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• Calibraiton
• Sensor Fusion
• Visual Servoing

Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 2



CALIBRATION
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Calibration
• Intrinsic calibration:
• Correct raw sensor data such that:

• It adheres to certain standards
• Reduces the error/ noise

• Robotics/ autonomous driving:
• Camera calibration!
• LiDARS can also be calibrated (factory calibration typically sufficient)
• All sensors …

• Extrinsic calibration:
• Determine the pose (position and orientation) of sensors w.r.t. a frame of reference
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Manipulation: Hand-Eye-Calibration
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(a) eye-on-hand; aka: eye-in-hand (a) eye-to-base; aka: eye-to-hand



Calibration

Manipulator Calibration

• Move manipulator ->
track “tool center point (tcp)” motion 
(or link to which camera is attached)
• Use arm forward kinematics OR
• Use tracking system. Difficulty:

Calibration from tracking markers to tool 
needed

• Eye-on-hand:
• Observe static target -> use Perspective-n-

Point (PnP) to estimate camera transforms
• Eye-to-base
• Static camera: observe moving target to 

estimate target transforms

Multi-Sensor Calibration

• Mobile Robot with multiple sensors
• Option 1: Hand-eye approach:
• Move robot (with sensors)
• Estimate motions in all sensor frames
• Use optimization to find transforms that 

explain all motions
• Option 2: Moving target approach:
• Move a target around robot
• Target needs to be observable by the 

sensors
• Ideally: track target pose in tracking system
• Use optimization to find transforms
• Cannot estimate IMU pose
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https://www.youtube.com/watch?v=jamH43W46Bo 

https://www.youtube.com/watch?v=jamH43W46Bo


How to represent extrinsic calibration in ROS?
• TF tree (Transform tree)  (tf2) 
• http://wiki.ros.org/tf 
• Publish static transform (e.g. robot frame to camera 1 frame)

• Option 1: build/ edit model of robot: URDF: http://wiki.ros.org/urdf/Tutorials 
• Option 2: publish TF by hand (once): http://wiki.ros.org/tf#static_transform_publisher 

• Publish dynamic transforms (e.g. robot arm motion; world frame to car frame)
• tf2 broadcaster    - publish tf messages – 1hz to 100hz
• http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20broadcaster%20%28C%2B%2B%29 

• Visualize TF free in rviz:
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http://wiki.ros.org/tf
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RVIZ
• Rviz needs proper TF tree to visualize all the data:
• Need to be able to transform all data into one common frame (fixed frame)
• One application of sensor fusion
• putting proper transforms in the tf tree is essential (also for other applications/ algorithms)
• URDF: robot model, calibration results, measured distances
• Static transform broadcaster: calibration results that may change more frequently
• tf broadcaster: dynamic tf: e.g.:

• Front wheel direction
• Steering wheel orientation
• One can publish tf for the wheel orientation!
• Status of doors, trunk, …
• …
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Calibration of Arm Parameters
• Typically arm manufactured precisely => factory parameters excellent

• Manual calibration of (self-build) arm:
• Attach tracking system target to tool center point (tcp)
• Move arm, record all joint states and tcp poses
• Minimize forward kinematics error by optimizing arm parameters …
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SENSOR FUSION
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Sensor Fusion
• Use data from more than one sensor: 

• reduce uncertainty and/ or
• get more/ better data and/ or
• get more reliability (in case one sensor doesn’t provide (good) data
• Increase sensing area

• Needs to be synchronized/ time stamped AND
• Calibrated (Intrinsic & Extrinsic)

• Examples to enhance sensor data:
• Combine point clouds from several LiDARS to one big point cloud
• Combine images from several cameras to a panorama image
• Use two or more camera images for stereo processing
• Colorize a point cloud (e.g. from Velodyne) with camera data
• IMU: Fusing Accelerometer, Gyroscope, Compass

• Examples to reduce uncertainty:
• Use the IMU together with localization from 3D LiDARs or cameras (and GPS)
• Object detection/ tracking/ prediction from multiple sensors
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Algorithms often used:

Averaging
Kalman Filter
Bayesian networks
Neural Networks
…



Hardware Time Synchronization
• Can be triggered:
• Cameras
• IMUs

• Need Time Stamps:
• LiDAR
• GPS (provides time stamps)

