetration
P Depth

¥ d(p)
»
, € e
\ 2. 9.0i9i% ,\
: 4
.
I
LN o 0
R
4

Figure 4: We show collisions points on the robot.
Collision points that penetrate obstacles are in red.

Tilt
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Robot Parkour Learning

. @ziwenzhuang_leo
twitter:
@zipengfu

arkour.qgithub.io/


https://robot-parkour.github.io/
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Playful DoggyBot: Learning Agile and Precise Quadrupedal Locomotion

https://playful-doggybot.github.io/



https://playful-doggybot.github.io/
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Enhancing Embodied Al Performance by Integrating
Traditional Algorithms with Large Language Models
for
Map-Based Tasks

Fujing Xie

Advisor: Prof. Dr. Soren Schwertfeger

ShanghaiTech University
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Large Language Al Models for Autonomous Mobile Robotics

* Visual language manipulation ! and * Visual language navigation

) . https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/articles/chatgpt-for-robotics/
https://palm-e.github.io/

Given . Q: How to sort the blocks by colors into the corners? A:
. Task: navigate to the stairs
] Objects in the scene: <door, 1.15 m, 12>, <door, 0.79 m, 15>, <door, 4.43 m, 0>, <plant, 3.36 m, 2>, <column, 3.40 m, 4>, <,
Task: How to sort the blocks by colors into the 0,63 m, -13>, <door, 0.57 m, -24>, <door, 0.82 m, 4> .
o Command: move(1.5) # Move straight ahead 1.5 meters to explore the environment.
corners« * Objects in the scene: <stairs, 2.99 m, -21>, <objects, 2.68 m, -19>, <door, 2.93 m, 1>, <plant, 1.80 m, 5>, <column, 1.95 m,

7>, <objects, 1.67 m, 5> .
Command: turn(-21) # Turn towards the stairs.
i i i Objects in the scene: <stairs, 3.75 m, -3>, <door, 2.04 m, -18>, <objects, 3.30 m, -2>, <door, 2.47 m, 17>, <plant, 1.40 m,
The Inpui[ is the task and the iImages, the OUtPUt of 22>, <door, 2.46 m, -11>, <column, 1.48 m, 25>, <objects, 1.29 m, 23>
PaLM-E is command the robot could execute. Command: turn(-3) # Turn towards the stairs.
Objects in the scene: <stairs, 3.75 m, 3>, <door, 2.18 m, -11>, <objects, 3.27 m, 5>, <door, 2.36 m, 26>, <door, 2.56 m, -4>
Command: move(3.75) # Move towards the stairs.
Objects in the scene: <stairs, 1.02 m, -14> )
Command: move(1) # Move closer to the stairs.
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Why Maps Matter in Real Environment

-z - = — S —

Notice about Emergency Repair of Sewage Pipes

on the East Side of the Silk Road Canteen and Road Closures
Dear all,

Due to the emergency repair of the sewage pipe under the road on the east side of the Silk Road Canteen,
the road between the east side of the Silk Road Canteen and Student Apartment Building 2 must be
excavated and renovated (as marked in red in the picture below). During the repair, the road will be closed
for 6 days (January 19 — January 24, 2024).

There will be noise and machinery works. Please stay away and go around the area to avoid accidental
injuries.

We apologize for any inconvenience this may cause!

Fi%. 1 The figure above depicts a real-life situation encountered by a 3rd-party delivery
robot on our University campus, where it is blocked by an intersection closure. Below
the e-mail sent by Office of General Services announcing this closure is shown.

