
CS283: Robotics Fall 2019

Sören Schwertfeger / ���

ShanghaiTech University

Outline
• What is a Robot?
• Why Mobile Robotics?
• Why Autonomous Mobile Robotics?
• Brief History
• Software

Robotics ShanghaiTech University - SIST - 10. Sep 2019 2

What is a Robot?

Robotics ShanghaiTech University - SIST - 10. Sep 2019 3

Pictures on the following slides all from http://commons.wikimedia.org

Robotics ShanghaiTech University - SIST - 10. Sep 2019 4

Robotics ShanghaiTech University - SIST - 10. Sep 2019 5

Robotics ShanghaiTech University - SIST - 10. Sep 2019 6

Robotics ShanghaiTech University - SIST - 10. Sep 2019 7

Robotics ShanghaiTech University - SIST - 10. Sep 2019 8

Robotics ShanghaiTech University - SIST - 10. Sep 2019 9

Robotics ShanghaiTech University - SIST - 10. Sep 2019 10

Robotics ShanghaiTech University - SIST - 10. Sep 2019 11

Robotics ShanghaiTech University - SIST - 10. Sep 2019 12

Robotics ShanghaiTech University - SIST - 10. Sep 2019 13

Robotics ShanghaiTech University - SIST - 10. Sep 2019 14

Robotics ShanghaiTech University - SIST - 10. Sep 2019 15

Robotics ShanghaiTech University - SIST - 10. Sep 2019 16

Robotics ShanghaiTech University - SIST - 10. Sep 2019 17

Robotics ShanghaiTech University - SIST - 10. Sep 2019 18

Robotics ShanghaiTech University - SIST - 10. Sep 2019 19

Definition: A Robot is ...

A machine
capable of performing complex tasks
in the physical world,
that is using sensors to perceive the environment
and acts tele-operated or autonomous.

Robotics ShanghaiTech University - SIST - 10. Sep 2019 20

Industry vs Mobile Robots
• Industrial Robots rule:

• 2015: 254,000 industrial robots sold
• Over 1.6 million industrial robots

installed – rising by about 9% per
year

• China biggest robot market regarding
annual sales - also fasted growing
market worldwide

• Industrial Robots stay at one
place!

• Almost all other robots move =>
Mobile Robotics

Robotics ShanghaiTech University - SIST - 10. Sep 2019 21

Why Autonomous Mobile Robotics?
• Tele-operating robots: boring and inefficient
• Autonomous robots: Robots that act by their own reasoning

• Human operator might be present: Gives high level tasks
• Why autonomy?

• Autonomous behaviors might be better than remote control by humans
• Remote control might be boring or stressful and tiresome
• Human operators might be a scarce resource or expensive
• Multi robot approaches: One operator for many robots

• Semi-autonomy:
• Autonomous behaviors that help the operator, for example:
• Way-point navigation, autonomous stair climbing, assisted manipulation
• Gradual development from tele-operation to full autonomy possible

Robotics ShanghaiTech University - SIST - 10. Sep 2019 22

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

Robotics ShanghaiTech University - SIST - 10. Sep 2019 23

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Where am I?

• Global Positioning System:
outdoor, error measured in meters

• Guiding system:
(painted lines, inductive guides),
markers, iBeacon

• Model of the environment:
• Map, Localize yourself in this model
• Mapping: Build the map while driving

Robotics ShanghaiTech University - SIST - 10. Sep 2019 24

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Where is my goal?
• Two part problem:

• What is the goal?
• Expressed using the world model

(map)
• Using object recognition
• No specific goal (random)

• Where is that goal?
• Coordinates in the map
• Localization step at the end of the

object recognition process
• User input

Robotics ShanghaiTech University - SIST - 10. Sep 2019 25

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Different levels:
• Control:

• How much power to the motors to
move in that direction, reach desired
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Follow a path

• Planning:
• Long distance path planning
• What is the way, optimize for certain

parameters

Robotics ShanghaiTech University - SIST - 10. Sep 2019 26

Most important capability
(for autonomous mobile robots)

How to get from place A to place B?
(safely and efficiently)

Robotics ShanghaiTech University - SIST - 10. Sep 2019 27

How to get from A to B?

What are the components of a
ROBOT?

