
CS289:  Mobile Manipulation Fall 2025

Sören  Schwertfeger

ShanghaiTech University



Motivation
• So far in course:
• Basic capabilities:

• Arm Planning
• Mobile base planning & navigation
• Object recognition
• Grasping (future lecture)
• Arm Control (future lecture)

• How to decide what to do when, with which item(s)?

• => Task/ Mission Planning
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Actions
• Finite set of actions that
• Change the state of the world & robot
• Most often actions have pre-conditions 

• Actions are executed using established robot capabilities/ algorithms

• E.g.:
• Move robot from A to B:  A* Path planning & Navigation, e.g. with ROS move_base
• Pick object: Object detection; arm IK & FK & 3D sensor & 

octree for RRT Planning; Robot control via PID: e.g. with ROS MoveIt
• Open door: learned how to do it with simulation and RL
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Executing Actions in ROS
• Option 1: Just send a ROS message
• Bad: no explicit feedback – need to program feedback and success by hand

• Option 2: Use ROS service
• Request and Response pair
• Caller (can) block till the response is there 
• Useful for very fast actions (e.g. “take picture”)
• https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Services/Understanding-ROS2-Services.html 
• Option 3: Use Action
• Most action take time! E.g. move robot, move robot arm, plan a trajectory, …
• Actions are asynchronous
• We (can) get continuous feedback on the operation
• https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Actions/Understanding-ROS2-Actions.html 
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Mission Execution
Reactive

• Based on current state
• Decide on next action (only)
• Without (explicitly) searching different 

future options
• Intelligence in the code/ structure, 

added by programmer who 
understands the problem

• By hand coding
• State Machine, Behavior Tree

• Reinforcement Learning

Planning
• Based on the current state
• Look into the future
• Create list of actions to execute till goal
• Often search in space of states, modified 

by actions

• Planning Domain Definition Language 
PDDL

• Search-based planners, e.g. STRIPS
• With uncertainty:

• Markov Decision Process (MDP)  Planner &
• Partially Observable MDP (POMDP) Planner

• LLM ?
• Combined Task & Motion Planner

Mobile Manipulation ShanghaiTech University - SIST - 16. Oct. 2025 6



FINITE STATE MACHINES
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With material from
Marco Della Vedova and Tullio Facchinetti

University of Pavia
https://robot.unipv.it/toolleeo/ 

https://robot.unipv.it/toolleeo/


Motivation
• How should the robot know what to do now?
• Different states, e.g.:
• Waiting for a task
• Charging batteries

• Go to charger
• Park in charger

• Executing certain task, pick and place a bottle
• Go to for picking up bottle
• Search for bottle
• Take bottle
• Go to goal
• Place bottle

• Error and recovery states!
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Models of computation and abstract machines

In computer science, automata theory studies mathematical objects called abstract
machines, or automata, and the computational problems that they can solve.

Automata comes from the Greek word
αὺτόματα = “self-acting”

An abstract machine (a.k.a. abstract computer) is a theoretical model of a computer
hardware or software systems.
A model of computation is the definition of the set of allowable operations used in
computation and their respective costs. It is used for:
• measuring the complexity of an algorithm in execution time and/or memory space
• analyze the computational resources required
• software and hardware design
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Finite State Machines (FSMs)
• A Finite State Machine (a.k.a. finite state automaton) is an abstract device
• It consists of:
• a set of states (including a start state)
• an alphabet of symbols that serves as a set of possible inputs to the machine
• and a transition function that maps each state to another state (or to itself) 

for any given input symbol
• The machine operates by being fed a string of symbols, and moves through a series 
of states according to the transition function.
• Output? Different types of FSM are distinguished depending on if the output is 
produced and how it is produced: before or after a transition.
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Example of FSM: an edge-detector

inputs −→ outputs 
0 1 1 1 −→ 0 1 0 0

0 1 1 1 1 0 −→ 0 1 0 0 0 1
1 0 1 0 1 0 −→ 0 1 1 1 1 1

• Detect transitions between two symbols in the input sequence, say 0 
and 1.

• Output:
• 0 if this symbol is the same as the previous symbol
• 1 if this symbol is different
• 0 always for first symbol

Examples:
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Edge-detector example

This graphical representation is known as state diagram.
A state diagram is a direct graph with a special node representing the initial state.

