
CS283: Robotics Fall 2016: Kinematics

Sören Schwertfeger / 师泽仁

ShanghaiTech University

Messages
• Publisher does not know about subscribers
• Subscribers do not know publishers
• One topic name: many subscribers and many publishers possible, BUT: same

message type (determined by the first publisher)!
• List all topics in the current system:

• rostopic list
• Other commands: rostopic echo, rostopic hz, rostopic pub ,
rostopic pub /test std_msgs/String “Hello World!"

Robotics ShanghaiTech University - SIST - 21.09.2016 2

Create own message: Text format
• Types:

• int8, int16, int32, int64 (plus uint*)
• float32, float64
• string
• time, duration
• other msg files
• variable-length array[] and fixed-length array[C]

• Save in folder “msg”, start with big letter, end with “.msg”

Robotics ShanghaiTech University - SIST - 21.09.2016 3

Services
• ROS service: send a “message” or command to service provider, wait for reply
• Text format: First message for request

• Separation: three dashes
• Then message for response

• A call to a service blocks

Robotics ShanghaiTech University - SIST - 21.09.2016 4

Compiler, Linker
• Standard in Linux: gcc: GNU Compiler Collection
• Compiler: Create machine code out of programming language

• For C++ code: g++
• g++ -o helloworld -I/homes/me/randomplace/include helloworld.cc
• Options:

• -g - turn on debugging (so GDB gives more friendly output) -Wall - turns on most warnings
• -o <name> - name of the output file -c - output an object file (.o)
• -O to -O4 - turn on optimizations -I<include path> - specify an include directory
• -L<library path> - specify a lib directory -l<library> - link with library lib<library>.a

• Linker: Link the machine code with other machine code (provided by libraries)
• Static link library: executable includes the statically linked library
• Dynamic link library: upon execution the program is linked against the library: Multiple programs

will use the same code => save memory
• Program: ln
• Show dynamic linked libraries used by a program: ldd

Robotics ShanghaiTech University - SIST - 21.09.2016 5

Makefile, CMake
• Avoid typing g++ and ln
• Makefile:

• Commands for compiling and linking the program: “make” uses the file “Makefile”
• May provide additional commands like “make clean”
• Can be used to run arbitrary commands, e.g. to create pdf files from LaTeX

• Cmake
• Cross-platform Makefile generator
• Searches for dependencies (libraries, headers, etc.)
• Autoconfigure with “cmake .”
• “CMakeLists.txt”: specify which files to make, etc.

Robotics ShanghaiTech University - SIST - 21.09.2016 6

GIT: distributed revision control and source code management

• Every Git working directory is a full-fledged repository
• => can work without server, two repos can pull/ push from each other

• Working directory has a hidden .git folder in its root
• Automatically merges common changes in same files
• Non-linear development:

• Create branches, merge them
• Cryptographic authentication of history
• See Cheat Sheet

Robotics ShanghaiTech University - SIST - 21.09.2016 7

Recourses:
• http://wiki.ros.org/ROS/Tutorials/
• https://en.wikipedia.org/wiki/Object-oriented_programming
• C++: http://www.cplusplus.com/doc/tutorial/

• http://www.cplusplus.com/doc/tutorial/templates/
• https://en.wikipedia.org/wiki/Smart_pointer

• http://en.cppreference.com/w/cpp/memory/shared_ptr
• http://www.cprogramming.com/tutorial/const_correctness.html

Robotics ShanghaiTech University - SIST - 21.09.2016 8

Cheat Sheets

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/bash_cheat_sheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/gitCheatCheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/vim-cheat-sheet.png

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/regular_expressions_cheat_sheet.png

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/cpp_reference_sheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/ROScheatsheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/ROS-Cheat-Sheet-Landscape-v2.pdf

Robotics ShanghaiTech University - SIST - 21.09.2016 9

Unix File System
• File types: regular, directory, link, (sockets, named pipes, block devices)
• Slash “/” instead of backslash “\” for folders - distinction between small and big letters!
• One file system tree, beginning with root: “/”

• Mount partitions (areas of the hard disk): any folder can be the mount point, e.g.:
/media/<user_name>/usbDiskName

• Home folders of different users in “/home/<user_name>”
• Hidden files and folders: begin with a dot “.”
• In Unix/ Linux, (almost) everything is a file: devices, partitions, …in “/dev”, e.g.

