

CS283: Robotics Spring 2025: Summary

Sören Schwertfeger / 师泽仁

ShanghaiTech University

HW4

- Is due today
- How is it going?

Project conclusion

- Due June 19:
 - Project Report:
 - Like intermediate report
 - With nice results and proper quantitative evaluation
 - Make look like a scientific paper
 - Use bibtex!
 - Put into git (folder: doc/final)
 - Include everything that is needed to generate the report in the git!
 - So don't forget images/ the bib file
 - Project Demo:
 - Make an appointment with Prof. Schwertfeger and your TA to show the final demo of your project
 - Before: June 16th, 22:00 !

Project Webpage

- Write a text (word document) about your project for the general public not too technical not too many details
 - Some details can be written
 - Do not just copy the abstract/ intro from your final report write a nice text for the general public!
- Provide a few images with captions (as images also extra files)
- Put into your group git (folder: doc/webpage)
- Prof. Schwertfeger will upload the data to the website e.g. look at : <u>https://robotics.shanghaitech.edu.cn/teaching</u> all previous robotics and MoMa courses
- Also make a NICE video about your project. 4-8 minutes. Leave the video at good quality size maybe 100 – 300 MB (MP4) – Prof. Schwertfeger will compress it to make a web version
 - Avoid showing other people; do not talk in the video; do not add music;
 - Add a title page: same info as on report
 - Add to your git folder

Final

• June 10

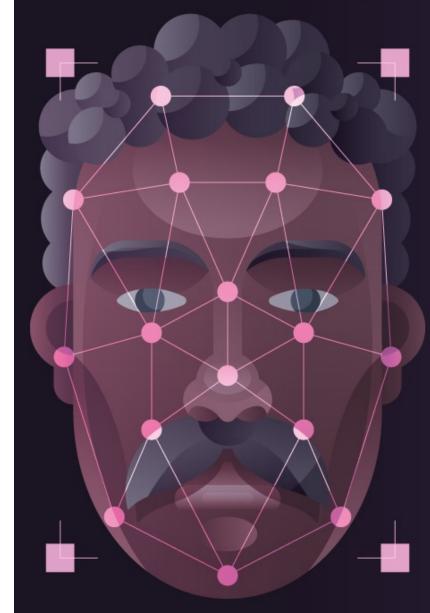
• 16:00 – 18:00 in 1D-104

Content:

- All lectures
 - Take a look at facts, algorithms, concepts
- Take a look at the homeworks again
- Sample exam: <u>https://robotics.shanghaitech.edu.cn/sites/default/files//files/final_Example.pdf</u>
- You are allowed to bring <u>3</u> A4 sheets (so 6 pages) of info to the exams. You can write/ print anything on those sheets. On top of <u>every page</u> (so 6 times) there needs to be your <u>name</u> (pinyin), student ID and ShanghaiTech email address. We will check every cheat sheet before the exam and <u>confiscate</u> every sheet without name or with a name that is not yours.
- No electronics/ calculator/ smartwatch allowed

Midterm -> Final

- Questions in final can be:
 - Similar to the midterm
 - New questions (e.g. other algorithm)
- => learn for your Midterm mistakes!
- We may include questions from the guest lecture!


Project Meetings!

- Today is last class => spend lots of time on your project!
- We will make another project meeting in the week of May 26 May 30!
- Also, other meetings afterwards!

ROBOTICS ETHICS

Continued...

When Al goes wrong

AMAZON'S REKOGNITION

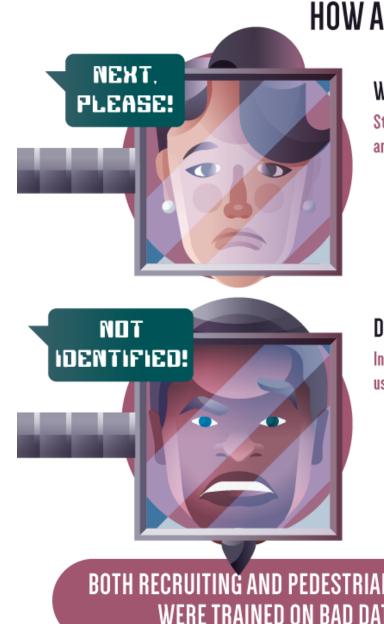
REKOGNITION'S FACIAL RECOGNITION ALGORITHMS CAN

- Identify up to IOO faces in a single image
- Track people in real time through surveillance cameras
- Scan footage from police body cameras

IN 2018, THE ACLU COMPARED 25,000 MUG SHOTS To photos of every member of congress USING Rekognition - They found

B False mate

False matches


39%

Were people of color, who make up just 20% of Congress

LAW ENFORCEMENT AGENCIES ARE Already Using Rekognition

- Orlando Police Department (Florida)

- Washington County Sheriff's Office (Oregon)
- In 2016, half of Americans adults were included in a law enforcement facial recognition network

HOW A.I. BIAS HAPPENS

WOMEN NEED NOT APPLY

Starting in 2014, Amazon began training an A.I. to review job candidates

- The system was trained using resumes submitted over IO years MOST CAME FROM MEN
- The A.I. concluded that "male" was a preferred quality for new hires, and started FILTERING OUT FEMALE CANDIDATES

DETECTING DARKER SKIN TONES

In a 2019 study, researchers found that the object detection models used in driverless cars were better at identifying pedestrians with lighter skin

- The study used a standardized set of photos to train their A.I. but found their DATASET CONTAINED 3X AS MANY LIGHT SKINNED PEOPLE
- The A.I. quickly learned to identify light skinned pedestrians, but STRUGGLED TO IDENTIFY DARKER SKIN TONES

BOTH RECRUITING AND PEDESTRIAN DETECTION ALGORITHMS FAILED BECAUSE THEY WERE TRAINED ON BAD DATA — A.I. LEARNED BIAS FROM HUMANS

MAKING ETHICAL A.I.