Robotics ShanghaiTech University - SIST - 10. Sep 2019 28

Overview Hardware

Robotics ShanghaiTech University - SIST - 10. Sep 2019 29

Speed sensor
Quadrature Encoding

Sensors:
IMU (Gyro,

Accelerometer),
Cameras, Laser
Range Finders
(LRF), GPS,
Microphone

Micro Controller

Battery,
Power

DC/ DC

Mechanics:
Structure, Housing,

Tracks, Flippers

Switches,
LEDs, Plugs

Storage
(Hard Disk) Networking

Battery
managementServos …

Micro Controller:
Real time,

PWM signals,
Analog In- and Output
Digital In- and Output

Motor Motor Driver/
Motor ControllerWheel

Motor Motor Driver/
Motor Controller

Wheel,
Track,
Joint,

Finger, …

Micro Controller

Other RobotsOperator Interface

Computer:
Sensing,

Computing,
Storage

Computer:

Control and Navigation
Planning

Perception
Vision

Artificial Intelligence

How to get from A to B?

How to program an intelligent ROBOT
to go from A to B?

Robotics ShanghaiTech University - SIST - 10. Sep 2019 30

General Control Scheme for Mobile Robot Systems

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building

M
ot

io
n

C
on

tro
l

N
av

ig
at

io
n

Pe
rc

ep
tio

n

Robotics ShanghaiTech University - SIST - 10. Sep 2019 31

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

ADMINISTRIVIA

Robotics ShanghaiTech University - SIST - 10. Sep 2019 32

Teaching Plan
• Lectures

• Homework

• Presentation about robotics paper (related to your project)

• One exam (in the middle of the semester, after lectures are over)

• Project…

Robotics ShanghaiTech University - SIST - 10. Sep 2019 33

Mandatory Reading
• Only 2 credit points of lectures => 16 lectures => need to compress the

lectures.
• Certain topics that you can just read and learn will be covered only very briefly

in the lecture.
• You will be given exact paragraphs to read till next week.
• In the next week there might be a short in-lecture Quiz about the reading

material, possibly covering all topics of the course taught so far.
• More complex topics will be covered in more detail in the lecture.

Robotics ShanghaiTech University - SIST - 10. Sep 2019 34

Project
• 2 credit points!
• Work in groups, min 2 students, max 3 students!
• Next lecture: Topics will be proposed…

• You can also do your own topic, but only after approval of Prof. Schwertfeger
• Prepare a short, written proposal till next Tuesday!

• Topic selection: Next Thursday!
• One member writes an email for the whole group to Long Xiaoling: longxl(at)shanghaitech.edu.cn ; Put the

other group members on CC
• Subject: [Robotics] Group Selection

• One graduate student from my group will co-supervise your project
• Weekly project meetings!

• Oral ”exams” to evaluate the contributions of each member
• No work on project => bad grade of fail

Robotics ShanghaiTech University - SIST - 10. Sep 2019 35

Grading
• Grading scheme is not 100% fixed
• Approximately:

• Lecture: 50%
• Quizzes during lecture (reading assignments): 5%
• Homework: 20%
• Exam: 25%

• Project: 50%
• Paper Presentation: 5%
• Project Proposal: 5%
• Intermediate Report: 5%
• Weekly project meetings: 10%
• Final Report: 10%
• Final Demo: 10%
• Final Webpage: 5%

Robotics ShanghaiTech University - SIST - 10. Sep 2019 36

Getting Help
• Piazza:

• For discussions and announcements
• https://piazza.com/class/k0ca22deyo74ui?cid=3#
• Ask questions regarding your reading assignments and

homework
• You are not allowed to give the solutions – just guidance

• Ask questions during the lecture!

• Upon request we can organize a tutorial session

• Only if everything else fails: write e-mails

• Office Hours Prof. Schwertfeger: Tuesday afternoon
• Office Hours TAs: look in piazza

Robotics ShanghaiTech University - SIST - 10. Sep 2019 37

Haofei Kuang ���Hongyu Chen ���

Xiaoling Long �	�

https://piazza.com/class/k0ca22deyo74ui?cid=3

Policy on Plagiarism
• The homework are individual tasks!
• You may discuss the ideas and algorithms of homework with others but:

• At no time should you read the source code or possess the source files of
any other person, including people outside this course.

• We will detect plagiarism using automated tools and will prosecute all
violations to the fullest extent of the university regulations, including failing
this course, academic probation, and expulsion from the university.