• PPS: pule per second
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Mapping Robot
Point Cloud
Colorization Example
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Mapping robot of 
Prof. Schwertfeger



Mapping
Robot:
2 LiDAR
sensor’s
point clouds
in one 
view
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Shadowhand Experiment Example

Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 16

Sub cam 2

Sub cam 1

Sub cam 3 Master cam 0



Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 17



Calibration 
-  Multiple camera calibration

- AprilTag for rough transformation

- Corp, down-sample 

- Colored ICP to refine
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Hand eye calibration
Goal: get the transformation between master 
camera and robot base_link

Rough calibration: easy_handeye 
• Use robot hand hold the apriltag 
• collect apriltag poses while moving the arm to 

different poses  (do not move the hand)
• get handeye transformation by solving equation
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Hand eye calibration:

Refinement: icp
• turn one of the sub-camera to see  most 

of the arm ,
• sample a pointcloud from 

corresponding robot mesh
• align the above two pointcloud, and get 

the transformation between the sub-
camera and robot base_link

• get the goal transformation by 
multipyling sub-camera  to robot 
transformation and sub_camera to 
master camera transformation
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Banana from 
4 fused point 
clouds



VISUAL SERVOING
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Definition of Visual Servoing (VS)
“ VS is the use of computer vision data in the servo loop 

that controls the motion of a robot ”

“ VS is the action taken by a vision-based control ”

“ VS is the way to provide a control algorithm with visual 
feedback to reach a desired target ”
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Material derived from Antonio Paolillo
https://totopaolillo.github.io/documents/20210825_summerschool_innsbruck.pdf 
and Seth Hutchinson
https://dellaert.github.io/21S-8803MM/Readings/L7%20Visual%20Servo%20Control.pdf 

https://totopaolillo.github.io/documents/20210825_summerschool_innsbruck.pdf
https://dellaert.github.io/21S-8803MM/Readings/L7%20Visual%20Servo%20Control.pdf
https://dellaert.github.io/21S-8803MM/Readings/L7%20Visual%20Servo%20Control.pdf
https://dellaert.github.io/21S-8803MM/Readings/L7%20Visual%20Servo%20Control.pdf


Visual Servoing: The Basic Problem
• A camera views the scene from an initial pose, yielding the current image. 
• The desired image corresponds to the scene as viewed from the desired 

camera pose.
• Determine a camera motion to move from initial to desired camera pose, using 

the time-varying image as input. 

There are many variations on the problem: 
• Eye-in-hand vs. fixed camera 
• Which image features to use 
• How to specify desired images for specified tasks 
• Etc…
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Block diagram & scheme classification

VS
Control

Robot 
& Camera

reference error commands image

Image 
Processing

measurement

-
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Block diagram & scheme classification
VS

Control
Robot 

& Camera
reference error commands image

Image 
Processing

measurement

-

Two main VS schemes:
1. Position-based visual servoing (PBVS)

— More complicated image processing (need to reconstruct a pose)
+ Relatively easier control law

2. Image-based visual servoing (IBVS)
+ Easier image processing (it is a features extraction)
— More complicated control law

► Other options are also possible, such as 2.5D VS
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Simple example: 2D image based visual servoing
• If goal is above center, go up; 
• if goal below center, go down, 
• if goal is right, go right, 
• if goal is left, go left

• Example (working not so well): 
• land drone on red dot =>
• if goal near center, go down

• Need more complex VS for:
• More DoF actuators 

(e.g. 6 DoF arm)
• 3D rotated visual features (perspective change!)

Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 27



Position Based Visual Servoing (PBVS):
block diagram

VS
Control

Robot 
& Camera

reference error commands image

Image 
Processing

measurement

-

reference desired camera pose s∗

measurement current camera pose s
error Cartesian error e = s − s∗
commands velocities command v
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PBVS and the camera/ object pose
reconstruction problem
► PBVS implies the reconstruction of the camera goal pose, which is normally a complex task

► Often: camera goal pose w.r.t. detected object pose
► Or: camera goal pose w.r.t. world coordinate frame => localization problem

► A number of modules can be used

► Model-based pose reconstruction modules

► Fiducial marker detectors (e.g., April tag)

