M RKRF

ShanghaiTech University

CS283: Robotics Fall 2017: Software

Soren Schwertfeger / JfiFE(=

ShanghaiTech University

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Review

- Definition Robot: A machine capable of performing complex tasks in the
physical world, that is using sensors to percelve the environment and acts
tele-operated or autonomous. ; w R e s e
- Usually Industrial Robots are stationary. h\‘ »\,:._f'w w‘

- Most other Robots move.

ShanghaiTech University - SIST - 20.09.2016

Most important capability

(for autonomous mobile robots)

How to get from A to B?

(safely and efficiently)

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

- Autonomous mobile robots - Where am 1?

move around in the - GPS, Guiding system
environment. Therefore ALL of - Build a map: Mapping
them: - Find position in a map:
- They need to know where they Localization

are. - Both: Simultaneous Localization
- They need to know where their and Mapping (SLAM)

goal is. - Where is my goal?
- They need to know how to get

- What is the goal: map or object
recognition

- Where is that goal?

there.

Mobile Robotics

- Autonomous mobile robots
move around In the
environment. Therefore ALL of
them:

- They need to know where they
are.

- They need to know where their
goal is.

- They need to know how to get
there.

ShanghaiTech University - SIST - 20.09.2016

- Different levels:

- Control:

- How much power to the motors to
move in that direction, reach desired
speed

- Navigation:

- Avoid obstacles

- Classify the terrain in front of you

- Predict the behavior (motion) of other
agents (humans, robots, animals,
machines)

- Planning:
- Long distance path planning

- What is the way, optimize for certain
parameters

How to get from Ato B?

How to program an intelligent ROBOT
to go from Ato B?

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

General Control Scheme for Mobile Robot Systems

Position
Global Map

Environment Model Path
Local Map l
I
Information Path
Extraction Execution
Vision

Actuator Commands

|
Sensing

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Perception
Motion Control

Navigation

ShanghaiTech University - SIST - 20.09.2016

How to get from Ato B?

What are the components of a
ROBOT?

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Overview Hardware

Wheel,

Track,
Joint, Motor Driver/

Finger, ... Motor Controller

Switches,
LEDs, Plugs

Battery

Servos ...
management

Llul Bl troller:

ne,
nals,

d Output
d Output

) Control and Navigation
Mc Planning
Perception
Vision
Speed sensor Artificial Intelligence

Quadrature Encoding

Storage

Mechanics: (Hard Disk)
Structure, Housing,

Tracks, Flippers

Micro Controller
[|

Micro Controller

Operator Interface

Sensors:
IMU (Gyro,
Accelerometer),
Cameras, Laser
Range Finders
(LRF), GPS,
Microphone

Computer:
Sensing,
Computing,
Storage

Networking

Other Robots

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Outline

- History
- Software
- Software Design

- Programming Review
- Robot Operating System (ROS)

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Brief History

Robota “forced labor”: Czech, Karel Capek R.U.R. 'Rossum's Universal Robots'
(1920). . | |

- ‘ : : \ : . e 4
s, 42

"l
'(
- _—
w
%ﬂs\ Q,z

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Isaac Asimov - Three Laws of Robotics (1942)

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. Arobot must obey the orders given to it by human beings, except where
such orders would conflict with the First Law.

3. Arobot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

0. Arobot may not harm humanity, or, by inaction, allow humanity to come to
harm.

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

History

- First electronic autonomous robots 1949 in England (William Grey Walter,
Burden Neurological Institute at Bristol)
- three-wheeled robots: drive to recharging station using light source (phototaxis)

- Turing Test: 1950 (British mathematician Alan Turing)

- Unimate: 1961 lift hot pieces of metal from a die casting machine and stack
them. First industry robot. Inventor: George Devol, user: General Motors.

- Lunokhod 1: 1970, lunar vehicle on the moon (Soviet Union)

- Shakey the robot: 1970

- 1989: Chess programs from Carnegie Mellon University defeat chess masters
- Aibo: 1999 Sony Robot Dog

- ASIMO: 2000 Honda (humanoid robot)

Mobile Robotics

ShanghaiTech University - SIST - 20.09.2016

Shakey the robot (1970)

- First general-purpose mobile robot to be able to
reason about its own actions

- Advanced hardware:
- radio communication

- sonar range finders
- television camera

[] TeLevision
3 — CAMERA

R
- on-board processors CAMERA <
- bump detectors my
BUMP "
- Advanced software:

DETECTOR

- Sensing and reasoning

- Very big impact

CASTER
WHEEL

MOTOR - .o TR WHEEL

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016 15
-

SOFTWARE

Mobile Robotics

ShanghaiTech University - SIST - 20.09.2016

Robot Software: Tasks/ Modules/ Programs (ROS: node)

Support

- Communication with Micro
controller

- Sensor drivers

- Networking
- With other PCs, other Robots, Operators

- Data storage

- Store all data for offline processing and
simulation and testing

- Monitoring/ Watchdog

Robotics

- Control

- Navigation

- Planning

- Sensor data processing

- e.g. Stereo processing, Image rectification

- Mapping

- Localization

- Object Recognition

- Mission Execution

- Task specific computing, e.g.:

- View planning, Victim search, Planning for
robot arm, ...