START WITH DATA

- A.I. training data must reflect real diversity and control for existing bias
 - Amazon's recruiting algorithm was trained to eliminate female candidates.
 INSTEAD, IT COULD HAVE BEEN PROGRAMMED TO IGNORE GENDER
 - Pedestrian identification algorithms struggle to identify darker skin tones.
 Rather than monitoring success overall, the TRAINING DATA COULD HAVE
 WEIGHTED DARK SKIN DATA POINTS MORE HEAVILY

CONSIDER THE PROCESS

When training A.I., programmers typically split their dataset into 2 parts

- Half is used to **TRAIN THE A.I.**
- Half is used to VERIFY AND MEASURE SUCCESS

If the initial dataset is flawed, the test will have the same bias

MONITOR FOR UNKNOWNS

Programmers must monitor for unintentional bias appearing in their A.I.

- Subtle patterns can lead A.I. to **PERPETUATE HUMAN BIAS**
- Amazon's recruiting algorithm preferred VERBS LIKE "EXECUTED" AND "CAPTURED" — WHICH TEND TO BE MORE USED BY MALES

8 Ethical Questions in Al

Liability: Who is responsible for AI?

Security: How do we protect access to AI from bad actors?

Human Interaction: Will we stop talking to one another?

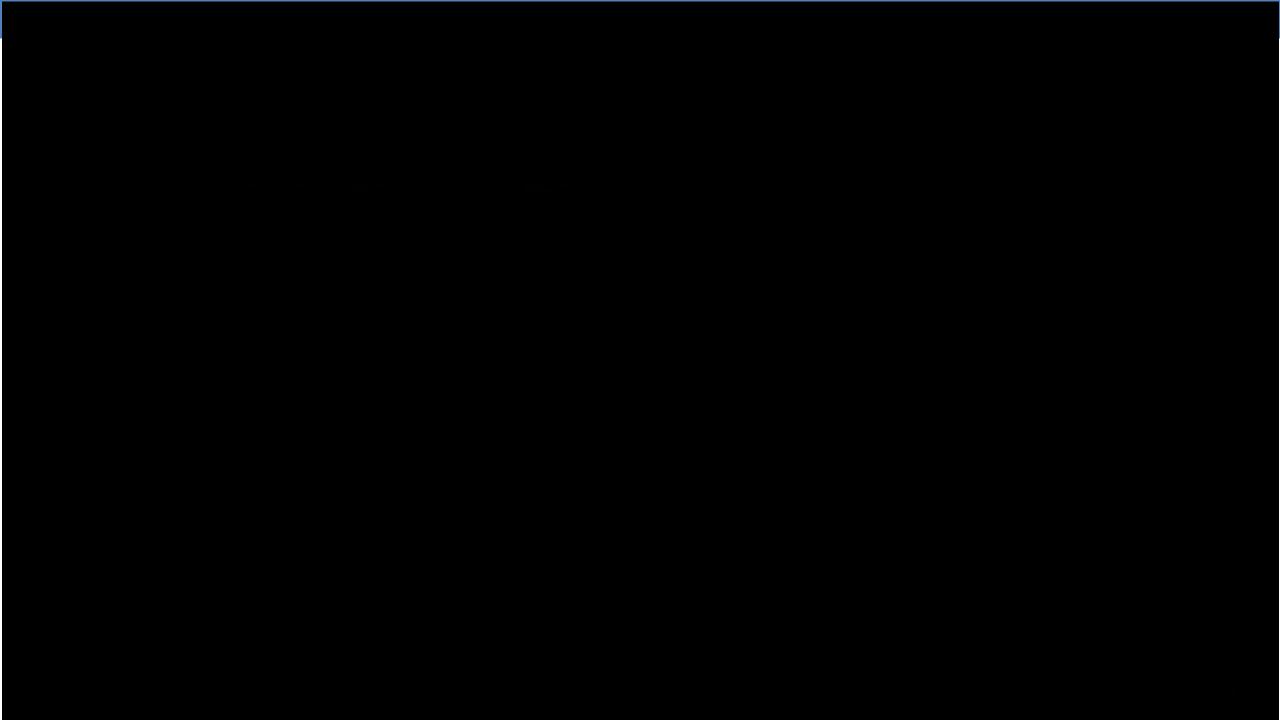
Employment: Is AI getting rid of jobs?

Wealth Inequality: Who benefits from AI?

https://www.logikk.com/ articles/8-ethicalquestions-in-artificialintelligence/

www.logikk.com

© copyright Logikk 2019


Ethical AI: Many open questions and topics:

- Autonomy and liability
- Ethical principles in robotics
- Enhancement technologies: ethical issues
- Defining ethical guidelines for the design, use, and operation of robots
- Privacy & management of personal data
- Ethical frameworks: universal or regionspecific?
- The role of industry and society in the definition of safety standards
- AI technology to block unethical/mendacious social-media communication

- Accountability in autonomous systems
- Embedding values and norms into intelligent systems
- Ethics and standardization
- Raising ethical awareness among stakeholders
- Transparency in autonomous systems
- Political and legal frameworks
- Formal and mathematical frameworks for robot ethics
- Implementations and engineering studies
- User and HCI/HRI studies at the intersection of the above issues

Ethical AI: Scientific Discussion

- ICRES 2023 is the 8th edition of the International Conference on Robot Ethics and Standards series
 - <u>https://clawar.org/icres2023/</u>
- IEEE Robotics and Automation Society: Technical Committee on Robot Ethics
 - Framework for raising and addressing the urgent ethical questions prompted by and associated with robotics research and technology.
 - https://www.ieee-ras.org/robot-ethics
- Conference on Robotics, AI and Humanity, Science, Ethics and Policy organized jointly by the Pontifical Academy of Sciences (PAS) and the Pontifical Academy of Social Sciences (PASS)
 - <u>http://www.pas.va/content/accademia/en/events/2019/robotics/statementrobotics.html</u>

Autonomous Weapons are attractive to the military

- Don't endanger the life of your own soldiers.
- Robots don't get tired they can operate 24/7.
- Superior situational awareness through 360-degree view with advanced sensors & instantaneous communication with various
- Stay highly vigilant the whole day
- No fear: perform the most dangerous attacks without degraded performance
- Ease logistics: no need for food, shelter, medical attention or rotation of units.
- Superior performance in battle, e.g. speed of target acquisition, firing accuracy, battle coordination, overall strategy

eed tile THeMIS robot from the Estonia company MILREM Robotics.