Graphical representation of FSM using graphs
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Mathematical Model of a FSM
A FSM is a five-tuple

( Σ , Γ ,  S, s0, δ)

where:
• Σ  (Sigma) is the input alphabet (a finite, non-empty set of symbols).
• Γ (Gamma) is the output alphabet (a set of symbols).
• S is a finite, non-empty set of states.
• s0 is the initial state, an element of S.
• δ (Delta) is the transition function: δ : S × Σ → S × Γ.
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Tabular representation of a FSMs’ transition function
The transition function δ : S × Σ → S × Γ can be represented by a
tabular with states on the rows and inputs on the columns. In each
cell there is a tuple s, γ indicating the next state and the output.

For example, for the edge-detector FSM, the transition table is:

0 1
A B,0 C,0
B B,0 C,1
C B,1 C,0
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The notion of state
• Intuitively, the state of a system is its condition at a particular

point in time
• In general, the state affects how the system reacts to inputs
• Formally, we define the state to be an encoding of everything

about the past that has an effect on the system’s reaction to
current or future inputs

The state is a summary of the past
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Transitions
• Transitions between states govern the discrete dynamics of the state machine and

the mapping of inputs to outputs. The FSM evolves in a sequence of transitions.

• When does a transition occur?
• Nothing in the definition of a state machine constrains when it reacts.
• As a discrete system, we do not need to talk explicitly about the amount of time 

that passes between transitions, since it is actually irrelevant to the behavior of a 
FSM.

Still, a FSM could be:
• event triggered −→ it reacts whenever an input is provided
• time triggered −→ it reacts at regular time intervals

The definition of the FSM does not change in these two cases. The environment 
where an FSM operates defines when it should react.
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• So far we implicitly dealt with Mealy FSM, named after George Mealy, a Bell
Labs engineer who published a description of these machines in 1955.

• Mealy FSM are characterized by producing outputs when a transition is taken.

• An alternative, known as a Moore FSM, produces outputs when the machine is
in a state, rather than when transition is taken.

• Moore machines are named after Edward Moore, another Bell Labs engineer who
described the model in a 1956 paper.

Mealy FSM and Moore FSM
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With these assumptions, a Moore machine is strictly causal

Mealy FSM and Moore FSM

• The distinction between Mealy and Moore machines is subtle but important.
• Both are discrete systems, and hence their operation consists of a sequence 

of discrete reactions.
• For a Moore machine, at each reaction, the output produced is defined by the 

current state (at the start of the reaction, not at the end).
• Thus, the output at the time of a reaction does not depend on the input at that 

same time.
• The input determines which transition is taken, but not what output is 

produced by the reaction.
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• a system is causal if its output depends only on current and past inputs
• in other words, in causal systems if two input sequences are identical up to

(and including) time τ , the outputs are identical up to (and including) time τ
• in strictly causal systems if two possible inputs are identical up to (and not

including) time τ , the outputs are identical up to (and not including) time τ

strictly causal systems are useful to build feedback systems

• non-causal (acausal) systems depends also on future inputs 
(examples: population growth, weather forecasting, planning)

• anti-causal systems depends only on future inputs

Notion of causality
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Moore FSM example
Request: Design a Moore FSM that takes characters A-Z as input and returns 1 if in the input
there is the string “CIAO”.
Note: since the output depends on the current state only, outputs are shown in the state rather
than on the transitions in the state diagram.

Notes (valid for Moore and Mealy FSM state diagrams):
• it is often convenient to use the label otherwise on transitions
• otherwise self-transition are called “default transitions” and can be 

omitted
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Mealy FSM vs Moore FSM

• any Moore machine can be converted to an equivalent Mealy machine
• a Mealy machine can be converted to an almost equivalent Moore machine
• it differs only in that the output is produced on the next reaction rather than

on the current one
• Mealy machines tends to be more compact (requiring fewer states to represent the

same functionality), and are able to produce an output that instantaneously 
responds to the input

• Moore machines are used when output is associated with a state of the machine,
hence the output is somehow persistent
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FSM classification

• Transducers are machines that read strings (sequences of symbols taken from an alphabet)
and produce strings containing symbols of another (or even the same) alphabet.

• Acceptors (aka recognizers and sequence detectors) produce a binary output, saying either yes
or no to answer whether the input is accepted by the machine or not. All states of the FSM are
said to be either accepting or not accepting. At the time when all input is processed, if the current 
state is an accepting state, the input is accepted; otherwise it is rejected.