“/dev/video0”
• Show files: “ls”; more info: “ll”; human readable: “-h” – e.g. “ll -h”
• Free space: “df -h”
• Symbolic links (symlink): point to another file or folder. Create with “ln -s from to”

Robotics ShanghaiTech University - SIST - 21.09.2016 10

Overview

Robotics ShanghaiTech University - SIST - 21.09.2016 11

From: http://devopsbootcamp.readthedocs.org/en/latest/06_boot_filesystem.html

Misc
• Files have access rights: users and groups and others

• r: read w: write x: execute (for directories: go in)
• chmod a+w => all (three) are allowed to write
• chmod o-r => others are not allowed to read

• chown user: group file_name_or_dir change ownership
• Super user: root: can access all files
• sudo <command>: execute a command as root
• sudo su: (one way) to become root
• Compress files: zip + rar for Windows => no support for permissions/ symbolic

links
• tar : tape archive (lol) – sequentially store files and folders (no compression)
• gzip : compress one file
• combine: tar gzip: archive.tar.gz

Robotics ShanghaiTech University - SIST - 21.09.2016 12

Bash: GNU Unix Shell
• Program that runs in your terminal – executes your commands
• Keyboard up: go through history of last commands
• Tab-complete: any time, press tab to complete the command/ path/ file-name/ … - if a

unique solution exists; double tab for list of possible options
• Control C to tell program to stop; Control | to quit;
• Control Z to stop (pause) program: fg to run in foreground again, bg to run in

background, kill %1 to kill the last program (in background)
• Start program in background: command &
• Pipe: send output of program 1 as input to program 2: prog1 | prog2; e.g. “ll /dev |

less”
• Send standard output to file use “>” e.g.: “ll > file.txt”
• Wildcards: “*” matches anything with any length, “?” matches any one char, e.g.

“ll /dev/tty*”

Robotics ShanghaiTech University - SIST - 21.09.2016 13

.bashrc
• .bashrc is executed every time a new shell (terminal) is opened
• Execute by hand: “source ~/.bashrc” or “. ~/.bashrc”
• “~” is replaced by your home directory
• Setup variables, e.g.:

• alias df='df -h' # when calling df, acutally "df -h“ is called – human readable
• alias ..='cd ..' # executing "..“ will go one level up in the file tree
• Option: setup ros path always here: “source ~/my_ws/devel/setup.bash”

• Edit input.rc to search history of commands with page up, down:
• “sudo vi /etc/inputrc” – uncomment “# alternate mappings for "page up" and "page down" to

search the history”

Robotics ShanghaiTech University - SIST - 21.09.2016 14

vi: editor for the console
• Command mode (press escape) and input mode (press i)
• Install vim for more comfort: sudo apt-get install vim
• Command mode:

• Press escape to enter command mode
• “: w” write file
• “: q” quit
• “: wq” write file and quit
• “: q!” quit without writing changes to file
• Press “d” to delete a char; press “dd” to delete a line
• Press “/” and enter a regular expression to search
• Press “n” or “N” for next, previous search result

Robotics ShanghaiTech University - SIST - 21.09.2016 15

ssh: secure shell
• Login to remote computer, using encrypted communication
• sudo apt-get install ssh : Installs the ssh server
• Usage: ssh user@host e.g.: ssh schwerti@robotics.shanghaitech.edu.cn
• Option: -X forward X-server: see GUI of remote application on your screen (-Y

without encryption)
• ssh-keygen : generate authentication keys – public and private keyfile in .ssh
• ssh-copy-id : copy your public key to remote host => no login needed

anymore!
• Copy files: scp [-r] <from> <to>

• Either from or to can be remote host: [user@]host:path, e.g. scp hw2.tar.gz
test@robotics:homeworks/

• -r: recursive – copies whole directories

Robotics ShanghaiTech University - SIST - 21.09.2016 16

ADMIN

Robotics ShanghaiTech University - SIST - 21.09.2016 17

Admin
• HW1:

• Don’t forget to send me your public key

• Questions:
• Don’t send me emails unless your question contains very private info
• Use piazza instead!