The 2t semi-autonomous robot can drive with a speed of up to 20km/h.

Key Findings:

Q

Regions 🗸 Topics 🗸

- The Ukrainian military's objective is to remove warfighters from direct combat and replace them with autonomous unmanned systems.
- Autonomy is not yet present on the battlefield in the war in Ukraine.
- The current deployment of AI is partial in scope, enhancing certain functions and addressing some operational challenges rather than enabling full system autonomy.
- Ukrainian forces have widely adopted small and medium first-person-view (FPV) drones as platforms that may be quickly adapted for diverse missions through modular design and interchangeable equipment.
- Ukraine's defense industry is developing standalone Aldriven software that can be integrated across various platforms to expand battlefield autonomy.
- Delegating target recognition to AI-enabled automatic target recognition (ATR) systems onboard unmanned platforms reduces human limitations and allows locking on to targets up to 2 km away.
- Autonomous navigation makes drones strikes three to four times more likely to succeed.
- Human oversight remains pivotal—particularly for engagement decisions—reflecting a human-in-the-loop approach that could shift toward higher-level supervision in the future while still maintaining human control of the system.

Ukraine's Future Vision and Current Capabilities for Waging AI-Enabled Autonomous Warfare

CSIS

CENTER FOR STRATEGIC &

INTERNATIONAL STUDIES

Photo: Anton Petrus/GETTY IMAGES

Table of Contents

Executive Summary

Introduction

The Ukrainian Military's Strategic Vision and Technological Road Map X in ⊠ 🛱

Report by **Kateryna Bondar** Published March 6, 2025

Fellow, Wadhwani Al Center

Available Downloads

https://www.csis.org/analysis/ukraines-future-vision-andcurrent-capabilities-waging-ai-enabled-autonomous-warfare

Don't be evil?

A survey of the tech sector's stance on lethal autonomous weapons

- Table ranks companies according to the level of concern regarding their potential (unintended) contribution to the development of lethal autonomous weapons.
 - <u>https://www.paxforpeace.nl/publications/all-publications/dont-be-evil</u>
- Autonomous weapons: Good? Or Bad?

HIGH CONCERN	Company working on military/security applications of relevant technologies + chose not to answer our survey's questions in a meaningful way.
MEDIUM CONCERN	Company working on military/security applications of relevant technologies + answered that it was not working on lethal autonomous weapons;
	or Company not known as working on military/security applications of relevant technologies + chose not to answer our survey's questions in a meaningful way.
BEST PRACTICE	Company answered to explain its policy on how it ensures its technology is not contributing to lethal autonomous weapons.
	Unknown.

BEST

MEDIUM HIGH ΗQ PRACTICE CONCERN CONCERN

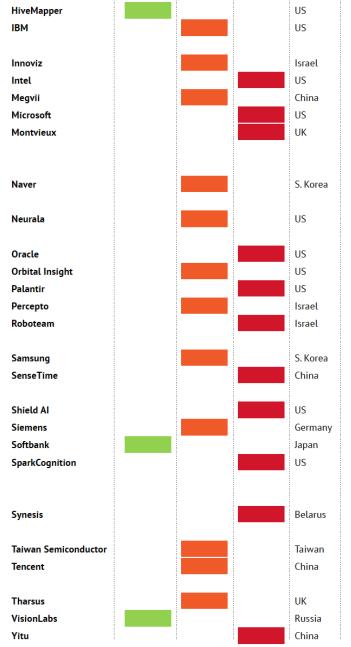
RELEVANT TECHNOLOGY

RELEVANT MILITARY/ сомміт SECURITY PROJECTS то нот

Border security patrol bots Airspace interceptor

Project Mosquito/LANCA

'algorithmic warfare tools

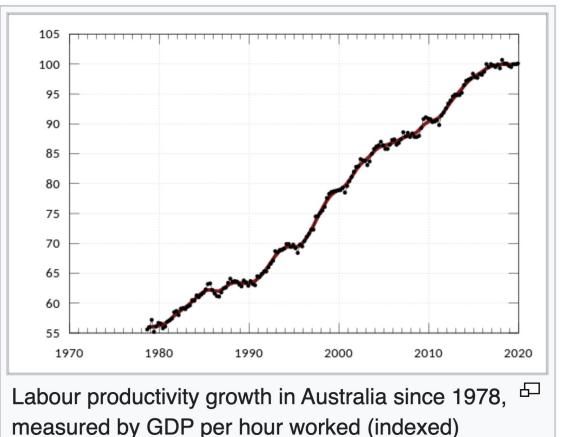

DEVELOP

Х

Х

Х Х

		:	:	:
AerialX		Canada	Counter-drone systems	DroneBullet
Airobotics		Israel	Autonomous drones	Border security patrol
Airspace Systems		US	Counter-drone systems	Airspace interceptor
Alibaba		China	AI chips, Facial recognition	-
Amazon		US	Cloud, Drones, Facial and	JEDI, Rekognition
			speech recognition	
Anduril Industries		US	AI platforms	Project Maven, Lattice
Animal Dynamics		UK	Autonomous drones	Skeeter
Apple		US	Computers, Facial and	-
			speech recognition	
Arbe robotics		Israel	Autonomous vehicles	-
ATOS		France	Al architecture, cyber security,	-
			data management	
Baidu		China	Deep learning, Pattern recognition	-
Blue Bear Systems		UK	Unmanned maritime and aerial	Project Mosquito/LAN
			systems	
Cambricon		China	Al chips	-
Citadel Defense		US	Counter-drone systems	Titan
Clarifai		US	Facial recognition	Project Maven
Cloudwalk Technology		China	Facial recognition	-
Corenova Technologies		US	Autonomous swarming systems	HiveDefense, OFFSET
DeepGlint		China	Facial recognition	-
Dibotics		France	Autonomous navigation, Drones	'Generate'
EarthCube		France	Machine learning	'algorithmic warfare to
		•		of the future'
Facebook		US	Social media, Pattern recognition,	-
	-		Virtual Reality	
General Robotics		Israel	Ground robots	Dogo
Google		US	Al architecture, Social media,	-
-			Facial recognition	
Heron Systems		US	AI software, ML, Drone applications	'solutions to support
-		•		tomorrow's military
				aircraft'