• Classifiers are a generalization that similarly to acceptors produce a single output when
terminates but has more than two terminal states.

• Generators (aka sequencers) are a subclass of aforementioned types that have a single-letter
input alphabet. They produce only one sequence, which can be interpreted as output sequence of 
transducer or classifier outputs.
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Extended state machines
• The notation for FSMs becomes awkward when the number of states gets 
large. Moreover, many applications require to read two or more input sources.

• Extended state machines address those issues by augmenting the FSM model
• internal state variables that may be read and written as part of taking a 

transition between states;
• input valuations: a valuation of a set of variables is an assignment of 

value to each variable;
• transitions triggered by guards: a guard is a predicate (a boolean-valued 

expression) that evaluates to true when the transition should be taken;
• output actions that may be valuations of output variables or function 

calls.
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The general notation for extended state machines is the following:

• set actions specify assignments to variables that are made when the transition is taken
• these assignments are made after the guard has been evaluated and the output

actions have been fired
• if there are more than one output action or set action, they are made in sequence

Extended state machines: graphical notation
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Extended state machine example: traffic light

Problem: model a controller for a traffic
light (for cars) at a pedestrian crosswalk.
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Problem: model a controller for a traffic light (for cars) at a pedestrian crosswalk.

1. Use a time triggered machine that reacts once per second.
2. It starts in the RED state and counts 60 seconds with the help of the internal variable c.
3. It then transitions to GREEN, where it will remain until the input p is true. That input could be

generated by a pedestrian pushing a button to request a walk light.
4. When p is true, the machine transitions to YELLOW if it has been in state GREEN for at

least 60 seconds.
5. Otherwise, it transitions to pending, where it stays for the remaining part of the 60 second

interval. This ensures that once the light goes green, it stays green for at least 60 seconds.
6. At the end of 60 seconds, it will transition to YELLOW, where it will remain for 5 seconds

before transitioning back to RED.
7. The outputs produced by this machine is a function call to light(x), where x ∈ {R, G, Y }

represents the color light to be turned on.

Extended state machine example: traffic light
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inputs: p : {true, false}
outputs: light(x), x ∈ {R , G, Y }
variables: c : {0, . . . , 60}

Extended state machine example: traffic light
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The state of an extended state machine includes not only the 
information about which discrete state the machine is in (indicated 
by a bubble), but also what values any variables have.
The number of possible states can therefore be quite large, or even 
infinite.
If there are n discrete states (bubbles) and m variables each of 
which can have one of p possible values, then the size of the state 
space of the state machine is

|States| = npm

Extended state machines may or may not be FSMs. In particular, 
it is not uncommon for p to be infinite. For example, a variable 
may have values in N, the natural numbers, in which case, the 
number of states is infinite.

Extended state machines: state space
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Reachable states

Some state machines will have states that can never be reached, so the set of reachable
states – comprising all states that can be reached from the initial state on some input
sequence – may be smaller than the set of states.

For example, in the traffic light FSM, the c variable has 61 possible values and there are 4
bubbles, so the total number of combination is 61 × 4 = 244. The size of the state space is
therefore 244.

However, not all of these states are reachable. In particular, while in the YELLOW state, the
count variable will have only one of 6 values in {0, . . . , 5}.
The number of reachable states, therefore, is 61× 3 + 6 = 189.
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Determinacy
•A state machine is said to be deterministic (or determinate) if, for

each state, there is at most one transition enabled by each input
value.

•The given formal definition of an FSM ensures that it is deterministic,
since the transition function δ is a function, not a one-to-many
mapping.

•The graphical notation with guards on the transitions, however,
has no such constraint.

•Such a state machine will be deterministic only if the guards leaving
each state are non-overlapping.
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if a state machine is both deterministic and receptive, for every 
state, there is exactly one transition possible on each input value

Receptiveness
• A state machine is said to be receptive if, for each state, there is at least one 

transition possible on each input symbol.
• In other words, receptiveness ensures that a state machine is always ready to 

react to any input, and does not “get stuck” in any state.
• The formal definition of an FSM given in the previous slides ensures that it is 

receptive, since δ is a function, not a partial function.
• It is defined for every possible state and input value.
• Moreover, in our graphical notation, since we have implicit default transitions, 

we have ensured that all state machines specified in our graphical notation 
are also receptive.
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Nondeterminism
If for any state of a state machine, there are two distinct transitions with guards that
can evaluate to true in the same reaction, then the state machine is nondeterminate 
or nondeterministic.
It is also possible to define machines where there is more than one initial state: such 
a state machine is also nondeterminate.