Fig. 2 A osmAG (Area Graph in OpenStreetMap textual format)
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Robotics

Map Representations

Traditional Map Representation: Occupancy Grid Map, Point Cloud Map, Visual Keypoint Map
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Comprehensible by LLMs, traditional robotic algorithms and humans
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osmAG — Map Representation

- -
 Localization: xie F, Schwertfeger S. Robust lifelong indoor lidar localization using the area graph[J]. IEEE Robotics and Automation
Letters, 2023, 9(1): 531-538.
Area Graph
Polygon /

mage R RN o 3 5 oo VV"""n,VV -

Global Localization Pose Tracking : R A;’E::;l;cph

\ : Pose Guesses >

et ¢ cane | n b gl i cloud i) sd, .
« Basess therm by oun soor it / = . heingwetghe imcion ot et X gl : Robot Pose Coordinates

Fitting Clutter Free Point Set to Current Pose Guess frge point set lp'm‘k] to get point set - pl Guess

Area Graph Polygons W'fr_‘ non-zero wexghts (gr.een). 9 .
+ Choose the highest score guess as . Utl!lze w_eughted point to line ICP for

current best guess. registration.

Fig. 1
[}

Path Planning: Xie F, Zhang J, Schwertfeger S. Intelligent LIDAR Navigation: Leveraging External Information and Semantic Maps with LLM
as Copilot[J]. arXiv preprint arXiv:2409.08493, 2024.

(b)

Fig. 2
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Intelligent LIDAR Navigation: Leveraging External Information and Semantic Maps with
LLM as Copilot

fa )
Title: Wireless Access Ur rade

end tilrlne: 2024-07-04 10:00
osmAG Map (textual format) Rl
& Infordert_to flérthetr imf)rovet the quaéitytrc])f netwlork service, Librr?ry and sisl
nformation Center plans to upgra e wireless access exchange in
lg‘ Bu?lding 8 sector ar?d the Iobg)g on ﬁuly 7, 2024. 'I%e w$|reless access will

be affected during the upgrade c}the upgrade operation will be carried out i
batches, and the actual affected time will be about 8 hours). We apologize

] [ fgr_r ang/ inconvenience caused. If ¥\?_u hav ,anybgﬁher questions, tpI ase calll
| OE' ration and maintenance service hotline -Xxx or contact Teacher
osmAG ¢ xxx Lin, tel: 021-xxx, Email: xxx@shanghaitech.edu.cn
Localization : School of Information IT team
C) ‘l’ ‘1’ General information Public Notification board
i s Regular info: ti ther...
H|’ robot, ( Keep l’nonltOI‘lng) egular Iinfo: ime, weatner.
| n
Er?:; ?h?: and osmAGPathPlanner
document to . . ..
robotics training A History information in JSON format
lab" {
"is_Valid": false
"areas_to_Avoid": ["E1-
F1-COR-017], .
. "areas_try_to_Avoid": []
Failed to pass
4@» some passage, :3 )
replan Ui v
> P Send goal to wveda. fo. Aveid": I ¢ "cyrrent_status”; {, .
(0)(0) move_base one “areas_try_to_Avoid": [] currént_date': "2024-07-07",
) — Move base by on; : :tcuérem_tlmt%": ! 1:SOO AR
oday_weather": "Sunny",
B{ Success €— Plan_ner <€ "current_events": [
"E1c-F1-COR- " ww "
ide™ event_name": "Network Upgrade",
02_thé>in'tS|de [ :even%:gata"; "202 4_37_07"89
event_duration”: ours",
1c-F1-COR- Document each "'i;oom_tﬂartgefl: "Slg% ?ulil(?'r?ﬁ B sector aPhd the I?tbby;, wwork
01_to_outside": [ passage’s accessibility . . "msg_text": "In order to further improve the quality of networ
— = w service, Library and Information Center plans to upgrade the wireless access
2328222 exchange l|)n éYSaI' %unld?ng.aB sector andpthe ?o b)P ﬂmee7, 2024. The wireless
"success" T-AF access will be affected during the upgrade (the upgrade operation will be
"SUCCESS" | Passage Accessibility carr;ed.outf in batches, and the actua agfeﬁted tlrg\e will be art:out 8 hcg.urs). We
" " . = apologize for any inconvenience caused. If you have any other questions,
"eUocess” Documenting : [i)_ﬁaas call T pp}ération and ma?ntenance sdrice hptl?ng 051-xx(§< or contact
"success", . . eacher xxx Lin, tel: 021-xxx, Email: xxx@shanghaitech.edu.cn"
"success" Rendering osmAG to Occupancy Grid map: ] }
a I Global Map for move_base }
a_