• All homework, project submissions, etc. will be submitted through
git – using gitlab. We will create accounts for you on:
• https://star-center.shanghaitech.edu.cn/gitlab

Robotics ShanghaiTech University - SIST - 10. Sep 2019 38

https://star-center.shanghaitech.edu.cn/gitlab

Mobile Robotics
• Topic Robots and how to program them:

• Applications of robotics, software design, locomotion, hardware, sensing, localization,
motion planning, autonomy for mobile robots

• Also one or two lectures about robotic arms

• Literature:
• Mobile Robotics Mathematics, Models, and Methods

• Alonzo Kelly
• ISBN 978-1-107-03115-9

• Introduction to Autonomous Mobile Robots
• Roland Siegwart, Illah R. Nourbakhsh, Davide Scaramuzza
• ISBN: 978-0-262-01535-6

Robotics ShanghaiTech University - SIST - 10. Sep 2019 39

Material
• Webpage

• https://robotics.shanghaitech.edu.cn/teaching/robotics2019
• Slides will be available on the webpage

• Piazza
• https://piazza.com/class/k0ca22deyo74ui?cid=3#

• Where to find us:
Office: SIST 1D 201.A
Lab: SIST 1D 203

• E-Mail:
• soerensch@ShanghaiTech.edu.cn

Robotics ShanghaiTech University - SIST - 10. Sep 2019 40

https://robotics.shanghaitech.edu.cn/teaching/robotics2019
https://piazza.com/class/k0ca22deyo74ui?cid=3
mailto:soerensch@ShanghaiTech.edu.cn

Prerequisite: Robot Operating System

• Program in C++ (or python) and ROS (wiki.ros.org)

• Prerequisite for that: Operating System Ubuntu Linux (www.ubuntu.com)

• Best option: Dual boot on your own Laptop/ Computer – needs min. 40 GB from HD

• Very sub-optimal option: Run Ubuntu in a virtual machine (suggestion: VirtualBox) – needs

40 GB and a modern Laptop (at least 4GB RAM – more is better)

• Preferred version: Ubuntu 18.04 (long term support)

• ROS Melodic (current version)

• Other tools: git, LaTeX, …

Robotics ShanghaiTech University - SIST - 10. Sep 2019 41

http://wiki.ros.org/
http://www.ubuntu.com/

Schedule

Robotics ShanghaiTech University - SIST - 10. Sep 2019 42

• May change – take a look
at webpage for most recent
version!

Prepare for next week
• Join the lecture on piazza

• Organize access to the two text books

• For the dual-boot installation of Ubuntu:
• Backup your all your data
• Free enough space (40 GB)
• Download Ubuntu

Robotics ShanghaiTech University - SIST - 10. Sep 2019 43

BRIEF HISTORY

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 44

Brief History
Robota “forced labor”: Czech, Karel Čapek R.U.R. 'Rossum's Universal Robots'
(1920).

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 45

Isaac Asimov - Three Laws of Robotics (1942)

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

0. A robot may not harm humanity, or, by inaction, allow humanity to come to
harm.

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 46

History
• First electronic autonomous robots 1949 in England (William Grey Walter,

Burden Neurological Institute at Bristol)
• three-wheeled robots: drive to recharging station using light source (phototaxis)

• Turing Test: 1950 (British mathematician Alan Turing)
• Unimate: 1961 lift hot pieces of metal from a die casting machine and stack

them. First industry robot. Inventor: George Devol, user: General Motors.
• Lunokhod 1: 1970, lunar vehicle on the moon (Soviet Union)
• Shakey the robot: 1970
• 1989: Chess programs from Carnegie Mellon University defeat chess masters
• Aibo: 1999 Sony Robot Dog
• ASIMO: 2000 Honda (humanoid robot)

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 47

https://arxiv.org/pdf/1704.08617.pdf

Asiago, Aug 30 2019 Sören Schwertfeger: "AI & Robotics" 48

https://arxiv.org/pdf/1704.08617.pdf

Shakey the robot (1970)
• First general-purpose mobile robot to be able to

reason about its own actions
• Advanced hardware:

• radio communication
• sonar range finders
• television camera
• on-board processors
• bump detectors

• Advanced software:
• Sensing and reasoning

• Very big impact
• https://robotics.shanghaitech.edu.cn/static/videos/Shakey.mp4

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 49

https://robotics.shanghaitech.edu.cn/static/videos/Shakey.mp4

SOFTWARE

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 50

Robot Software: Tasks/ Modules/ Programs (ROS: node)