Applications
• modeling unknown aspects of the environment or system
• hiding detail in a specification of the system
• non-deterministic FSMs are more compact than deterministic FSMs

a classic result in automata theory shows that a nondeterministic FSM has a related
deterministic FSM that is language equivalent
but the deterministic machine has, in the worst case, many more states 
(exponential)
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Behaviors, Traces and Computational Trees
• FSM behavior is a sequence of transitions.
• An execution trace is the record of inputs, states, and outputs 

in a behavior. A trace looks like:

((u0, x0, y0), (u1, x1, y1), (u2, x2, y2), . . . )

or
u0/y0 u1/y1 u2/y2x0 −−−→x1 −−−→x2 −−−→ . . .

where u i, x i , y i represent valuation of the inputs, current 
state, and outputs’ valuation at transition i, respectively.

• A computational tree is a graphical representation of all 
possible traces

FSMs are suitable for formal analysis. For example, safety analysis 
might show that some unsafe state is not reachable.
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Recall the edge-detector FSM:

Computational tree:
Computational tree example
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Implementation: imperative programming language
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Implementation: UML State Machine Diagram
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Example: ATM

Reference: http://www.uml-diagrams.org/state-machine-diagrams.html
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Essentials:
• motion-to-goal until an obstacle is encountered
• obstacle circumnavigation until the r straight line is 

encountered, i.e., the line connecting the starting point and 
the goal

• at that point, back to motion-to-goal along the r straight line

Bug 2 - algorithm overview
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Bug 2 - hypoteses (1/2)
• Hypoteses:

discretized workspace - each point belongs to a finite set W
dist(P1,P2) - a function that computes the distance between 
P1 and P2
isonR(P1) - a function that returns true if P1 is on the line r

• Input:
touch - binary variable set by a proximity sensor in front of the 
robot
pos - variable in W , updated by a position sensor

• Output (actions):
go() - robot moves along the straight line in front of it 
turn(...) - robot rotates; the action is instantaneous 
(simplification)
coastObs() - robot proceeds coasting the obstacle
stop() - robot stops
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Bug 2 - hypoteses (2/2)

•State variables:
hit - variable in W ∪ {NULL } , which stores the hit point
start - variable in W , which stores the starting point. It is
necessary for calculating the line start-goal

•Parameter:
goal - constant in W
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Bug 2
Mealy FSM
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ROS: FLEXBE
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FlexBe
• FlexBE is a powerful and user-friendly high-level behavior engine, flexibly 

applicable to numerous systems and scenarios.
•  drag&drop behavior creation 
• automated code generation 
• monitor behavior execution 
• adjustable level of autonomy 
• runtime-modification of behaviors

• Programmable with python for the states
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http://wiki.ros.org/flexbe 

Paper: 
Flexible Navigation: Finite State Machine-Based Integrated 
Navigation and Control for ROS Enabled Robots
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7925266 

https://flexbe.readthedocs.io/en/latest/  

http://wiki.ros.org/flexbe
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7925266
https://flexbe.readthedocs.io/en/latest/
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BEHAVIOR TREE
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Behavior Tree (BT)
• Alternative to Finite State Machine (FSM)
• BT (supposedly) more scalable, more human-understandable and easier to reuse than FSM
• Intrinsically hierarchical
• Graphical representation has meaning
• Expressive

• BehaviorTree CPP V3  
https://www.behaviortree.dev/ 

• Defined in XML

• Execute top down, left first (similar to DFS)
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Behavior Trees in Robotics and AI: An Introduction
Michele Colledanchise, Petter Ögren
https://arxiv.org/abs/1709.00084 

https://www.behaviortree.dev/
https://arxiv.org/abs/1709.00084


Types of BT Nodes
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Action Node

Decorator Node

Control Node

Condition Node



Example: Navigate To Pose With Replanning and Recovery

•  Tree update rate: 100Hz
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Control Node

Condition Node



Recovery Node:
• Node must contain 2 children 
• returns success if first succeeds. 
• If first fails:
• Tick the second 
• If successful retry the first 
• Repeat until first returns true or number of retires is up

• Children of Navigate Recovery Node:
• Navigation Subtree
• Recovery Subtree
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Navigation Subtree
• 2 Subtrees – sequential:

• Calculate path
• Follow path

• + recovery behaviors
• RateController: decorate with 1Hz
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Recovery Subtree
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ROS 2 & BT
• Well integrated into ROS 2
• https://www.behaviortree.dev/docs/ros2_integration/
• Good support for ROS Actions and

ROS Services!

