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SIMULTANEOUS LOCALIZATION
AND MAPPING - SLAM




Robotics

Raw Odometry

« Famous Intel Research
Lab dataset (Seattle)
by Dirk Hahnel

Courtesy of S. Thrun

http://robots.stanford.edu/videos.html

ShanghaiTech University - SIST - 09 Oct 2025



http://robots.stanford.edu/videos.html

Robotics

Scan Matching:
compare to
sensor

data from
previous scan

Courtesy of S. Thrun
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FastSLAM:
Particle-Filter
SLAM

Courtesy of S. Thrun

ShanghaiTech University - SIST - 09 Oct 2025



ShanghaiTech University - SIST - 09 Oct 2025

Robotics

Map based localization

position .
Position Update
:' i E— (Estimation?) \

Prediction of A
Encoder [ Position » matched
—— (e.g. odometry) observations
YES
I
Map | predicted position .
data base L — - — — — — - - Matchmg
raw sensor data or

* QOdometry, Dead Reckoning ‘

extracted features

Observation \

» Localization base on external sensors,
beacons or landmarks

» Probabilistic Map Based Localization

Perception
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Localization

- Based on control commands - Monte-Carlo Localization (MCL) ==
=> Open Loop! Particle Filter

- Wheel odometry - Adaptative MCL => AMCL
- Compass, Accelerometer, Gyro => IMU - Visual Odometry (VO)

- Scan Matching of Range Sensors == - With IMU: Visual Inertial Odometry (VIO)
Registration (rigid => no scaling or shearing) - SLAM techniques
- ICP: scan to scan or scan to map - 3D Reconstruction

- Needs good initial guess

_ _ - Structure from Motion/ Bundle Adjustment
- NDT registration

- Localization is by-product

- Feature-based registration e
. A o - Absolute Localization:
- Direct/ optimization based registration GPS

y Grld-base.d Localization o . Markers (e.g. QR code)
- Kalman Filter Based Localization . Landmarks (e.g. ShanghaiTech Tower)
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Monte Carlo Localization (MCL)

- Input: Global, known map and laser
scan probability distribution (ellipse) as particle set (red dots)

- Particle filter: set of particles

representing a * Algorithm:
robot state
- Here: robot pose (position & orientation) 1. For all particles:
- Particle filter SLAM (e.g. FastSLAM): also 1. Apply motion update (e.g. odometry)
map! N 2. Apply the sensor update (scan match)
- Particles are sampled based on probability and calculate new weights
distribution 2. Re-Sample particles based on their
weights

- Assign weights (scores) to particles
based on how well the scan matches to

the map, given this pose - Can solve the kidnapped robot problem

(also wake-up robot problem)

- Markov property: Current state only ' Eg?télfig]{:_ .I.Dartlcle of correct pose might

depends on previous state
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Adaptive Monte Carlo Localization (AMCL)

- Sample particles adaptively
- Based on error estimate

Odometry Localization

Dead

- Kullback-Leibler divergence (KLD) e
- => when particles have converged, odom frame PP e
have a fewer number of particles -

- Sample size is re-calculated each
ite rati O n AMCL Map Localization

Odometry Dead
Drift Reckoning

- http://wiki.ros.org/amcl

- Used by the ROS Navigation
stack

/map_frame ST /odom_frame /base_frame

Orientation

Estimated by AMCL


http://wiki.ros.org/amcl
http://wiki.ros.org/amcl

Robotics
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MCL &
Robot
Kidnapping
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AMCL in ROS

(™ interact | “§=MoveCamera []Select @ FocusCamera c= Measure 7 2DPoseEstimate # 2DNavGoal @ PublishPoint & =,

D pisplays x »a Views
) : g:zz::g:zltll::sok Type: TopDownOrtho * Zero
+ @ Grid &
+ s, RobotModel & Near Clip... 0.01
+ )< Axes Target Fra... <Fixed Frame>
+ ~. LaserScan (] Scale 46.1832
+ / Path ™~ Angle 1.5708
+ # Path M X -2.55691
+ P2 Map & Y 0.621553
+ / Pose &
+ & InteractiveMarkers
+ wll Polygon
* M TF (
+ % PoseArray ~
» ) Axes
+ 2 map ~
Add Duplicate Remove Rename Save Remove Rename
) Time

ROS Time: 1477924737.26  ROS Elapsed: 35.12 wall Time:  1477924737.30  Wall Elapsed: 35.02 ~ Experimental

..... B i v anf
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Overview of SLAM Methods

- Camera - Laser
- Feature-Based Methods - Pose Graph
- MonoSLAM - Cartographer
- PTAM - Karto-SLAM
- ORB-SLAM - Hector-SLAM
- Direct Methods - BLAM
- DTAM - LIO
- LSD-SLAM - Particle Filter
- DSO - FastSLAM
- Semi-Direct Methods - Gmapping
- SVO - Extended Kalman Filter
- Others - EKF-SLAM
- PoseNet - LINS
- CNN-SLAM - Others
. - LOAM

- IMLS-SLAM
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SLAM Front-end & Back-end