Support

• Communication with Micro

controller

• Sensor drivers

• Networking

• With other PCs, other Robots, Operators

• Data storage

• Store all data for offline processing and

simulation and testing

• Monitoring/ Watchdog

Robotics

• Control

• Navigation

• Planning

• Sensor data processing

• e.g. Stereo processing, Image rectification

• Mapping

• Localization

• Object Recognition

• Mission Execution

• Task specific computing, e.g.:

• View planning, Victim search, Planning for
robot arm, …

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 51

Software Design

• Modularization:
• Keep different software components separated

• J Keep complexity low

• J Easily exchange a component (with a different, better algorithm)

• J Easily exchange multiple components with simulation

• J Easily exchange dada from components with replay from hard disk instead of live sensor
data

• J Multiple programming teams working on different components easier

• Need: Clean definition of interfaces or exchange messages!

• Allows: Multi-Process (vs. Single-Process, Multi-Thread) robot software system

• Allows: Distributing computation over multiple computers

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 52

Programming review
• Process vs. Thread
• C++ Object Orientation
• Constant Variables

• const-correctness
• C++ Templates
• Shared Pointer

• Objective:
• Prerequisites for understanding

ROS.
• Understand how we can efficiently

retrieve and transfer data in ROS.

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 53

Process

• Execution of one instance of a computer program

• Virtual memory:

• Contains only code and data from this program, the libraries

and the operating system

• Other processes (programs) can not access this memory

(shared memory access is possible but complicated)

• Operating system gives each process equal amount

of processing time (scheduling) – if the processes

need it

• Good support from the operating system to give certain

processes higher or lower priority

• Linux console program to see processes: top

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 54

(From Wikipedia)

Multi-Threading
• In one process, multiple threads =>

parallel execution
• J Code and Memory is shared =>

easy exchange of data, save mem.
• K Synchronization can be tricky

(mutex, dead lock, race condition)
• L If one thread crashes, the whole

process (all threads) die

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 55

(from http://www.tutorialspoint.com)

Processes and Threads in Robotics - Messages
• Both approaches have been implemented!
• Both are used and important!
• Robot Operating System (ROS): Multiple Processes:

• Each component runs in its own process: called node
• A node can have multiple threads => faster computation
• Nodes communicate using messages
• A node can send (publish) messages under different names called topic
• Nodes can listen to (subscribe) messages under different topics
• The messages are transferred over the network (TCP/IP) => multiple computers work

together transparently
• L Messages are serialized, copied and de-serialized even if both nodes on the same

computer => slow (compared to pointer passing)
• Optimization: Nodelet: run different nodes in the SAME process => pointer passing => fast

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 56

ROS nodes
• ROS core: keep track which nodes are running and their topics
• Show all nodes and topics in a graph: rosrun rqt_graph rqt_graph

• /rosout : special node for output on console (standard out)
• /turtlesim1/sim, /turtlesim2/sim : simulated robots (nodes) (multiple nodes

per simulated robot)
• /command_velocity : set the speed of a robot (topic)
• Node /turtlesim1/sim publishes on topic /turtlesim1/turtle_pose

• Node /mimic subscribes to topic /turtlesim1/turtle_pose

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 57

Constant Variables

• Declare variables that do not change

(anymore) in the code: const

• Works for variables and objects

• Const Objects:

• Only methods that do not change any

variable of the object may be called =>

• Those methods have to be declared const

• Used for program-correctness

• Especially for multi-threading:

• Share the data (e.g. image)

• Make it read only via const

• => no side-effects between different

threads

1. const int x = 5; // x may not be changed

2. int * someValue = &x; // pointer –

compilation error!!

3. const int * pointy = &x; // good

4. *pointy = 8; // error – pointing to const!

5. int y = 4;

6. pointy = &y; // from non const to const is

always possible!

7. const int * p2 const = &y; // pointing to

const variable and p2 is also const

8. p2 =&x; // error – p2 is const

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 58

C++ Templates
• Functions and classes that operate with generic types
• Function or class works on many different data types without rewrite

• template <typename T> int compare(T v1, T v2);

• Type of T is determined during compile time => errors during compilation (and not run-time)
• Any type (type == class) that offers the needed methods & variables can be used
• Usage: compare<string>(string(“string number one”), “hello world”);

• Explicit declaration: typename T = string
• typename T can (most often) deducted by the compiler from the argument types

• Class template:
• template <typename T> class myStuff{

T v1, v2;
myStuff(T var1, T var2){ v1 = var2; v2 = var2; }

};