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Software Design

- Modularization:
- Keep different software components separated
- © Keep complexity low
- © Easily exchange a component (with a different, better algorithm)
- © Easily exchange multiple components with simulation

- © Easily exchange dada from components with replay from hard disk instead of live sensor
data

- © Multiple programming teams working on different components easier

- Need: Clean definition of interfaces or exchange messages!

- Allows: Multi-Process (vs. Single-Process, Multi-Thread) robot software system
- Allows: Distributing computation over multiple computers

Mobile Robotics

Programming review

- Process vs. Thread
- C++ Object Orientation

- Constant Variables
- const-correctness

- C++ Templates
- Shared Pointer

ShanghaiTech University - SIST - 20.09.2016

- Objective:
- Prerequisites for understanding
ROS.

- Understand how we can efficiently
retrieve and transfer data in ROS.

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Process

- Execution of one instance of a computer program

- Virtual memory:

- Contains only code and data from this program, the libraries
and the operating system

- Other processes (programs) can not access this memory
(shared memory access is possible but complicated)
- Operating system gives each process equal amount
of processing time (scheduling) — if the processes
need it

- Good support from the operating system to give certain
processes higher or lower priority

- Linux console program to see processes: top

Virtual memory Physical
(per process) memory

(From Wikipedia)

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Multi-Threading

- In one process, multiple threads =>
parallel execution

- © Code and Memory is shared =>

easy exchange of data, save mem. =
- © Synchronization can be tricky | stack | | stack |

(mutex, dead lock, race condition)
- ® If one thread crashes, the whole
process (all threads) die S e
I3[w—
Single threaded Process Multi-threaded Process

(from http://www.tutorialspoint.com)

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Processes and Threads in Robotics - Messages

- Both approaches have been implemented!
- Both are used and important!
- Robot Operating System (ROS): Multiple Processes:

- Each component runs in its own process: called node

- A node can have multiple threads => faster computation

- Nodes communicate using messages

- Anode can send (publish) messages under different names called topic
- Nodes can listen to (subscribe) messages under different topics

- The messages are transferred over the network (TCP/IP) => multiple computers work
together transparently

- ® Messages are serialized, copied and de-serialized even if both nodes on the same
computer => slow (compared to pointer passing)

- Optimization: Nodelet: run different nodes in the SAME process => pointer passing => fast

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

ROS nodes

- ROS core: keep track which nodes are running and their topics

- Show all nodes and topics in a graph: rosrun rqt_graph rqgt_graph
- /rosout : special node for output on console (standard out)

- /turtlesiml/sim, /turtlesim2/sim :simulated robots (nodes) (multiple nodes
per simulated robot)

- /command_velocity : setthe speed of a robot (topic)

- Node /turtlesiml/sim publishes on topic /turtlesiml/turtle_pose
- Node /mimic subscribes to topic /turtlesiml/turtle_pose

[rosout

fturtlesiml/turtle_pose

furtlesiml/sim

fturtlesiml/command_velocit

fturtlesim2/command_velocity

/rostopic-aqy-2448-1252539022236

[rosout

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Object Oriented (OO) Programming

- C++ can do OO ... C not
- Object: have data fields (variables) and associated procedures (methods)
- Instance of an object: created with keyword new

- Object: Abstract data type: has data and code

- encapsulation and information hiding: private variables not visible for outside code — interact
through the methods

- Methods can be private, too: can only be used by (methods of) the object itself

- Inheritance: code-reuse through re-use of variables and methods from base class. Child
class extends/ modifies functionality

- Polymorphism: Base class defines interface to some functionality (e.g. Method for getting a
camera image). A child implements the actual code for a specific use case (e.g. A certain
driver for a specific camera) — this is NOT how ROS works

- ROS uses messages as “interface”
- Objects have destructors for deletion/ cleanup

Mobile Robotics

ShanghaiTech University - SIST - 20.09.2016

Object Orientation: Example

Student
+ grades : list

(From Wikipedia)

Professor
+ listOfStudents : list

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Constant Variables

- Declare variables that do not change 1.
2.

(anymore) in the code: const
- Works for variables and objects
- Const Objects:

- Only methods that do not change any
variable of the object may be called =>

- Those methods have to be declared const
- Used for program-correctness

- Especially for multi-threading:
- Share the data (e.g. image)
- Make it read only via const

- => no side-effects between different
threads

2R

const int x = 5; // x may not be changed

int * someValue = &x; // pointer —
compilation error!!

const int * pointy = &x; // good

*pointy = 8; // error — pointing to const!
inty =4,

pointy = &y; // from non const to const is
always possible!

const int * p2 const = &y; // pointing to
const variable and p2 is also const

p2 =&x; // error — p2 is const

QUESTIONS REGARDING HW1?

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Admin

- Did you read your Literature?
- Will be provided at least one week ahead.