	Pattern recognition, Mapping	HiveMapper app	Х
	AI chips, Cloud, Super computers,	Nuclear testing super	
	Facial recognition	computers, ex-JEDI	
	Autonomous vehicles	-	
	AI chips, UAS	DARPA HIVE	
	Facial recognition	-	
	Cloud, Facial recognition	HoloLens, JEDI	
	Data analysis, Deep learning	'Revolutionise human	
		information relationship	
		for defence'	
3	'Ambient Intelligence', Autonomous	-	
	robots, Machine vision systems		
	Deep learning neural network	Target identification soft-	
	software	ware for military drones	
	Cloud, AI infrastructure, Big data	ex-JEDI	
	Geospatial analytics	-	
	Data analytics	DCGS-A	
	Autonomous drones	-	
	Unmanned systems; AI software	Semi-autonomous military	
		UGVs	
1	Computers and AI platforms	-	
	Computer vision, Deep learning	SenseFace, SenseTotem	
		for police use	
	Autonomous (swarming) drones	Nova	
ıy	Al, Automation	KRNS, TRADES	
	Telecom, Robotics	-	Х
	AI systems, Swarm technology	'works across the defense	
		and national security space	
		in the U.S.'	
	AI- and Cloud-based applications,	Kipod	
	Pattern recognition		
	Al chips	-	
	AI applications, Cloud, ML, Pattern	-	
	recognition		
	Robotics	-	
	Visual recognition	-	х
	Facial recognition	Police use	
	-		

20

DISRUPTIVE AI & ROBOTICS

Productivity

- Crucial factor in production performance of firms and nations
- Increasing national productivity: raise living standards & help businesses to be more profitable
- Important measure: output per worker (e.g. GDP per worker)
- Robotics: potential to increase productivity manyfold!

Traditional, Contemporary & Future Industrial Robots

Robotics

Sparks of Artificial General Intelligence: Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

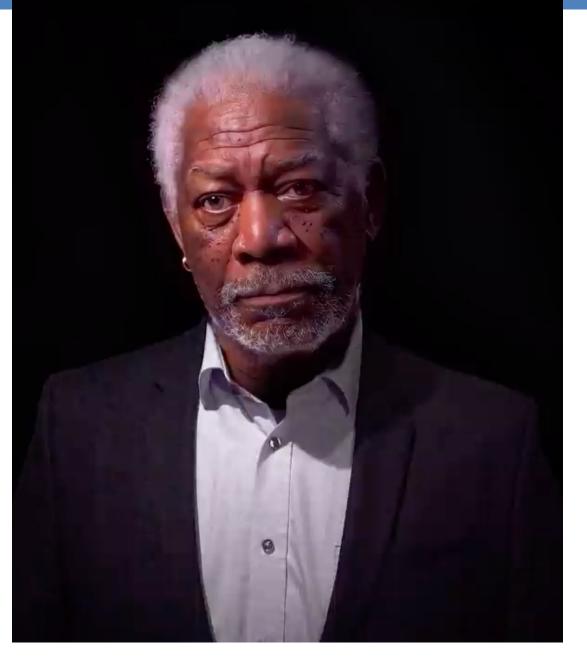
Microsoft Research

Abstract

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs) that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. The latest model developed by OpenAI, GPT-4 [Ope23], was trained using an unprecedented scale of compute and data. In this paper, we report on our investigation of an early version of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-4 is part of a new cohort of LLMs (along with ChatGPT and Google's PaLM for example) that exhibit more general intelligence than previous AI models. We discuss the rising capabilities and implications of these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any special prompting. Moreover, in all of these tasks, GPT-4's performance is strikingly close to human-level performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. We conclude with reflections on societal influences of the recent technological leap and future research directions.