Xie F, Zhang J, Schwertfeger S. Intelligent LIDAR Navigation: Leveraging External Information and
Semantic Maps with LLM as Copilot[J]. arXiv preprint arXiv:2409.08493, 2024.
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Intelligent LIDAR Navigation: Leveraging External Information and Semantic Maps with
LLM as Copilot

- Combine the strength of traditional planning with Al:

- Use A* for planning:
- If input data (map, start and goal pose) are correct:
- Guaranteed optimal solution
- Inherently safe (does not suffer from prompt injection)
- Fast

- With the help of LLM for:

- LLM can understand the human input (human robot interaction)
- LLM can parse external information (texts written for humans, e.g. maintenance announcements)

- LLM can reason about things, predict stuff, is an Al
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Intelligent LIDAR Navigation: Leveraging External Information and Semantic Maps with
LLM as Copilot

ase 1: World Map and Robot Paths Case 2: World Map and Robot Paths
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Intelligent LIDAR Navigation: Leveraging External Information

and Semantic Maps with LLM as Copilot

Fujing Xie, Jiajie Zhang, Soren Schwertfeger

ShanghaiTech University




Intelligent LIDAR Navigation: Leveraging External Information and Semantic Maps with
LLM as Copilot

TABLE I: Performance Comparison of ChatGPT-40 and DeepSeek-V3 in
Path Validation (%)

Model Accuracy Recall False Positive Rate
ChatGPT-40 0.96 1.0 0.93
DeepSeek-V3 0.93 0.9 0.95

TABLE II: Comparison of Average Path Lengths (m) Across Different
Navigation Configurations for Various Cases

Navigation configurations Case 1 Case 2 Case 3 Case 4

Our method 1925 1265 236.3 214.7

Our method w/o NavigationEventMonitor 221.2 1354 264.3 223.3
Our method w/o PassageCostEvaluator  234.6 171.4 270.0 215.9
Move_base 347.3 202.2 398.5 267.5

Move_base w/o obstacle layer clearing  220.1  158.7 248.1 183.1




Robotics

ShanghaiTech University - SIST - May 13, 2025

Furthermore -- Object Goal Navigation

 Example 1

Object-Goal Navigation

Observations:
RGB-D images

A f =

-

f

[1] Sun J, Wu J, Ji Z, et al. A survey of object goal navigation[J]. IEEE Transactions on Automation Science and

Engineering, 2024.

(a)

Observation \

TARGET: Leaf-Shaped Bow!
RGB Image
—_—

Depth Images

Stack

N 4

A

Loop until
target is
found

/ Extract Semantics \

Zero-Shot Object
Detection & Image
Captioning

“a room with a table, chair,
television and a door”

GLIP for Target Object

LLM Decision Making

Prompt
Synthesis

<Leaf-Shaped Bowl> in my

house. Which object from
[table, chair, television, door]
should | go towards?”

Large Language
Model (LLM)

I want to find a “Table”

Grounding

\ Gm for Leaf-Shaped Bowl = 38.62% |

If G, >=85%

Build Costmap

-

- -==- LR
| Move to Target |
& STOP

=
-~ -

>

‘,( Move to Target :

1 & CONTINUE 1

===

Motion Planning

[2] Dorbala V S, Mullen J F, Manocha D. Can an embodied agent find your “cat-shaped mug”? lim-based zero-
shot object navigation[J]. IEEE Robotics and Automation Letters, 2023, 9(5): 4083-4090.

(b)

« Example 2

' Value map
32 s /7
initialize 7
&
4
/7 "
+  Observations _
/7 higher value
4 rgb \—
semantic lower value
frontier odom. — - -
i rontier
target exploration A depth fron ‘0‘
not by .
target
detected detciad \\\ = 0/‘. i
> o
goal A L
navigation \ O=frontiers,
\

’

\

Best frontier

Waypoint
navigation

Action

[3] Yokoyama N, Ha S, Batra D, et al. Vifm: Vision-language frontier maps for zero-shot semantic
navigation[C]//2024 |IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024: 42-48.