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 59

Template example

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 60

Shared Pointer
• C++ Standard Library (std): heavily templated part of C++ Standard (many

parts used to be in boost library)
• Pointer: address of some data in the heap – in the virtual address space
• Space for data has to be allocated (reserved) with: new
• After usage of data it has to be destroyed to free the memory: delete
• Problem: Data (e.g.) image is shared among different modules/ components/

threads. Who is the last user – who has to delete the data?
• Shared pointer: counts the number of users (smart pointers); upon destruction of last user

(smart pointer) the object gets destroyed : called “Reference counting”
• Problem: Shared pointer needs to know the destructor method for the pointer =>
• Shared pointer is a templated class: Template argument: class type of the object pointed to
• Shared pointer can also point to const object!

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 61

Shared pointer example

• Earlier, shared_ptr used to be in boost
• Excerpt from ROS message of type “String” :

• typedef: create another (shorter) name for a certain type
• Our type: a shared pointer that points to a (complicated) String object

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 62

Review for ROS

• Different components, modules, algorithms run in different processes: nodes
• Nodes communicate using messages (and services …)

• Nodes publish and subscribe to messages by using names (topics)

• Messages are often passed around as shared pointers which are
• “write protected” using the const keyword

• The shared pointers take the message type as template argument

• Shared pointers can be accessed like normal pointers

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 63

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 64

ROS Tutorial: Listener

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 65

Recourses:
• http://wiki.ros.org/ROS/Tutorials/
• https://en.wikipedia.org/wiki/Object-oriented_programming
• C++: http://www.cplusplus.com/doc/tutorial/

• http://www.cplusplus.com/doc/tutorial/templates/

• https://en.wikipedia.org/wiki/Smart_pointer
• http://en.cppreference.com/w/cpp/memory/shared_ptr

• http://www.cprogramming.com/tutorial/const_correctness.html

• Cheat sheets:
• https://robotics.shanghaitech.edu.cn/static/cheatSheets/

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 66

http://wiki.ros.org/ROS/Tutorials/
https://en.wikipedia.org/wiki/Object-oriented_programming
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/templates/
https://en.wikipedia.org/wiki/Smart_pointer
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://www.cprogramming.com/tutorial/const_correctness.html
https://robotics.shanghaitech.edu.cn/static/cheatSheets/

Messages
• Publisher does not know about subscribers
• Subscribers do not know publishers
• One topic name: many subscribers and many publishers possible, BUT: same

message type (determined by the first publisher)!
• List all topics in the current system:

• rostopic list
• Other commands: rostopic echo, rostopic hz, rostopic pub ,
rostopic pub /test std_msgs/String “Hello World!"

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 67

Create own message: Text format
• Types:

• int8, int16, int32, int64 (plus uint*)
• float32, float64
• string
• time, duration
• other msg files
• variable-length array[] and fixed-length array[C]

• Save in folder “msg”, start with big letter, end with “.msg”

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 68

Services
• ROS service: send a “message” or command to service provider, wait for reply
• Text format: First message for request

• Separation: three dashes
• Then message for response

• A call to a service blocks

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 69

Compiler, Linker
• Standard in Linux: gcc: GNU Compiler Collection
• Compiler: Create machine code out of programming language

• For C++ code: g++
• g++ -o helloworld -I/homes/me/randomplace/include helloworld.cc
• Options:

• -g - turn on debugging (so GDB gives more friendly output) -Wall - turns on most warnings
• -o <name> - name of the output file -c - output an object file (.o)
• -O to -O4 - turn on optimizations -I<include path> - specify an include directory
• -L<library path> - specify a lib directory -l<library> - link with library lib<library>.a

• Linker: Link the machine code with other machine code (provided by libraries)
• Static link library: executable includes the statically linked library
• Dynamic link library: upon execution the program is linked against the library: Multiple programs

will use the same code => save memory
• Program: ln
• Show dynamic linked libraries used by a program: ldd

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 70

Makefile, CMake
• Avoid typing g++ and ln
• Makefile:

• Commands for compiling and linking the program: “make” uses the file “Makefile”
• May provide additional commands like “make clean”
• Can be used to run arbitrary commands, e.g. to create pdf files from LaTeX

• Cmake
• Cross-platform Makefile generator
• Searches for dependencies (libraries, headers, etc.)
• Autoconfigure with “cmake .”
• “CMakeLists.txt”: specify which files to make, etc.