Robotics ShanghaiTech University - SIST - 21.09.2016 18

KINEMATICS

Robotics ShanghaiTech University - SIST - 21.09.2016 19

Motivation
• Autonomous mobile robots move

around in the environment.
Therefore ALL of them:
• They need to know where they are.
• They need to know where their goal is.
• They need to know how to get there.

• Odometry!
• Robot:

• I know how fast the wheels turned =>
• I know how the robot moved =>
• I know where I am J

Robotics 20ShanghaiTech University - SIST - 21.09.2016

Odometry
• Robot:

• I know how fast the wheels turned =>
• I know how the robot moved =>
• I know where I am J

• Marine Navigation: Dead reckoning (using heading sensor)

• Sources of error (AMR pages 269 - 270):
• Wheel slip

• Uneven floor contact (non-planar surface)
• Robot kinematic: tracked vehicles, 4 wheel differential drive..

• Integration from speed to position: Limited resolution (time and measurement)
• Wheel misalignment
• Wheel diameter uncertainty
• Variation in contact point of wheel

Robotics 21ShanghaiTech University - SIST - 21.09.2016

Mobile Robots with Wheels
• Wheels are the most appropriate solution for most applications

• Three wheels are sufficient to guarantee stability

• With more than three wheels an appropriate suspension is required

• Selection of wheels depends on the application

Robotics 22ShanghaiTech University - SIST - 21.09.2016

The Four Basic Wheels Types

• a) Standard wheel: Two
degrees of freedom; rotation
around the (motorized) wheel
axle and the contact point

• b) Castor wheel: Three
degrees of freedom; rotation
around the wheel axle, the
contact point and the castor
axle

Robotics 23ShanghaiTech University - SIST - 21.09.2016

The Four Basic Wheels Types

• c) Swedish wheel: Three
degrees of freedom; rotation
around the (motorized)
wheel axle, around the
rollers and around the
contact point

• d) Ball or spherical wheel:
Suspension technically not
solved

Robotics 24ShanghaiTech University - SIST - 21.09.2016

Characteristics of Wheeled Robots and Vehicles
• Stability of a vehicle is be guaranteed with 3 wheels

• center of gravity is within the triangle with is formed by the ground contact point of the
wheels.

• Stability is improved by 4 and more wheel
• however, this arrangements are hyperstatic and require a flexible suspension system.

• Bigger wheels allow to overcome higher obstacles
• but they require higher torque or reductions in the gear box.

• Most arrangements are non-holonomic (see chapter 3)
• require high control effort

• Combining actuation and steering on one wheel makes the design complex
and adds additional errors for odometry.

Robotics 25ShanghaiTech University - SIST - 21.09.2016

Different Arrangements of Wheels I
• Two wheels

• Three wheels

Omnidirectional Drive Synchro Drive

Center of gravity below axle

Robotics 26ShanghaiTech University - SIST - 21.09.2016

Different Arrangements of Wheels II
• Four wheels

• Six wheels

Robotics 27ShanghaiTech University - SIST - 21.09.2016

Uranus, CMU: Omnidirectional Drive with 4 Wheels

• Movement in the plane has 3 DOF
• thus only three wheels can be

independently controlled
• It might be better to arrange three

swedish wheels in a triangle

Robotics 28ShanghaiTech University - SIST - 21.09.2016

Rugbot, Jacobs Robotics: Tracked Differential Drive

• Kinematic Simplification:
• 2 Wheels, located at the

center

Robotics ShanghaiTech University - SIST - 21.09.2016 29

Introduction: Mobile Robot Kinematics

• Aim
• Description of mechanical behavior of the robot for design and control
• Similar to robot manipulator kinematics
• However, mobile robots can move unbound with respect to its environment

• there is no direct way to measure the robot’s position
• Position must be integrated over time
• Leads to inaccuracies of the position (motion) estimate

-> the number 1 challenge in mobile robotics

Robotics 30ShanghaiTech University - SIST - 21.09.2016

COORDINATE SYSTEM

Robotics ShanghaiTech University - SIST - 21.09.2016 31

Robotics ShanghaiTech University - SIST - 21.09.2016 32

Right Hand Coordinate System
• Standard in Robotics
• Positive rotation around X is

anti-clockwise
• Right-hand rule mnemonic:

• Thumb: z-axis
• Index finger: x-axis
• Second finger: y-axis
• Rotation: Thumb = rotation axis,

positive rotation in finger direction
• Robot Coordinate System:

• X front
• Z up (Underwater: Z down)
• Y ???