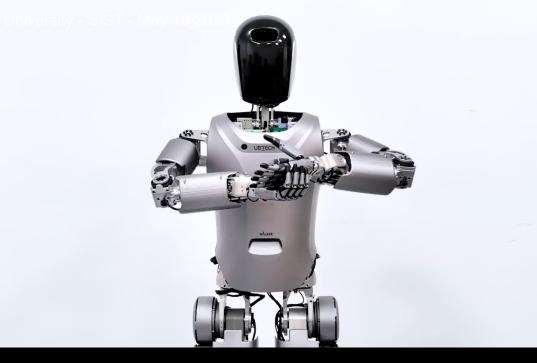
https://arxiv.org/pdf/ 2303.12712.pdf

April 13, 2023


Sora Text to Video Al

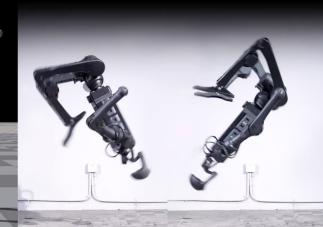
introduced Feb 2024

All videos generated by sora openal

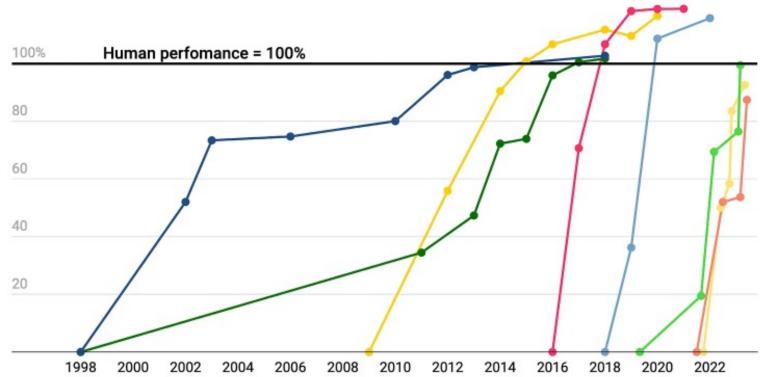


ShanghaiTech University - SIST - May 15 2025

https://www.youtube.com/watch?v=oxXpB9pSETo


Huge trend: AI enabled Mobile Manipulation & Humanoid Robotics

Unitree H1 EVOLUTION V4.0

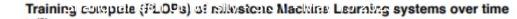

The World's First Full-size Motor Drive Humanoid Robot Flips on Ground

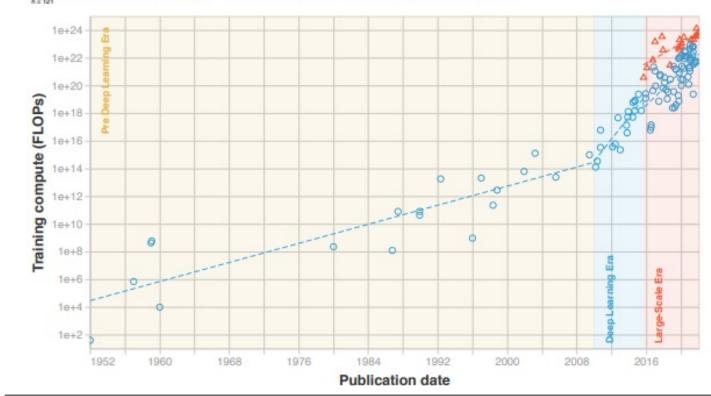
AI has surpassed humans at a number of tasks and the rate at which humans are being surpassed at new tasks is increasing

State-of-the-art AI performance on benchmarks, relative to human performance Handwriting recognition Speech recognition Image recognition Reading comprehension Language understanding Common sense completion Grade school math Code generation

For each benchmark, the maximally performing baseline reported in the benchmark paper is taken as the "starting point", which is set at 0%. Human performance number is set at 100%. Handwriting recognition = MNIST, Language understanding = GLUE, Image recognition = ImageNet, Reading comprehension = SQuAD 1.1, Reading comprehension = SQuAD 2.0, Speech recognition = Switchboard, Grade school math = GSK8k, Common sense completion = HellaSwag, Code generation = HumanEval.

Chart: Will Henshall for TIME . Source: ContextualAI


Exponential Growth of Compute in ML


 Large scale model training (such as LLM):

Doubled every 9.9 month => 100x every 5.5 years!

10000x after 11 years...

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022, July). Compute trends across three eras of machine learning. In 2022 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Period	Data	Scale (start to end)	Slope	Doubling time
1952 to 2010	All models	3e+04 to 2e+14 FLOPs	0.2 OOMs/year	21.3 months
Pre Deep Learning Trend	(n = 19)	30+04 to 20+14 FLOPs	[0.1; 0.2; 0.2]	[17.0; 21.2; 29.3]
2010 to 2022 Regular-scale models		7e+14 to 2e+18 FLOPs	0.6 OOMs/year	5.7 months
Deep Learning Trend	(n = 72)	/e+14 to 2e+18 FLOPS	[0.4; 0.7; 0.9]	[4.3; 5.6; 9.0]
September 2015 to 2022 Large-scale models		4-121 to 8-122 ELOD	0.4 OOMs/year	9.9 months
Large-Scale Trend	(n = 16)	4e+21 to 8e+23 FLOPs	[0.2; 0.4; 0.5]	[7.7; 10.1; 17.1]

Table 2: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in late 2015 a new trend of large-scale models emerged. Robotics

ShanghaiTech University - SIST - May 15 2025

UBTECH Humanoid Robot Walker S Workstation Assistant in NIO Production Line

Immediate impact on jobs

How Advanced Robotics Will Impact Job Markets

Potential number of displaced jobs due to automation by 2030*



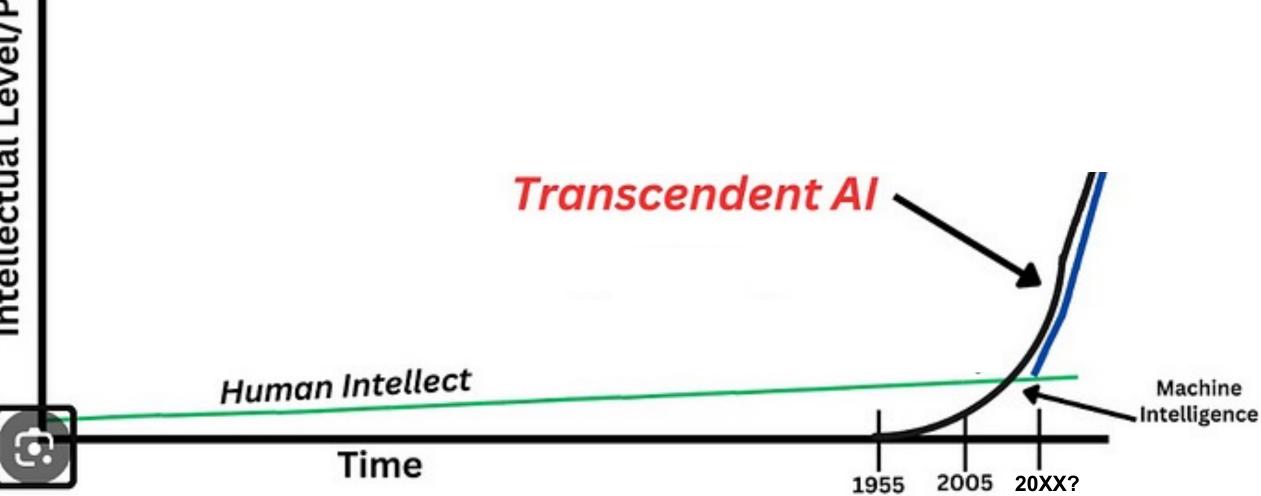
Image: StatistaCharts* Rapid automation scenario.@StatistaChartsSource: McKinsey

https://www.statista.com/topics/1476/industrial-robots/

The Countries With The Highest Density Of Robot Workers

Installed industrial robots per 10,000 employees in the manufacturing industry in 2019*