- Front-end
- calculate relative poses between several frames/ to map
- scan matching
- Image registration
- estimate absolute poses
- construct the local map g
- Back-end

- optimize the absolute poses
and mapping

- only if a loop was closed

https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html



https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
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THREE SLAM PARADIGMS
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The Three SLAM Paradigms

- Most of the SLAM algorithms are based on the following three different
approaches:
- Extended Kalman Filter SLAM: (called EKF SLAM)
- Particle Filter SLAM: (called FAST SLAM)
- Graph-Based SLAM
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EKF SLAM: overview

- Extended state vector y, : robot pose x, + position of all the features m; in the
map:
Ve = [xe, Mg, o, mMpp_1]"

- Example: 2D line-landmarks, size of y, = 3+2n : three variables to represent
the robot pose + 2n variables for the » line-landmarks having vector
components

(:,1)

T
yt :[xt’yt’Ht’a()”/b""’an—l’rn—l]

- As the robot moves and takes measurements, the state vector and covariance
matrix are updated using the standard equations of the extended Kalman filter

- Drawback: EKF SLAM is computationally very expensive.
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Particle Filter SLAM: FastSLAM

- FastSLAM approach

- Using particle filters.

- Particle filters: mathematical models that represent
probability distribution as a set of discrete
particles that occupy the state space.

- Particle filter update probability distribution (ellipse) as particle set (red dots)
- Generate new particle distribution using motion
model and controls

a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight
b) Filter resample:

- Resample particles based on weight

- Filter resample

+ Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and
randomly draw particles from previous distribution based on weights creating a new distribution.
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Graph-Based SLAM (1/3)

- SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
- The nodes of the graph are the robot locations and the features in the map.

- Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative
position between the robot locations and the features observed from those locations.

mi m:
Mo . ) \
’\\ //.;3 ...... .
E—O ’ ;ﬂ.—\ . x-? : vr}
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Graph-Based SLAM (2/3)

- Constraints are not rigid but soft constraints!

- Relaxation: compute the solution to the full SLAM problem =>
- Compute best estimate of the robot path and the environment map.

- Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can
then be found by computing the state of minimal energy of this net

mi m:
Mo ¢ *
. // \
\v\ R Y > =]
@ o e B e
r ----- > ‘f::: ’-\ x“’ '. X3
Xo X
, T2
| @ L mwmmmmmmt =
ls e 477
% [P o @
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Graph-Based SLAM (3/3)

- Significant advantage of graph-based SLAM techniques over EKF SLAM:

- EKF SLAM: computation and memory for to update and store the covariance matrix is
quadratic with the number of features.

- Graph-based SLAM: update time of the graph is constant and the required memory is linear
in the number of features.

- However, the final graph optimization can become computationally costly if the
robot path is long.

- Libraries for graph-based slam: g2o0, ceres



Robotics ShanghaiTech University - SIST - 09 Oct 2025 22
-

PLANNING
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General Control Scheme for Mobile Robot Systems

Position
Global Map

Environment Model Path
Local Map
Informatlon Path
Extraction Execution —
- V1s1on g
)
= g c
o, O .S
3] Raw data Actuator Commands =
S
5 8 .80
¥ ° 3
= Z

\\ /—

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich
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The Planning Problem

- The problem: find a path in the work space (physical space) from the initial
position to the goal position avoiding all collisions with the obstacles

- Assumption: there exists a good enough map of the enwronment for
navigation. '

~
e

M
»

A
~
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i
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Coarse Grid Map
(for reference only)
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Topologlcal Map
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The Planning Problem

- We can generally distinguish between
- (global) path planning and
- (local) obstacle avoidance.

- First step:
- Transformation of the map into a representation useful for planning
- This step is planner-dependent

- Second step:
- Plan a path on the transformed map

- Third step:
- Send motion commands to controller
- This step is planner-dependent (e.g. Model based feed forward, path following)
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Configuration Space for a Mobile Robot

- Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, 0)

- Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward +
turn) => non-holonomic

- Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)
- => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

10 v 10 v
st > st
8 8
5
k)
3
4
A i A l L A 1 4 1
b ] - °2 a [ 3 F 4 - a (-]

X X
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Typical Configuration Space: Occupancy grid

- Fixed cell decomposition: occupancy grid example: STAR Center
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Path Planning: Overview of Algorithms

1. Optimal Control

- Solves truly optimal solution

- Becomes intractable for even moderately
complex as well as nonconvex problems

20

7

Source:
http://mitocw.udsm.ac.tz

2. Potential Field

- Imposes a mathematical function over the
state/configuration space

- Many physical metaphors exist

- Often employed due to its simplicity and
similarity to optimal control solutions

Py

i

3. Graph Search

- |ldentify a set edges between nodes within the
free space

o]

\_

- Where to put the nodes?
\

\

\\
\
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Graph Search

- Overview

- Solves a least cost problem between two states on a (directed) graph
- Graph structure is a discrete representation

- Limitations
- State space is discretized - completeness is at stake
- Feasibility of paths is often not inherently encoded

- Algorithms
- (Preprocessing steps)
- Breath first
- Depth first
- Dijkstra
- A* and variants
- D* and variants
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Graph Construction: Cell Decomposition: Grid Map
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Graph Construction: State Lattice Design (1/2)

= Enforces edge feasibility
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= Popular for Ackerman robots (e.g. cars)

Offline:
Motion Model
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Lattice Gen.