Robotics ShanghaiTech University - SIST - 21.09.2016 33

Right Hand Rule http://en.wikipedia.org/wiki/Right-hand_rule

Odometry

Robotics ShanghaiTech University - SIST - 21.09.2016 34

y

x
0 x

y

ℱ"

ℱ#[%]

ℱ#[']

ℱ#[(]

ℱ#[)]

ℱ#[*]

With respect to the robot start
pose:
Where is the robot now?

Two approaches – same result:

• Geometry (easy in 2D)
• Transforms (better for 3D)

ℱ#[+] : The Frame of reference
(the local coordinate system) of the
Robot at the time X

Use of robot frames ℱ#[+]

Robotics ShanghaiTech University - SIST - 21.09.2016 35

y

x
0 x

y

ℱ"

ℱ#[%]

ℱ#[']

ℱ#[(]

ℱ#[)]

ℱ#[*]

𝒪# + : Origin of ℱ#[+]
(coordinates (0, 0)

𝒪# + P : position vector from 𝒪# + to

point P -
𝑥
𝑦

• Object P is observed at times 0 to 4
• Object P is static (does not move)
• The Robot moves

(e.g. ℱ# ' ≠ ℱ#[(])
• => (x, y) coordinates of P are

different in all frames, for example:
• 𝒪# ' P 		≠ 𝒪# (PP

Position, Orientation & Pose

Robotics ShanghaiTech University - SIST - 21.09.2016 36

x

y

ℱ#[']

ℱ#[(]

• Position:
•

𝑥
𝑦 coordinates	of	any	object	or	point	(or	another	
frame)

• with	respect	to	(wrt.)	a	specified	frame

• Orientation:
• Θ angle	of	any	oriented	object	(or	another	

frame)	
• with	respect	to	(wrt.)	a	specified	frame

• Pose:

•
𝑥
𝑦
Θ

position	and	orientation	of	any	oriented	

object
• with	respect	to	(wrt.)	a	specified	frame

𝒪# (

𝒪# '

𝑥
𝑦 ≈ 4.5

3.2

Θ ≈ 30°

1 5

1

5

Translation, Rotation & Transform

Robotics ShanghaiTech University - SIST - 21.09.2016 37

• Translation:
•

𝑥
𝑦 difference,	change,	motion	from	one	reference	
frame	to	another	reference	frame

• Rotation:
• Θ difference	in	angle,	rotation	between	one	

reference	frame	and	another	reference	frame

• Transform:

•
𝑥
𝑦
Θ

difference,	motion	between	one	reference	

frame	and	another	reference	frame

x

y

ℱ#[']

ℱ#[(]

𝒪# (

𝒪# '

𝑡#[(]
' ≈ 4.5

3.2

1 5

1

5

𝑅	(Θ ≈ 30°)#[(]
'

Position & Translation, Orientation & Rotation

Robotics ShanghaiTech University - SIST - 21.09.2016 38

x

y

ℱ#[']

ℱ#[(]

• ℱ#[+] :	Frame	of	reference	of	the		robot	at	time	X
• Where	is	that	frame	ℱ#[+] ?