* Selected countries Source: International Federation of Robotics



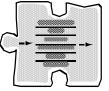
AI & Robotics may change Everything

- Industry Robotics & Service robotics & AI develop quickly and may have very big impact!
- AI & Robots may / will change our daily life:
 - At work (if we have work) we will interact with them daily
 - Autonomous transportation services (cars/ Didi, Uber) may replace privately owned cars (and public transport?) (China has about 1.5 million taxi drivers + Didi + Bus drivers + Delivery drivers)
 - In our home they (hopefully) will do work
- Most work may be done by AI & Robots =>
 - Great productivity: Products and services may become VERY cheap!
 - Unemployment: Many jobs will be lost.
 - Option 1: Lost jobs will be replaced by new jobs (e.g. robot engineer, prompt engineers, AI programmer, AI artists)
 - Option 2: Most jobs will no be replaced => big unemployment
- Potentially: new (updated) social systems might emerge
 - Unconditional basic income?
 - Communism 2.0?
 - ...

BEHAVIOR BASED ROBOTICS

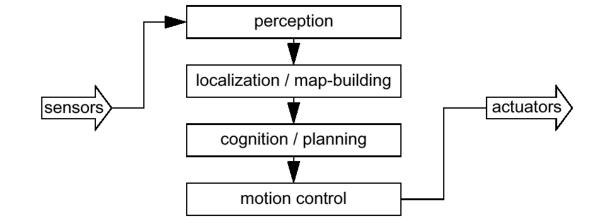
"Small Model" – "Little Brain"

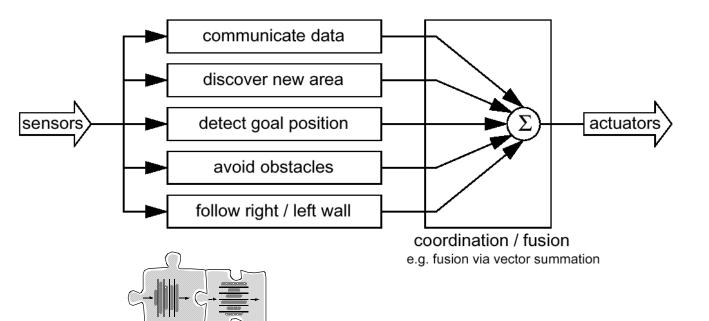
Control Architectures / Strategies


- Control Loop
 - dynamically changing
 - no compact model available
 - many sources of uncertainty

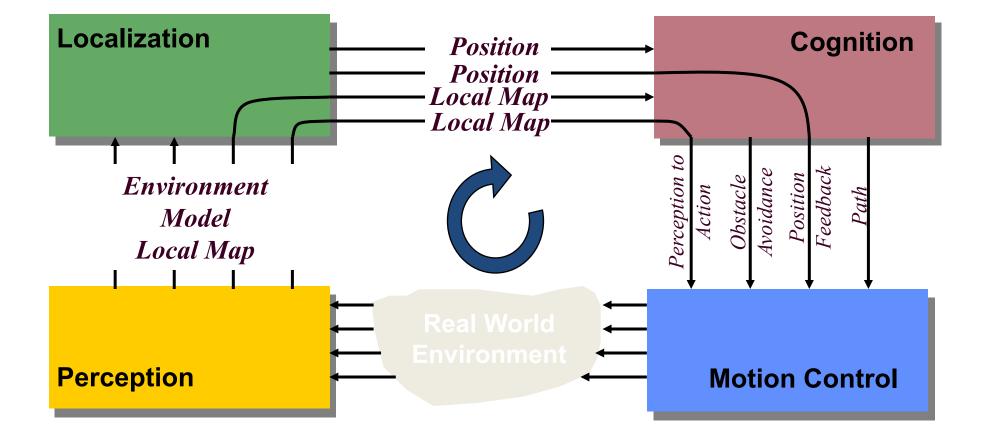
- Three Approaches
 - Classical AI (Big Model)
 - complete modeling
 - function based
 - horizontal decomposition

- New AI (Nouvelle AI; Small Model; Behavior Based Robotics)
 - sparse or no modeling
 - behavior based
 - vertical decomposition
 - bottom up
- DL/ Reinforcement Learning




Two Approaches

- Classical Al (model based navigation)
 - complete modeling
 - function based
 - horizontal decomposition
- New Al


(behavior based navigation)

- sparse or no modeling
- behavior based
- vertical decomposition
- bottom up
- Possible Solution
 - Combine Approaches (= Hybrid Approach)

Mixed Approach Depicted into the General Control Scheme

Emergence

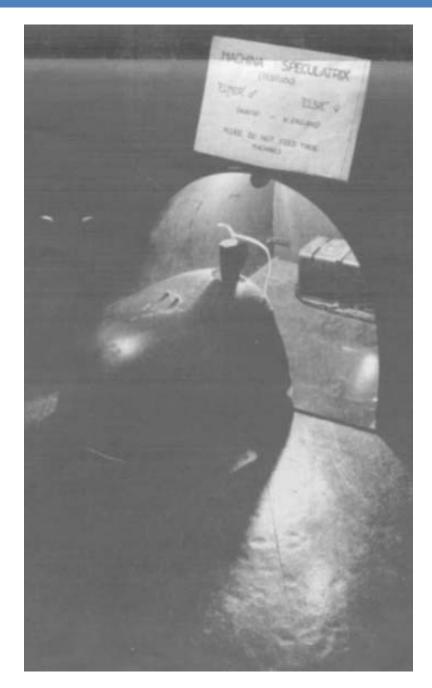
- Adaptive behavior
 - emerges from complex interactions between body, world and brain
- Non-centrally controlled (or designed) behavior
 - results from the interactions of multiple simple components
- Meanings:
 - Surprising situations or behaviors
 - Property of system not contained in any of its parts
 - Behavior resulting from agent-environment interaction not explicitly programmed
- Ant colony:
 - self-organized; simple individuals; local interactions =>
 - emergent behavior No global control