► Visual Odometry

► Visual Simultaneous Localization and Mapping (V-SLAM)

► Machine learning-based approaches, such as self-supervised learning
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PBVS: Basic idea

Mobile Manipulation

https://www.youtube.com/watch?v=miYfyCduVzQ 

• Camera goal coordinates to 
joint configuration space: 
Inverse Kinematics

• Control from current joint 
configuration to goal 
configuration:
• Differential equations on the 

errors => 
control theory        OR

• Interpolate (but: be aware of 
colisions!)              OR

• Plan a path (e.g. RRT) (not 
really “servoing” anymore)
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https://www.youtube.com/watch?v=miYfyCduVzQ
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https://www.youtube.com/watch?v=veAIuLdbgJU 

https://www.youtube.com/watch?v=veAIuLdbgJU


Image Based Visual Servoing (IBVS)
• You do not have a 3D goal pose/ position of the camera

• Instead: goal image coordinates of certain image features

• Goal: move camera such that
the features in camera image are
at the goal positions
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Image Based Visual Servoing (IBVS):
block diagram

Most of the lecture focuses on IBVS

s∗

e = s−s∗

reference desired visual features 
measurement current visual features s  
error visual error

commands velocities command v

VS
Control

Robot 
& Camera

reference error commands image

Image 
Processing

measurement

-
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Definition of visual feature
► In computer vision, it is the set of pixels for which the link between 

photometric measurement and geometric primitives can be established

► It is the attempt to summarize the richness of data coming from the 
camera video stream

► Be aware of the information loss that this “summary” involves

► It is the gist of the scene needed to control the robot

► It is the summary information got from the captured image, needed to 
close the VS loop and achieve a desired robotic behavior
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Some Basic Assumptions
Numerous considerations when designing a visual servo system – 
consider only systems that satisfy the following basic assumptions: 
• Eye-in-hand systems — the camera is mounted on the end effector of a robot 

and treated as a free-flying object with configuration space 𝑄 = SE(3). 
• Static (i.e., motionless) targets. 
• Purely kinematic systems — we do not consider the dynamics of camera 

motion, but assume that the camera can execute accurately the applied 
velocity control. 

• Perspective projection — the imaging geometry can be modeled as a pinhole 
camera. 

Some or all of these may be relaxed in more advanced applications.
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Consider the task of looking at the red object

captured image 
240× 320 pixels

Why visual features?
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Why visual features?
Consider the task of looking at the red object

captured image how it looks like in the PC
240× 320 pixels 240× 320× 3 matrix of numbers
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Consider the task of looking at the red object

captured image coordinates of the object centroid
240× 320 pixels 2 scalar numbers

Why visual features?
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An example of image processing algorithm
► Computer vision community provides many ready-to-use tools

original image color filtering smoothing

erode & dilate inversion blob detection
► All these operations are available in the opencv library, for example
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Examples of visual features

points lines reconstructed points

countours image moments pixel luminance
In this lecture we focus on point visual features, e.g. SIFT feature points
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Eye-to-hand & eye-in-hand configuration

fixed
camera

image  
plane

s

moving 
observed

object

fixed  
observed  

object

s

image  
plane

moving  
camera

► Eye-to-hand: actuated target observed by a camera (left)

► Eye-in-hand: actuated camera observing a target (right)

In this lecture we focus on eye-in-hand configurations
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features of interest 
measured visual features 
desired visual features

s∗

s
image plane

camera

desired 
camera

pose

The high-level task consists in moving the camera to a desired pose

Working principle (with a hand-held camera)
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Working principle (with a hand-held camera)

camera

features of interest 
measured visual features 
desired visual features

s∗

s e = 0

v
camera velocity

The cartesian task is actually translated in a visual task
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Designing the Control Law --- The Basic Idea
• Given s, control design can be quite simple:

• E.g. velocity controller with relationship between time variation s and camera 
velocity v = (𝜈, 𝜔) 

• 𝜈: instantaneous linear velocity of the origin of the camera frame

• 𝜔: instantaneous angular velocity of the camera frame
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Computing the VS control law
The VS control law is obtained in three steps

1. Model design: the features motion is related to the camera motion as

ṡ= Lv (1)

where L is the interaction matrix (aka. image Jacobian)