• Can	only	be	expressed	with	respect	to	(wrt.)	
another	frame	(e.g.	global	Frame	ℱ")	=>

• Pose	of	ℱ#[+] wrt.	ℱ"

• 𝒪# + : Origin of ℱ#[+]

• 𝒪# + 𝒪# +`(:	Position of	ℱ#[+`(] wrt.	ℱ#[+]

to	𝒪# +`(wrt.	ℱ#[+]

≜ 𝑡#[+`(]
# + :	Translation

• The	angle	𝛩 between	the	x-Axes:
• Orientation of		ℱ#[+`(] wrt.	ℱ#[+]

≜ 𝑅#[+`(]
# + :	Rotation of	ℱ#[+`(] wrt.	ℱ#[+]

𝒪# (

𝒪# '

𝑡#[(]
' ≈ 4.5

3.2

1 5

1

5

𝑅	(Θ ≈ 30°)#[(]
'

Transform

Robotics ShanghaiTech University - SIST - 21.09.2016 39

x

y

ℱ#[']

ℱ#[(]

• 𝑡#[+`(]
# + :	Translation

• Position	vector	(x,	y)	of	𝑅 𝑋 + 1 wrt.	
𝑅 𝑋

• 𝑅#[+`(]
# + :	Rotation

• Angle	(𝛩)	of	𝑅 𝑋 + 1 wrt.	𝑅 𝑋

• Transfrom: T		 ≡ 		
𝑡#[+`(]

+

𝑅#[+`(]
+#[+`(]

#[+]

𝒪# (

𝒪# '

𝑡#[(]
' ≈ 4.5

3.2
𝑅	(Θ ≈ 30°)#[(]

'

1 5

1

5

T#[(]
# ' 	≈ 	

4.5
3.2
30°

Geometry approach to Odometry

Robotics ShanghaiTech University - SIST - 21.09.2016 40

We want to know:
• Position of the robot (x, y)
• Orientation of the robot (Θ)

• => together: Pose
𝑥
𝑦
Θ

With respect to (wrt.) ℱ" : The global frame; global
coordinate system

ℱ#['] = ℱ" ⇒ 	 ℱ#['] =
0
0
0

"

ℱ#[(]" = T#[(]
# ' ≈ 	

4.5
3.2
30°

Blackboard: T#[%]
# (≈ 	

2
3
60°

x

y

ℱ#[']

ℱ#[(]

𝒪# '

𝑡#[(]
' ≈ 4.5

3.2

1 5

1

5

T#[(]
# ' 	≈ 	

4.5
3.2
30°

𝑅	(Θ ≈ 30°)#[(]
'

𝒪# (

Mathematical approach: Transforms

Robotics ShanghaiTech University - SIST - 21.09.2016 41

y

x
0 x

y

𝐓#[(]
#[']

ℱ"

ℱ#[%]

ℱ#[']

ℱ#[(]

ℱ#[)]

ℱ#[*]

often: ℱ" =m ℱ#['] 	⇒ 	 𝐓#[']
" 	= 𝑖𝑑

𝐓#[%]
#[(]

𝐓#[)]
#[%]

𝐓#[*]
#[)] Chaining	of	Transforms

𝐓	 = 𝐓		#[+]
" 𝐓		#[+`(]

#[+]
#[+`(]

"

𝐓 =	?#[*]
"

Where is the Robot now?

The pose of ℱ#[+] with respect to ℱ"
(usually = ℱ#[']) is the pose of the robot
at time X.

This is equivalent to 𝐓	#[+]
"

Affine Transformation
• Function between affine spaces. Preserves:

• points,
• straight lines
• planes
• sets of parallel lines remain parallel

• Allows:
• Interesting for Robotics: translation, rotation, (scaling),

and chaining of those
• Not so interesting for Robotics: reflection, shearing,

homothetic transforms

• Rotation and Translation:
cos 𝜃 sin 𝜃 𝑋
− sin 𝜃 cos 𝜃 𝑌
0 0 1

Robotics ShanghaiTech University - SIST - 21.09.2016 42

Transform

Robotics ShanghaiTech University - SIST - 21.09.2016 43

Transform
between two
coordinate frames:

cos 𝜃 − sin 𝜃 tst
u

sin 𝜃 cos 𝜃 tvt
u

0 0 1

Transform: Operations

Robotics ShanghaiTech University - SIST - 21.09.2016 44

Transform between two coordinate
frames (chaining, compounding):

Inverse of a Transform :

Relative (Difference) Transform :

See: Quick Reference to Geometric Transforms in Robotics by Kaustubh Pathak on the webpage!