- Please join piazza
- Please use your ping yin name

- HW 1:

- Don’t forget to send me your public ssh key on Thursday already!
- Backup both private and public ssh keys!

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

C++ Templates

- Functions and classes that operate with generic types

- Function or class works on many different data types without rewrite
- template <typename T> int compare(T vl, T v2);
- Type of T is determined during compile time => errors during compilation (and not run-time)
- Any type (type == class) that offers the needed methods & variables can be used

- Usage: compare<string>(string(“string number one”), “hello world”);
- Explicit declaration: typename T = string
- typename T can (most often) deducted by the compiler from the argument types

- Class template:

- template <typename T> class myStuff{
T vl, v2;
myStuff(T varl, T var2){ vl = var2; v2 = var2; }
b

Mobile Robotics

Template example

//This example throws the following error :
template <typename Type>
Type max(Type a, Type b) {
return a >b ? a : b;
}

#include <iostream>

int main(int, char*¥*)

{

ShanghaiTech University - SIST - 20.09.2016

call of overloaded 'max(double, double)' is ambiguous

// This will call max <int> (by argument deduction)

std::cout << max(3, 7) << std::endl;

// This will call max<double> (by argument deduction)

std::cout << max(3.0, 7.0) << std::endl;

// This type is ambiguous, so explicitly instantiate max<double>

std: :cout << max<double>(3, 7.0) << std:
return 0;

rendl;

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Shared Pointer

- C++ Standard Library (std): heavily templated part of C++ Standard (many
parts used to be in boost library)

- Pointer: address of some data in the heap — in the virtual address space
- Space for data has to be allocated (reserved) with: new
- After usage of data it has to be destroyed to free the memory: delete

- Problem: Data (e.g.) image is shared among different modules/ components/
threads. Who is the last user — who has to delete the data?

- Shared pointer: counts the number of users (smart pointers); upon destruction of last user
(smart pointer) the object gets destroyed : called “Reference counting”

- Problem: Shared pointer needs to know the destructor method for the pointer =>
- Shared pointer is a templated class: Template argument: class type of the object pointed to
- Shared pointer can also point to const object!

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Shared pointer example

std::shared ptr<int> pl(new int(5));
std::shared ptr<int> p2 = pl; //Both now own the memory.

pl.reset(); //Memory still exists, due to p2.
p2.reset(); //Deletes the memory, since no one else owns the memory.

- Earlier, shared_ptr used to be in boost
- Excerpt from ROS message of type “String” :

typedef boost::shared ptr< ::std msgs::String _<ContainerAllocator> > Ptr;
typedef boost::shared ptr< ::std msgs::String <ContainerAllocator> const> ConstPtr;

- typedef: create another (shorter) name for a certain type
- Our type: a shared pointer that points to a (complicated) String object
volid chattercCallback (const std_msgs::String::ConstPtr& msqg)

{
ROS_INFO ("I heard: [%s]", msg->data.c_str());

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Review for ROS

- Different components, modules, algorithms run in different processes: nodes
- Nodes communicate using messages (and services ...)
- Nodes publish and subscribe to messages by using names (topics)

- Messages are often passed around as shared pointers which are
- “write protected” using the const keyword
- The shared pointers take the message type as template argument
- Shared pointers can be accessed like normal pointers

- 1 #include "ros/ros.h"
2 #include "std msgs/String.h"
3 #include <sstream>
4
5 wint main(int argc, char **argv){
6 ros::init(argc, argv, "talker");
7 ros: :NodeHandle n;
8
9 ros::Publisher chatter pub = n.advertise<std msgs::String>("chatter", 1000);
10
11 ros::Rate loop rate(10);
12 int count = 0;
13 v while (ros::ok()){
14 std msgs::String msg;
15 std::stringstream ss;
16 ss << "hello world " << count;
17 msg.data = ss.str();
18
19 chatter pub.publish(msg);
20
21 ros::spinlnce();
22
23 loop rate.sleep();
24 ++count;
25 }
26 return 0O;

27 }

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

ROS Tutorial: Listener

1 #include "ros/ros.h"

2 #include "std msgs/String.h"

3

4 wvoid chatterCallback(const std msgs::String::ConstPtr& msg){
5 ROS INFO("I heard: [%s]", msg->data.c str());

6 }

7

8 wint main(int argc, char **argv){

9 ros::init(argc, argv, "listener");
10 ros: :NodeHandle n;
11
12 ros::Subscriber sub = n.subscribe("chatter", 1000, chatterCallback);
13
14 ros::spin();
15
16 return 0O;

17 }

Mobile Robotics ShanghaiTech University - SIST - 20.09.2016

Messages

- Publisher does not know about subscribers
- Subscribers do not know publishers

- One topic name: many subscribers and many publishers possible, BUT: same
message type (determined by the first publisher)!

- List all topics in the current system:

- rostopic list

- Other commands: rostopic echo, rostopic hz, rostopic pub ,
rostopic pub /test std_msgs/String “Hello world!"