• Groot2: GUI editor for BT
• https://www.behaviortree.dev/groot 
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MISSION PLANNING
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Overview
• Planning
• PDDL: Language to define the state, problem, …
• Planner: e.g. STRIPS

• Precondition and effects on the state space

• Feedback via online replanning

• Sometimes need Task and Motion Planning together:
• Motion planner would fail if not did a specific action (e.g. remove obstacle) first
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Task Planning
• Task planning – aka Mission Planning – aka automated planning 
• 3 approaches:
• Programming

• Programmer must anticipate all possible scenarios/ states

• Learning
• RL or Imitation learning
• No guarantees
• Short horizon/ no complex tasks

• Model-based approaches
• Model of the world, reason about it
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Automated Planning for Robotics
Erez Karpas and Daniele Magazzeni
https://www.annualreviews.org/content/journals/
10.1146/annurev-control-082619-100135

https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135
https://www.annualreviews.org/content/journals/10.1146/annurev-control-082619-100135


Sense/ Think/ Act vs. Execute & Planner
• Assumes:
• World is deterministic
• State is fully observable
• Robot is sole agent
• Actions are instantaneous

• Planning may take a long time->
• => Multi-level planning (right)
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PDDL
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Mission and Task Planning with PDDL
• Planning Domain Definition Language
• Establish the rules (Domain)
• Present a situation and goal 

(Problem)
• Use a plan solver
• Get a plan
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What is PDDL?
PDDL = Planning Domain Definition Language

• standard encoding language for “classical” planning tasks

Components of a PDDL planning task:

• Objects: Things in the world that interest us.
• Predicates: Properties of objects that we are interested in; can be
true or false.

• Initial state: The state of the world that we start in.
• Goal specification: Things that we want to be true.
• Actions/Operators: Ways of changing the state of the world.

Malte Helmert https://www.cs.toronto.edu/~sheila/2542/w09/A1/introtopddl2.pdf 
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How to Put the Pieces Together

Planning tasks specified in PDDL are separated into two files:

1.A domain file for predicates and actions.
2.A problem file for objects, initial state and goal specification.
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Domain Files
Domain files look like this:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>

)
<domain name> is a string that identifies the
planning domain, e.g. gripper.

Example on the web: gripper.pddl.
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Problem Files
Problem files look like this:

(define (problem <problem name>) 
(:domain <domain name>)

<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>

)

<problem name> is a string that identifies the planning 
task, e.g. gripper-four-balls.

<domain name> must match the domain name in the
corresponding domain file.
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Running Example
Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop balls
with either of his two arms. Initially, all balls and the robot are in the first room.
We want the balls to be in the second room.

• Objects: The two rooms, four balls and two robot arms.
• Predicates: Is x a room? Is x a ball? Is ball x inside room y? Is robot arm x

empty? [...]
• Initial state: All balls and the robot are in the first room. All robot arms are

empty. [...]
• Goal specification: All balls must be in the second room.
• Actions/Operators: The robot can move between rooms, pick up a ball or

drop a ball.
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Gripper task: Objects

Objects:
Rooms: rooma, roomb
Balls: ball1, ball2, ball3, ball4
Robot arms: left, right

In PDDL:

(:objects rooma roomb
ball1 ball2 ball3 ball4 left
right)
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Gripper task: Predicates
Predicates:
ROOM(x)
BALL(x) 
GRIPPER(x)
at-robby(x) 
at-ball(x, y) 
free(x) 
carry(x, y)

–true iff x is a room
–true iff x is a ball
–true iff x is a gripper (robot arm)
–true iff x is a room and the robot is in x
–true iff x is a ball, y is a room, and x is in y
–true iff x is a gripper and x does not hold a ball
–true iff x is a gripper, y is a ball, and x holds y

In PDDL:

(:predicates (ROOM ?x) (BALL ?x)
(GRIPPER ?x) (at-robby ?x)
(at-ball ?x ?y)
(free ?x) (carry ?x ?y))
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Gripper task: Initial state
• Initial state:
• ROOM(rooma) and ROOM(roomb) are true.
• BALL(ball1), ..., BALL(ball4) are true.
• GRIPPER(left), GRIPPER(right), free(left) and free(right) are true.
• at-robby(rooma), at-ball(ball1, rooma), ..., at-ball(ball4, rooma) are
true. Everything else is false.