Chaining :

Robotics ShanghaiTech University - SIST - 21.09.2016 45

𝐓	 = 𝐓		#[+]
" 𝐓		#[+`(]

#[+] ≡ 	
R# +

" 		 𝑡# +`(
+ + 𝑡# +

"

R		 R# +`(
+

+
" = 	

𝑡#[+`(]
"

R#[+`(]
"#[+`(]

"

𝑡#[+`(]
"
w

𝑡#[+`(]
"
x

1
= 	

cos 𝜃#[+]
" − sin 𝜃#[+]

" ts#[+]
"

sin 𝜃#[+]
" 			cos 𝜃#[+]

" tv#[+]
"

0 0 1
	

ts#[+`(]
#[+]

tx#[+`(]
#[+]

1

In 2D Translation:

𝜃#[+`(]
" = 𝜃#[+]

" + 𝜃#[+`(]
#[+]

R# +`(
" 	= 	

cos 𝜃#[+`(]
" −sin 𝜃#[+`(]

"

sin 𝜃#[+`(]
" 			cos 𝜃#[+`(]

" =
cos 𝜃#[+]

" −sin 𝜃#[+]
"

sin 𝜃#[+]
" 			cos 𝜃#[+]

"

cos 𝜃#[+`(]
#[+] −sin 𝜃#[+`(]

#[+]

sin 𝜃#[+`(]
#[+] 			cos 𝜃#[+`(]

#[+]

In 2D Rotation:

In 2D Rotation (simple):

In ROS
• First Message at time 97 : G
• Message at time 103 : X
• Next Message at time 107 : X+1

Robotics ShanghaiTech University - SIST - 21.09.2016 46

𝐓	 = 𝐓		#[+]
" 𝐓		#[+`(]

#[+]
#[+`(]

"

𝑡#[+`(]
#[+]

x

𝑡#[+`(]
#[+]

w

Θ#[+`(]
#[+]

3D Rotation
• Euler angles: Roll, Pitch, Yaw

• L Singularities
• Quaternions:

• Concatenating rotations is computationally faster
and numerically more stable

• Extracting the angle and axis of rotation is
simpler

• Interpolation is more straightforward
• Unit Quaternion: norm = 1
• Scalar (real) part: 𝑞' , sometimes 𝑞z
• Vector (imaginary) part: q
• Over determined: 4 variables for 3 DoF

Robotics ShanghaiTech University - SIST - 21.09.2016 47

i2 = j2 = k2 = ijk = −1

Transform in 3D

Robotics ShanghaiTech University - SIST - 21.09.2016 48

𝐓𝐀u = Rtu ttu
0(s) 1

	= 	
ttu

Θtu
=

ttu

q}tu

Rotation Matrix 3x3

yaw = α, pitch = β, roll = γ

Θ ≜ 𝜃~, 𝜃�, 𝜃x
�

t
u

Matrix Euler Quaternion

In ROS: Quaternions! (w, x, y, z)
Uses Bullet library for Transforms

Wheel Kinematic Constraints: Assumptions
• Movement on a horizontal plane
• Point contact of the wheels
• Wheels not deformable
• Pure rolling

• vc = 0 at contact point
• No slipping, skidding or sliding
• No friction for rotation around contact point
• Steering axes orthogonal to the surface
• Wheels connected by rigid frame (chassis)

Robotics

r×j!

v

P

YR

XR

q

YI

XI

49ShanghaiTech University - SIST - 21.09.2016

Forward Kinematic Model: Geometric Approach

Robotics 50ShanghaiTech University - SIST - 21.09.2016

Inverse of R => Active and Passive Transform:
http://en.wikipedia.org/wiki/Active_and_passive_transformation

Mobile Robot Kinematics: Non-Holonomic Systems

• Non-holonomic systems
• differential equations are not integrable to the final position.
• the measure of the traveled distance of each wheel is not sufficient to

calculate the final position of the robot. One has also to know how this
movement was executed as a function of time.

s1L s1R

s2L

s2R

yI

xI

x1, y1

x2, y2

s1

s2

s1=s2 ; s1R=s2R ; s1L=s2L

but: x1 ≠ x2 ; y1 ≠ y2

Robotics 51ShanghaiTech University - SIST - 21.09.2016