Grey Walter's Tortoise

- Turtle shape robots 1949
- Purely analogue electronics
- Phototaxis: go towards the light
- Sensors:
 - 1 photocell,
 - 1 bump sensor
- 2 motors
- Reactive control

Grey Walter's Tortoise

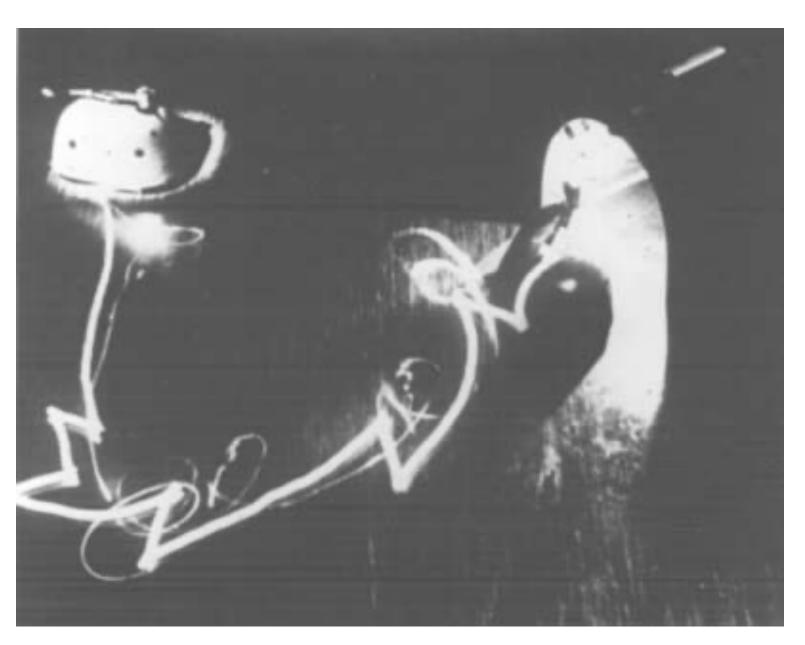
- Behaviors:
 - Seek light
 - Head toward weak light
 - Back away from bright light
 - Turn and push (obstacle avoidance)
 - Recharge battery



Turtle Principles

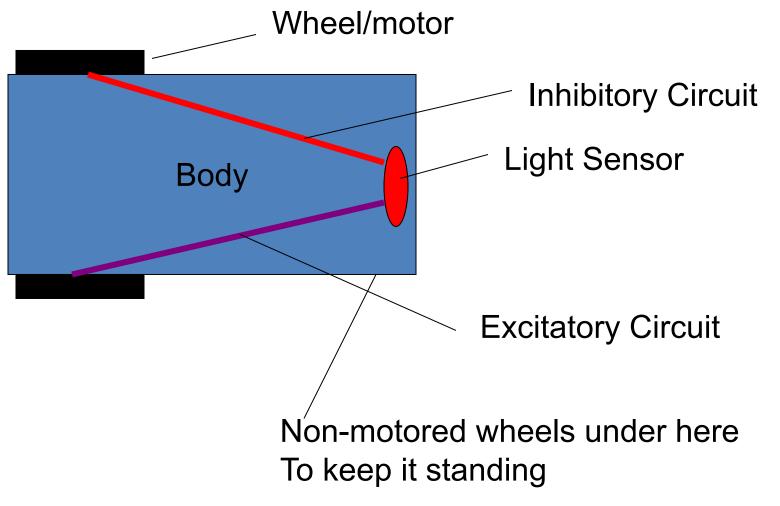
- Simple is better
 - e.g., clever recharging strategy
- Exploration/ speculation: keeps moving
 - except when charging
- Attraction:

Robotics

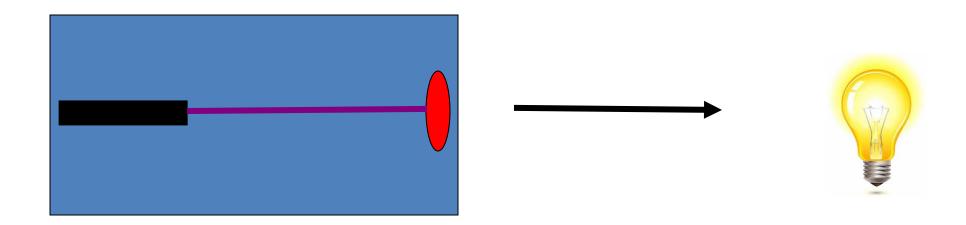

- motivation to approach light
- Aversion:
 - motivation to avoid obstacles, slopes

Tortoise behavior

 A path: a candle on top of the shell

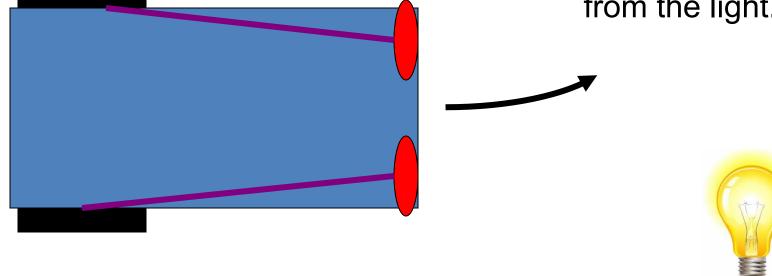


Braitenberg's Vehicles


- Valentino Braitenberg (1926)
- 1984: "Vehicles: Experiments in Synthetic Psychology"