Online:
Incremental Graph
Constr.




Robotics

ShanghaiTech University - SIST - 09 Oct 2025

Graph Construction: State Lattice Design (2/2)

Martin Rufli
- State lattice encodes only kinematically feasible edges

velocity [m/s]
o
()]
/
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Deterministic Graph Search

- Methods
- Breath First
- Depth First
- Dijkstra
- A* and variants
- D* and variants

. obstacle cell

12 cell with
distance value
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DIJKSTRA'S ALGORITHM
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EDSGER WYBE DIJKSTRA

"Computer Science is no more about computers than
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/
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SINGLE-SOURCE SHORTEST PATH PROBLEM

- Single-Source Shortest Path Problem - The problem of finding shortest
paths from a source vertex v to all other vertices in the graph.

- Graph
- Set of vertices and edges
- Vertex:
- Place in the graph; connected by:

- Edge: connecting two vertices
- Directed or undirected (undirected in Dijkstra’s Algorithm)
- Edges can have weight/ distance assigned

Dijkstra material from http://www.cs.utexas.edu/~tandy/barrera.ppt
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Dijkstra’s Algorithm

- Assign all vertices infinite distance to goal
- Assign 0 to distance from start
- Add all vertices to the queue

- While the queue is not empty:
- Select vertex with smallest distance and remove it from the queue
- Visit all neighbor vertices of that vertex,
- calculate their distance and
- update their (the neighbors) distance if the new distance is smaller
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Dijkstra’s Algorithm - Pseudocode

dist[s] < o (distance to source vertex is zero)
for all v e V-{s}
do dist[v] < o (set all other distances to infinity)
S—0 (S, the set of visited vertices is initially empty)
Q—V (Q, the queue initially contains all vertices)
while Q =0 (while the queue is not empty)
do u < mindistance(Q, dist) (select the element of Q with the min. distance)
S«—Su{u} (add u to list of visited vertices)
for all v € neighbors|u]
do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
then d[v] «d[u] + w(u, v) (set new value of shortest path)

(if desired, add traceback code)
return dist
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Dijkstra’s Algorithm for Path Planning: Grid Maps

- Graph:

- Neighboring free cells are connected:
- 4-neighborhood: up/ down/ left right
- 8-neighborhood: also diagonals

- All edges have weight 1

- Stop once goal vertex is reached

- Per vertex: save edge over which
the shortest distance from start was
reached => Path

pRIRS RS RS

R R BeRe
2R R B B¢
2 8 B R R
22 X R B¢

h ss ss sis sis
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Graph Search Strategies: A* Search

- Similar to Dijkstra's algorithm, except that it uses a heuristic function h(n)
»f(n) = g(n) + h(n)

goal

goal goal goal

g=14 g=10 g=14 g=1.0

h=28 h=3.8 h=2.8 h=3.8
g=28 g=24 g=28

h=34 h=38 h=42

goal

9=3.8

'h=1.0

9-3.4 g=1.0

h=2.0 h=3.8

g=38 g=28 g=24 g=28 g=3.8 ¢g=28 ¢g=24 @g=28 g=3.8 @¢=28 g@g=24 g=28
h=3.0 h=34 h=38 h=4.2 h=3.0 h=3.4 h=38 h=4.2 h=3.0 h=34 h=38 h=4.2
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A*

- Developed 1986 as part of the Shakey project!

- Complexity:
Worst-case performance O(|E|) = O(b%) *
Worst-case space o(|V|) = O(v?)
complexity

b: branching factor
d: depth

- Good heuristic => small branching factor
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2000x1500 cells
Distance: 209.7
Generation: 0 s
Planning: 5.5 s

Area
Graph

Distance: 221.7
Generation: 46 s
Planning: 0.18 s

on
Voronoi
Diagram

Distance: 234.2
Generation: 26 s
Planning: 0.01 s



Robotics ShanghaiTech University - SIST - 09 Oct 2025 43

ROS Navigation

- http://wiki.ros.org/navigation

R.0.B.0.T. Comics

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."



http://wiki.ros.org/navigation
http://wiki.ros.org/navigation
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Path Planning in ROS: move base

“move_base_simple/goal® . .
geometry msgs/PoseStamped Navigation Stack Setup
move_base l "/map"
Y nav_msgs/GetMap Map_server
amcl — global_planner < global_costmap
/ A
’ Wit ; sensor topics
sensor transforms —¢ » internal I\ B
" j tfitfMessage nav_msgs/Path recovery_behaviors :::‘\:g:_m:g:/lkg'snfiggzg
Y \ Y
HONNESNCEONLA -acom_ »  local_planner  -«—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry _msgs/Twist

Y provided node
optional provided node
platform specific node |

base controller
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teb local planner

An optimal trajectory planner for mobile robots based on Timed-Elastic-Bands

o000
http://wiki.ros.org/teb_local_planner : : : R O S