2. Stable error dynamics: we want s→ s∗, that is e = (s−s∗) → 0
(2)ė = ṡ−ṡ∗ = −λe, λ > 0

where λ is the control gain

3. Controller computation: (1) in (2) with a constant target (ṡ ∗= 0)

ė = −λe = ṡ= Lv =⇒ v = −λL+ e

L+: Moore-Penrose pseudo-inverse:  L+ = (LT L)-1 LT
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Visual Servoing Bigger Picture
• In practice, it is impossible to know the exact value of 𝐿 or of 𝐿 + , since these 

depend on measured data.
• Learning, planning, perception and action are often tightly coupled activities. 
• Visual servo control is the coupling of perception and action — hand-eye 

coordination. 
• Basic visual servo controllers can serve as primitives for planning algorithms. 
• There are a number of analogies between human hand-eye coordination and 

visual servo control. 
• A rigorous understanding of the performance of visual servo control systems 

provides a foundation for sensor-based robotics.
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Camera projection model (1/5)
► Frontal pin-hole camera model

inertial  
frame

focal  
lenght

(x,y )

(X ,Y ,Z )

image  
plane

zc

xc
camera  
frame
yc

f

R,t

► Perspective projection

X
Z

x = f , y = f
Y  
Z

► Sometimes normalized coordinates are used, considering f = 1
► Also used to computed the interaction matrix
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Camera projection model (2/5)
► In a more compatc way, using homogeneous coordinates:

► The depth Z is unkown (remember the lost of information): we call it 
as parameter ζ in the left-hand side of the equation

► For convenience, we write the matrix as

► In general, the Cartesian point can be expressed in the inertial frame
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Camera projection model (3/5)
49/33

inertial  
frame

focal  
lenght

(x,y )

(X ,Y ,Z )

image  
plane

zc

xc
camera  
frame
yc

f

R,t

► The camera ideal model results to be
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► However, the features are measured in pixels, with coordinates (u,v), 
which are related to (x,y) through the following relationship

x y
u = u0 + ρ , v = v0 + ρ

   where (ρw,ρh) is the size of the pixel and (u0,v0) is the central point

► Using homogenous coordinates and writing in compact form:

► Used to compute the interaction matrix

Camera projection model (4/5)
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► Putting all together

• K is called intrinsic parameter matrix or calibration matrix
• P is called standard projection matrix
• 0Tc is obtained with a extrinsic calibration
• C is called camera matrix
• f /ρw and f /ρh are the focal lenght expressed in units of pixels
• From p̃  we obtain the model in pixels of our visual feature: s  = (u, v )T

Camera projection model (5/5)
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Computation of the interaction matrix (1/3)

moving  
camera

image  
plane

s

fixed  
observed  

object

► From the perspective equation we have

► In compact form:

► The interaction matrix relates the velocity 
of the feature to the velocity of the camera

• Remember: eye-in-hand configuration
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Computation of the interaction matrix (2/3)
► The time derivative of the point expressed in Camera frame is related to the

velocity of the camera:

that is

► Substituting:
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Computation of the interaction matrix (3/3)
► Considering that X = xZ/f and Y = yZ/f :

► From the metric-pixel conversion we have that

► Substituting:

Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 54



(Some) practical aspects of VS
► One point is not enough to uniquely determine the pose of the camera at convergence

► For example, if we want to control the motion of the camera in the 3D space, at
least three points have to be used

► This means that the information used in the control law is the stack of three sets:

► The choise of the visual features, their number, and their desired value is part of the
algorithm design
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IBVS block diagram

s∗

e = s−s∗

reference desired visual features 
measurement current visual features s  
error visual error

commands velocities command v = −λL+ e

VS
Control

Robot 
& Camera

reference error commands image

Image 
Processing

measurement

-

Mobile Manipulation ShanghaiTech University - SIST - 30. Oct. 2025 56

λ is the control gain;        L+: Moore-Penrose pseudo-inverse:  L+ = (LT L)-1 LT
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https://www.youtube.com/watch?v=a_cQVq7wYrU 

https://www.youtube.com/watch?v=a_cQVq7wYrU
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https://www.youtube.com/watch?v=7gVlAkRG1wM 

https://www.youtube.com/watch?v=7gVlAkRG1wM