• In PDDL:

(:init (ROOM rooma) (ROOM roomb)
(BALL ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free right)
(at-robby rooma)
(at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma))
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Gripper task: Goal specification

Goal specification:
at-ball(ball1, roomb), ..., at-ball(ball4,
roomb) must be true. Everything else we don’t care
about.

In PDDL:
(:goal (and (at-ball ball1 roomb)

(at-ball ball2 roomb)
(at-ball baxll3 roomb)
(at-ball ball4 roomb)))
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Gripper task: Movement operator

Action/Operator:
Description: 
Precondition: 
Effect:

The robot can move from x to y.
ROOM(x), ROOM(y) and at-robby(x) are true.
at-robby(y) becomes true. at-robby(x)
becomes false. Everything else doesn’t change.In PDDL:

(:action move :parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y)

(at-robby ?x))
:effect (and (at-robby ?y)

(not (at-robby
?x))))
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Gripper task: Pick-up operator

Action/Operator:

Description: 
Precondition:

The robot can pick up x in y with z .
BALL(x), ROOM(y), GRIPPER(z), at-ball(x, y),
at-robby(y) and free(z) are true.
carry(z, x) becomes true. at-ball(x, y) and free(z)
become false. Everything else doesn’t change.

Effect:

In PDDL:

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))
:effect (and (carry ?z ?x)

(not (at-ball ?x ?y)) (not (free ?z))))



Gripper task: Drop operator

Action/Operator:

Description: The robot can drop x in y from z. 

(Preconditions and effects similar to the pick-up operator.) 

In PDDL:

(:action drop :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y) (GRIPPER ?z)

(carry ?z ?x) (at-robby ?y))

:effect (and (at-ball ?x ?y) (free ?z)
(not (carry ?z ?x))))
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A Note on Action Effects

Action effects can be more complicated than seen so far.

They can be universally quantified:

(forall (?v1 ... ?vn)
<effect>)

They can be conditional:

(when <condition>
<effect>)
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Solver/ Planners
• PDDL just a description language
• Standardized - to be used in different solvers
• Many different algorithms:
• Classical planning: 

• forward chaining of state space, maybe with heuristics
• Backward chaining (e.g. STRIPS from 1970s)

• Reduction to other problems
• Model checking (planning is a subclass of model checking)

• Temporal planning
• Actions may be executed in parallel/ overlapping in time

• Probabilistic planning
• MDP
• POMDP
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ROS 2 Planning System
• Framework for AI Planning
• Modular Design
• PlanSyst2 Terminal
• Multirobot
• Parallel execution
• Load balancing

• Planners as plugins
• Default:
• Partial Order Planning Forwards (POPF)
• forwards-chaining temporal planner
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Percepts Actions

???? 

World

perfect 

fully 
observable 

instantaneous 

deterministic     

Classical Planning Assumptions

sole source
of change

Goal 
achieve goal condition

Material: Alan Fern; Daniel Weld
Oregon State University
https://web.engr.oregonstate.edu/~afern
/classes/cs533/notes/strips-intro.pptx 
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Representing States

holding(A)
clear(B)
on(B,C)
onTable(C)
State 1

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 2

C

A
B

C

A
B

World states are represented as sets of facts.
We will also refer to facts as propositions. 

Closed World Assumption (CWA): 
Fact not listed in a state are assumed to be false. Under CWA
we are assuming the agent has full observability.
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Representing Goals

77

Goals are also represented as sets of facts. 
For example { on(A,B) } is a goal in the blocks world.

A goal state is any state that contains all the goal facts.

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 1

C

A
B

holding(A)
clear(B)
on(B,C)
onTable(C)
State 2

C

A
B

State 1 is a goal state for the goal { on(A,B) }. 
State 2 is not a goal state for the goal { on(A,B) }.
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Representing Action in STRIPS

holding(A)
clear(B)
on(B,C)
onTable(C)
State 1

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 2

PutDown(A,B)

C

A
B

C

A
B

A STRIPS action definition specifies: 
   1) a set PRE of preconditions facts
   2) a set ADD of add effect facts 
   3) a set DEL of delete effect facts