(c)
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Furthermore -- Object Goal Navigation with osmAG

 Mapping Phase:
+ Adding room description, and nodes represent objects.
+  Off-line, using handhold apple scanner, using LabelMaker[1] and VLMs to label objects.

<way id="-189708' action="modify" visible="true'>
<nd ref='-344898' />
<tag k='height' v='3.2' />
<tag k='indoor' v="room' />

taa k=" | > e 4225}67%£;Iat='31.17961192718’

< =' 'y="2" /> K 1779>

<tg k='r?e\1/r$1eyv='I:J1d-F2-03' /> : : ; = b i<tag-k='osmAG:object_name' v="desk 1'/>
<tag k='osmAG:areaType' v="room' /> B [ R ot B RN NS SRR T :<,tag;k;‘o,smAG:obJect_parent' v="E1d-F2-03' />
<tag k='osmAG:parent' v="E1d-F2' /> ‘ e s e G

<ta k='osmA8:room_npmbelr' v="1D-204" />
<tag k='osmAG:type' v="area’ /> . .
<tag k='osmAG:area_description' v="This room is a wel
organlzedd I‘ObOtIC? lab, Teaturing designated workstatjon
equipped with tools, computers; and Various electronic
equipment for robotics assembly and testing. Along one wall,
a row of lockers and cabinets provides storage space, while
%alue bln?]and carts hold additional components and supplies.
he lab has a combination of functional work surfaces and a
few recreational elements, like a foosball table, offering a
alanced environment for both work and relaxation. A,get
ood and water station in one corner sugﬁ;ests a pet-friendly
space, adding a touch of comfort. Overall, the layout and
resources are designed to support efficient object access,
tool organization, and task-specific areas.' />

* Navigation Phase:
* Online, using a robot equipped with camera and Jetson Orin

osmAG Map (textual format)

"Hi, robot ' : :
’ X o Is there a hot air gun in the
please bring me osmAG Navigation ==  OneRoomSearch . qg
a hot air gun l mage:
| I

( ) T NO
@ [1] Weder S, Blum H, Engelmann F, et al. LabelMaker: Automatic

v Semantic Label Generation from RGB-D Trajectories[C]//2024
OAO < YES International Conference on 3D Vision (3DV). IEEE, 2024: 334-343.

Success
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Advantages of osmAG

1) LEHBAT capss@untte

action="me f visible=

u R wEE
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Furthermore -- Object Goal Navigation with osmAG

 Mapping Phase:

) Student office

Prof.’s office

Robotics lab Aartmernwtiliukenglab

Fig. 1 Mapping result of 5 rooms in SIST building] Fig. 2 Instance segmentation result from LabelMaker
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Furthermore -- Object Goal Navigation with osmAG

* Navigation Phase:

(b) (c)
» Static Objects:

« Trash can

« Sink
* Relocated Objects:

« dry erase marker

* robot dog
» Objects not exist during mapping:
* Onion

» Soeren's Excellent Faculty Award

[c] A. Werby, C. Huang, M. Blichner, A. Valada, and W. Burgard, “Hierarchical Open-Vocabulary 3D Scene Graphs for
Language-Grounded Robot Navigation,” Robotics: Science and Systems, 2024.
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dryinteract | **Move Camera [ _iSelect  <@-FocusCamera ==Measure . 2D PoseEstimate . 2D Nav Goal @ Publish Point F = @

Image_raw =0

.