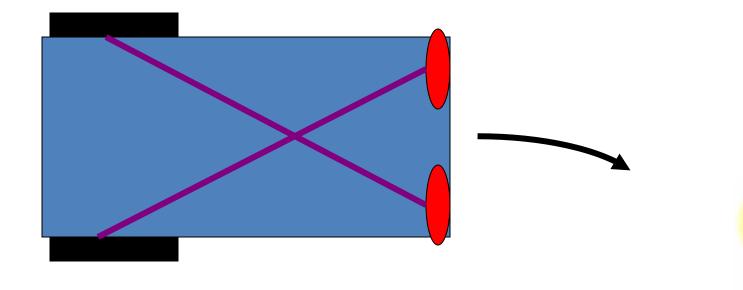
Definitions

- Inhibitory circuit: when sensor gets activated, motor slows
- Excitatory circuit: when sensor gets activated, motor speeds
- Sensor is a light sensor, unless otherwise noted

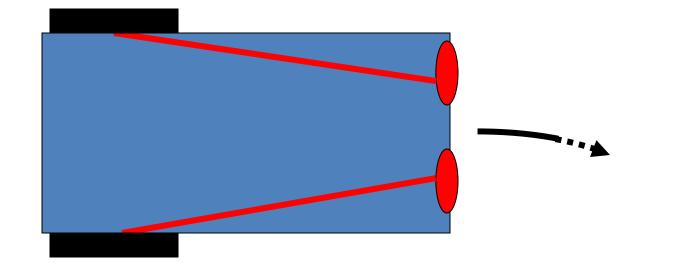

Vehicle 1: Alive

Basic Braitenberg vehicle: Goes towards light source

Vehicle 2: Cowardly

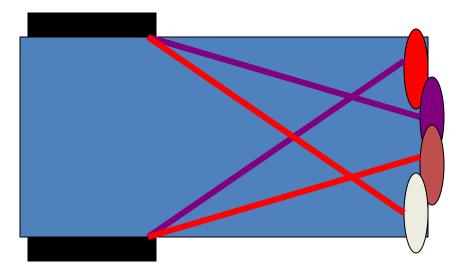

More light right \rightarrow right wheel turns faster \rightarrow turns towards the left, away from the light.

Demonstrates "fight or flight" instinct in animals

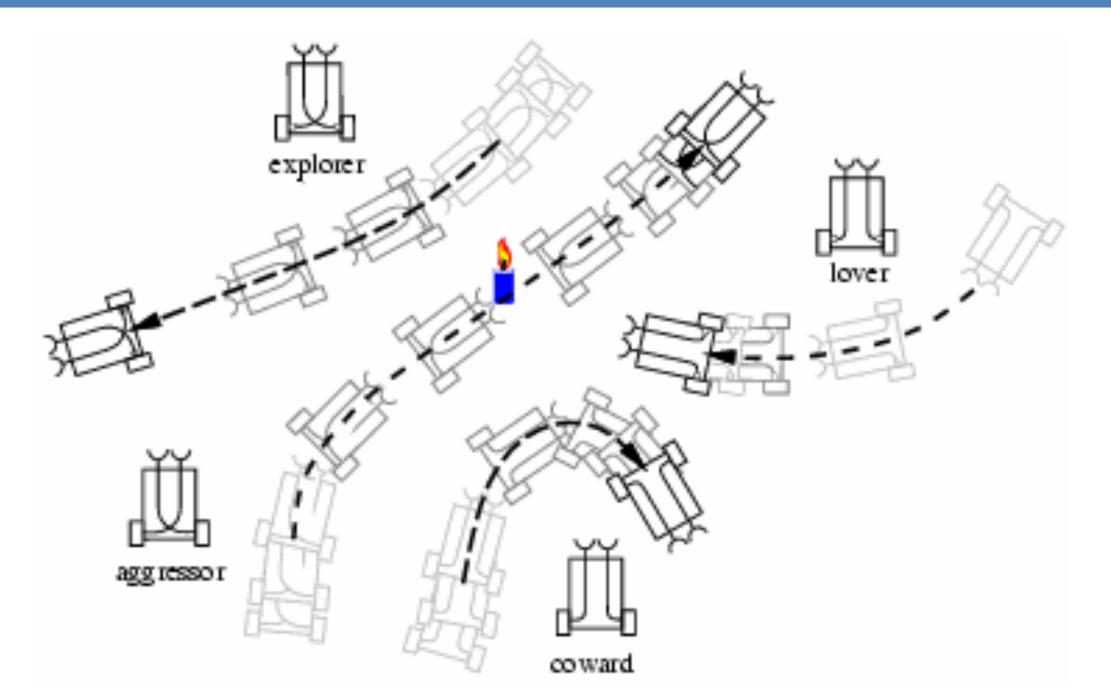

Turns away from light if one sensor is activated more than the other If both are equal, light source is "attacked"

Vehicle 2b: Aggressive

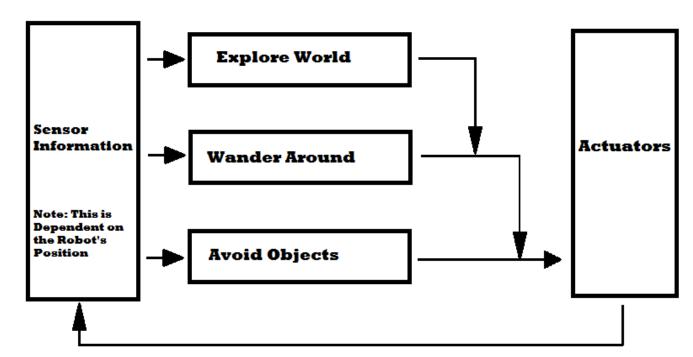
Faces light source and drives toward it


Vehicle 3: Loving

Models love/adoration


A little more complicated: Vehicle 3c: Knowing

Light Sensor Temperature Sensor Organic Material Sensor Oxygen Sensor


Different sensors:

Turns towards light, doesn't like heat, loves organic material, searches for best Oxygen Emergent Behavior: Performs the brain function of simplest living beings

Subsumption architecture

- Rodney Brooks (MIT; founder of iRobot and Rethink Robotics) 1991:
 - "The world is its own best model" =>
 - "Intelligence without representation"
- Emergent behaviors
- Conclusions:
 - Emergent behaviors quite interesting/ impressive.
 - More complex tasks often need more intelligence.
 - => Behaviors good for low level tasks.

53

GOOD LUCK WITH THE FINAL!