PutDown(A,B):
     PRE: { holding(A), clear(B) }
     ADD: { on(A,B), handEmpty, clear(A) }
     DEL:  { holding(A), clear(B) }
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Semantics of STRIPS Actions

holding(A)
clear(B)
on(B,C)
onTable(C)

S

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
S È ADD – DEL

PutDown(A,B)

C

A
B

C

A
B

•  A STRIPS action is applicable (or allowed) in a state when its 
   preconditions are contained in the state.
•  Taking an action in a state S results in a new state S È ADD – DEL 
   (i.e. add the add effects and remove the delete effects)

PutDown(A,B):
     PRE: { holding(A), clear(B) }
     ADD: { on(A,B), handEmpty, clear(A)}
     DEL:  { holding(A), clear(B) }
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STRIPS Planning 
Problem

on(A,B)

Goal 

80

PutDown(A,B):
     PRE: { holding(A), clear(B) }
     ADD: { on(A,B), handEmpty, clear(A)}
     DEL:  { holding(A), clear(B) }

A STRIPS planning problem specifies: 
   1) an initial state S
   2) a goal G 
   3) a set of STRIPS actions 

holding(A)
clear(B)
onTable(B)
Initial State 

A
B

PutDown(B,A):
     PRE: { holding(B), clear(A) }
     ADD: { on(B,A), handEmpty, clear(B) }
     DEL:  { holding(B), clear(A) }

STRIPS Actions

Example Problem:

Objective: find a “short” action sequence reaching a goal state,
                  or report that the goal is unachievable

Solution: (PutDown(A,B))
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Propositional Planners
h So far: written propositions (e.g. on(A,B)) in terms of objects (e.g. A and B) 

and predicates (e.g. on).   
h But: planners ignore the internal structure of propositions such as on(A,B). 
h Such planners are called propositional planners as opposed to first-order 

or relational planners
h => no difference to the planner if we replace “on(A,B)” in a problem with 

“prop1” (and so on)
h It feels wrong to ignore the existence of objects. But currently propositional 

planners are the state-of-the-art.

holding(A)
clear(B)
onTable(B)
Initial State 

on(A,B)

Goal 

prop2
prop3
prop4
Initial State 

prop1

Goal 
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STRIPS Versus PDDL
• The Planning Domain Description Language (PDDL): standard 

language for defining planning problems
• Includes STRIPS as special case along with more advanced features
• simple additional features: type specification for objects, negated 

preconditions, conditional add/del effects
• advanced features: allowing numeric variables and durative actions

• Most planners you can download take PDDL as input
• Majority only support the simple PDDL features (essentially STRIPS)
• PDDL syntax is easy to learn from examples packaged with planners, but 

a definition of the STRIPS fragment can be found at: 
http://eecs.oregonstate.edu/ipc-learn/documents/strips-pddl-subset.pdf
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Properties of Planners

• A planner is sound if any action sequence it returns is a true solution
• A planner is complete if it outputs an action sequence or “no solution” for any 

input problem
• A planner is optimal if it always returns the shortest possible solution
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Planning as Graph Search

• It is easy to view planning as a graph search problem
• Nodes/vertices = possible states
• Directed Arcs = STRIPS actions
• Solution: path from the initial state (i.e. vertex) to one state/vertices that 

satisfies the goal
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Search Space: Blocks World
Graph is finite

Initial State Goal State
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Planning as Graph Search

• Planning is just finding a path in a graph
• Why not just use standard graph algorithms for finding paths? 

• Answer: graphs are exponentially large in the problem encoding size (i.e. size of 
STRIPS problems). 
• But, standard algorithms are poly-time in graph size
• So standard algorithms would require exponential time

• Do better:
• We can use A*, but we need an admissible heuristic

1. Divide-and-conquer: sub-goal independence assumption
• Problem relaxation by removing

2. … all preconditions
3. … all preconditions and negative effects
4. … negative effects only: Empty-Delete-List 
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Partial Order Planning (POP)
• State-space search
• Yields totally ordered plans (linear plans)

• POP 
• Works on subproblems independently, then combines subplans
• Example

• Goal(RightShoeOn Ù LeftShoeOn)
• Init()
• Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
• Action(RightSock, EFFECT: RightSockOn)
• Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
• Action(LeftSock, EFFECT: LeftSockOn)

Berthe Y. Choueiry (Shu-we-ri)
University of Nebraska Lincoln
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POP Example & its linearization

Berthe Y. Choueiry (Shu-we-ri)
University of Nebraska Lincoln
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