1|
o

/dinox_detection

No Image |

object_bbox (=][o]

No Image

(© Time

[llPause | Synchronization: OFff ~ | ROSTime: 1745042271.54 ROS Elapsed: 13.09 Wall Time: 1745042271.56 wall Elapsed: 13.09

Reset 31 fps
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THE DRIVERLESS WILENINA

https://cybersecuritydegrees.com/ethical-ai/



https://cybersecuritydegrees.com/ethical-ai/
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FROM 2035702045
<

Consumers will regain up to 250 $234 BILLION IN PUBLIC COSTS Driverless cars can ELIMINATE
MILLION HOURS OF FREE TIME will be saved by reducing accidents 90% OF TRAFFIC FATALITIES —
from behind the wheel from human error Saving ' million lives every year

HOW WILL DRIVERLESS CARS DETERMINE WHOSE LIFE SHOULD BE SPARED?




Activities R*= rviz v * 13:34 P en ™ L0 O~
autoware.rviz* - RViz -~ o .
File Panels Help

Sinteract Move Camera iSelect Focus Camera Measure 2D Pose Estimate 2D Nav Goal "@.ZD Dummy Pedestrian __@_ZD Dummy Car __@‘ZD Checkpoint Pose @ Delete All Objects

.
© Time
ROS Time: 1582778085.53 ROS Elapsed: 80.32 Wall Time: 1582778085.61 Wall Elapsed: 80.34 Experimental
Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options. 13 fps




Activities R/ ryiz v

*’ File Panels Help

Sinteract Move Camera

. 'Wo Displays
= Global Options

» v Global Status: Ok
» mSystem

= » B Map

+ mSensing

+ B Localization

» mPerception

+ mPlanning

+ mControl

+ ®Camera

Add

= Views
Type: TopDownOrtho (rviz)

- Current View
Near Clip Distance
Target Frame
Scale
Angle
X

+ ThirdPersonFollower

Save Remove

. Tool Properties
 Interact
- 2D Pose Estimate
Topic
X std deviation

© Time

M ROS Time: 1582778022.03

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Clic

:Select Focus Camera

TopDownOrtho (rviz)
0.01

base_link

42.8902

-0.865

5.96944

1.42152
ThirdPersonFollower (rviz)

Rename

initialpose
0.5

ROS Elapsed: 16.83

Measure ~ 2D Pose Estimate

Wall Time: 1582778022.06
oom. Shift: More options.

- 2D Nav Goal

Wall Elapsed: 16.77

A 13:33

autoware.rviz* - RViz

en v

‘.Q“ZD Dummy Pedestrian .AQ-ZD Dummy Car QZD Checkpoint Pose Q{ Delete All Objects

https://www.youtube.com/watch?v=kn2blU gOoY

a0 O~

s,

Experimental
29 fps



https://www.youtube.com/watch?v=kn2bIU_g0oY
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https://www.youtube.com/watch?v=HSeIOg4SyOg

Tz
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TESLA PHANTOM BRAKING






https://www.youtube.com/watch?v=X3hrKnv0dPQ



https://ed.ted.com/lessons/would-you-sacrifice-one-person-to-save-five-eleanor-nelsen
https://ed.ted.com/lessons/would-you-sacrifice-one-person-to-save-five-eleanor-nelsen
https://ed.ted.com/lessons/would-you-sacrifice-one-person-to-save-five-eleanor-nelsen
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MORALITY IN MACHINES

Driverless cars “must decide
ptrfieoal Who should A.l. save?
WLLEICORUSITEURISEISN [\ A GLOBAL STUDY, MOST PEOPLE PREFERRED

programmers often will not have

considered, using ethics that © Swerving over staying the course
. must be encoded all too literally

© Sparing passengers over pedestrians
© Saving as many lives as possible

_— Participants were most
likely to spare the lives

of a child, and least

likely to spare animals
and criminals
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MINIMIZED HARM VS. PASSENGER PROTECTION

O <

of people felt driverless BUT, very few were willing to They prefer cars
cars should SAVE AS MANY buy a vehicle programmed programmed to PROTECT
LIVES AS POSSIBLE to minimize harm PASSENGERS ATALL COSTS

DRIVERLESS CARS WILL SAVE LIVES, BUT PROGRAMMING THEM TO

D0 SO COULD SLOW THEIR ADOPTION AND COST MANY MORE LIVES