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 71

GIT: distributed revision control and source code management

• Every Git working directory is a full-fledged repository
• => can work without server, two repos can pull/ push from each other

• Working directory has a hidden .git folder in its root
• Automatically merges common changes in same files
• Non-linear development:

• Create branches, merge them
• Cryptographic authentication of history
• See Cheat Sheet

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 72

Unix File System
• File types: regular, directory, link, (sockets, named pipes, block devices)
• Slash “/” instead of backslash “\” for folders - distinction between small and big letters!
• One file system tree, beginning with root: “/”

• Mount partitions (areas of the hard disk): any folder can be the mount point, e.g.:
/media/<user_name>/usbDiskName

• Home folders of different users in “/home/<user_name>”
• Hidden files and folders: begin with a dot “.”
• In Unix/ Linux, (almost) everything is a file: devices, partitions, …in “/dev”, e.g.

“/dev/video0”
• Show files: “ls”; more info: “ll”; human readable: “-h” – e.g. “ll -h”
• Free space: “df -h”
• Symbolic links (symlink): point to another file or folder. Create with “ln -s from to”

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 73

Overview

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 74

From: http://devopsbootcamp.readthedocs.org/en/latest/06_boot_filesystem.html

http://devopsbootcamp.readthedocs.org/en/latest/06_boot_filesystem.html

Misc
• Files have access rights: users and groups and others

• r: read w: write x: execute (for directories: go in)
• chmod a+w => all (three) are allowed to write
• chmod o-r => others are not allowed to read

• chown user:group file_name_or_dir change ownership
• Super user: root: can access all files
• sudo <command>: execute a command as root
• sudo su: (one way) to become root
• Compress files: zip + rar for Windows => no support for permissions/ symbolic

links
• tar : tape archive (lol) – sequentially store files and folders (no compression)
• gzip : compress one file
• combine: tar gzip: archive.tar.gz

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 75

Bash: GNU Unix Shell
• Program that runs in your terminal – executes your commands
• Keyboard up: go through history of last commands
• Tab-complete: any time, press tab to complete the command/ path/ file-name/ … - if a

unique solution exists; double tab for list of possible options
• Control C to tell program to stop; Control | to quit;
• Control Z to stop (pause) program: fg to run in foreground again, bg to run in

background, kill %1 to kill the last program (in background)
• Start program in background: command &
• Pipe: send output of program 1 as input to program 2: prog1 | prog2; e.g. “ll /dev |

less”
• Send standard output to file use “>” e.g.: “ll > file.txt”
• Wildcards: “*” matches anything with any length, “?” matches any one char, e.g.

“ll /dev/tty*”

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 76

.bashrc
• .bashrc is executed every time a new shell (terminal) is opened
• Execute by hand: “source ~/.bashrc” or “. ~/.bashrc”
• “~” is replaced by your home directory
• Setup variables, e.g.:

• alias df='df -h' # when calling df, acutally "df -h“ is called – human readable
• alias ..='cd ..' # executing "..“ will go one level up in the file tree
• Option: setup ros path always here: “source ~/my_ws/devel/setup.bash”

• Edit input.rc to search history of commands with page up, down:
• “sudo vi /etc/inputrc” – uncomment “# alternate mappings for "page up" and "page down" to

search the history”

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 77

vi: editor for the console

• Command mode (press escape) and input mode (press i)

• Install vim for more comfort: sudo apt-get install vim

• Command mode:

• Press escape to enter command mode

• “: w” write file

• “: q” quit

• “: wq” write file and quit

• “: q!” quit without writing changes to file

• Press “d” to delete a char; press “dd” to delete a line

• Press “/” and enter a regular expression to search

• Press “n” or “N” for next, previous search result

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 78

ssh: secure shell
• Login to remote computer, using encrypted communication
• sudo apt-get install ssh : Installs the ssh server
• Usage: ssh user@host e.g.: ssh schwerti@robotics.shanghaitech.edu.cn
• Option: -X forward X-server: see GUI of remote application on your screen (-Y

without encryption)
• ssh-keygen : generate authentication keys – public and private keyfile in .ssh
• ssh-copy-id : copy your public key to remove hose => no login needed

anymore!
• Copy files: scp [-r] <from> <to>

• Either from or to can be remote host: [user@]host:path, e.g. scp hw2.tar.gz
test@robotics:homeworks/

• -r: recursive – copies whole directories

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 79

mailto:schwerti@robotics.shanghaitech.edu.cn

