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Algorithm 3: RANSAC
• Acronym of Random Sample Consensus.
• It is a generic and robust fitting algorithm of models in the 

presence of outliers (points which do not satisfy a model)
• RANSAC is not restricted to line extraction from laser data but it 

can be generally applied to any problem where the goal is to 
identify the inliers which satisfy a predefined mathematical model.

• Typical applications in robotics are: line extraction from 2D range 
data (sonar or laser); plane extraction from 3D range data, and 
structure from motion

• RANSAC is an iterative method and is non-deterministic in that 
the probability to find a line free of outliers increases as more 
iterations are used

• Drawback: A nondeterministic method, results are different 
between runs.
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Algorithm 3: RANSAC
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Algorithm 3: RANSAC
• Select sample of 2 
points at random
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Algorithm 3: RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit 
the data in the 
sample
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RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each 
data point
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Algorithm 3: RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis
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Algorithm 3: RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling
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Algorithm 3: RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling
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Algorithm 3: RANSAC ALL-INLIER SAMPLE
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1. Initialize accumulator H to all zeros
2. For each edge point (x,y) in the image

• For θ = 0 to 180
• ρ = x cos θ + y sin θ
• H(θ, ρ) = H(θ, ρ) + 1

• end
end

3. Find the values of (θ, ρ) where H(θ, ρ) is a local maximum
4. The detected line in the image is given by ρ = x cos θ + y 

sin θ

Algorithm 4: Hough-Transform
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Global Map

Perception Motion Control
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Real World
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Local Map

Introduction to Autonomous Mobile Robots pages 142ff



Computer Vision
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Origins of Computer Vision
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Connection to other disciplines
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Applications of Computer Vision
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Applications of Computer Vision
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Image
• Image : a two-dimensional array of pixels
• The indices [i, j] of pixels : integer values that specify the rows and columns in pixel 

values
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Digital Color Camera
• Bayer Pattern:

• 50% green, 25% red and 25% blue =>
• RGBG or GRGB or  RGGB.
• 1 Byte per square
• 4 squared per 1 pixel
• More green: eyes are more sensitive to green (nature!)

A micrograph of the corner of the photosensor 
array of a ‘webcam’ digital camera. 
(Wikimedia) 
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How do we see the world?

• Let’s design a camera
• Idea 1:  put a piece of film in front of an object
• Do we get a reasonable image?
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Pinhole camera

• Add a barrier to block off most of the rays
• This reduces blurring
• The opening known as the aperture
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Camera obscura

• Basic principle known to Mozi (470-
390 BC), Aristotle (384-322 BC)

• Drawing aid for artists: described by 
Leonardo da Vinci (1452-1519)

• Depth of the room (box) is the 
effective focal length
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Pinhole camera model

• Pinhole model:
• Captures pencil of rays – all rays through a single point
• The point is called Center of Projection
• The image is formed on the Image Plane

Slide by Steve Seitz
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Home-made pinhole camera 

http://www.debevec.org/Pinhole/

Why so
blurry?
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Shrinking the aperture

• Why not make the aperture as small as possible?
• Less light gets through (must increase the exposure)
• Diffraction effects…

Slide by Steve Seitz

Mobile Robotics ShanghaiTech University - SIST - 15.12.2015 26



Shrinking the aperture
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Solution: adding a lens

• A lens focuses light onto the film
• Rays passing through the center are not deviated

Mobile Robotics ShanghaiTech University - SIST - 15.12.2015 28



Solution: adding a lens

• A lens focuses light onto the film
• Rays passing through the center are not deviated
• All parallel rays converge to one point on a plane located at the focal 

length f
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Solution: adding a lens

• A lens focuses light onto the film
• There is a specific distance at which objects are “in focus”

• other points project to a “circle of confusion” in the image
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Thin lenses

• Thin lens equation: 

• Any object point satisfying this equation is in focus
• This formula can also be used to estimate roughly the distance to the 

object (“Depth from Focus”)
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Pin-hole approximation
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Perspective camera

C = optical center = center of the lens

Image plane (CCD)

Pin-hole Model

§ For convenience, the image plane is usually represented in front so that the 
image preserves the same orientation (i.e. not flipped)

§ Notice: a camera does not measure distances but angles! Therefore it is 
a “bearing sensor”

α
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Perspective Projection onto the image plane
§ To project a 3D scene point P = (x,y,z) [meters] onto the 

camera image plane p=(u,v) [pixels] we need to consider:

§ Pixelization: size of the pixel and position of the CCD 
with respect to the optical center

§ Rigid body transformation between camera and scene

§ u = v = 0: where z-Axis passes trhough center of lens – z-
Azis prependicular to lens (coincident with optical axis)

Simple case 
(without pixelization)

With pixelization
u0, v0 are the coordinates 

of the optical center
Ku and Kv are in [pxl/m]
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§ Observe that we can also rewrite this 

in matrix form ( λ - homogeneous coordinates)

Projection onto the image plane
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Or alternatively
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Projection onto the image plane
§ Rigid body transformation from the World to 

the Camera reference frame
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Radial distortion

Barrel distortion Pincushion distortion
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Camera Calibration

§ How many parameters do we need to model a camera?
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§ 5 “intrinsic” parameters: αu, α v, u0, v0, k1

§ Camera pose?
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Camera Calibration: how does it work?
§ Calibration: measuring accurately intrinsic + extrinsic parameters of the camera model. 
§ Parameters: govern mapping from scene points to image points
§ Idea: known: 

§ pixel coordinates of image points p
§ 3D coordinates of the corresponding scene points P
§ => compute the unknown parameters A, R, T by solving the perspective projection equation
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How do we measure distances with cameras?
§ Structure from stereo (Stereo-vision): 

Øuse two cameras with known relative position and orientation

§ Structure from motion: 
Øuse a single moving camera: both 3D structure and camera motion 

can be estimated up to a scale
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Stereo Vision

Right Image

3D Object

Left Image

• Allows to reconstruct a 3D object from two images taken at different locations
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Disparity in the human retina
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Stereo Vision - The simplified case

Distance

• b = baseline, distance between the optical centers of the two cameras
• f = focal length
• 𝒖𝒍-𝒖𝒓 = disparity

• The simplified case is an ideal case. It assumes that both cameras 
are identical and are aligned on a horizontal axis
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Stereo Vision: how to improve accuracy?

1. Distance is inversely proportional to disparity (ul-ur)
• closer objects can be measured more accurately 

2. Disparity is proportional to b
• For a given disparity error, the accuracy of the depth estimate 

increases with increasing baseline b.
• However, as b is increased, some objects may appear in one 

camera, but not in the other.
3. Increasing image resolution improves accuracy
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Stereo Vision – the general case
• Two identical cameras do not exist in nature!
• Aligning both cameras on a horizontal axis is very hard, also with the most expensive stereo 

cameras!

• In order to be able to use a stereo camera, we need first to estimate the relative pose between 
the cameras, that is, Rotation and Translation

• However, as the two cameras are not identical, we need to estimate:
focal length, image center, radial distortion
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Stereo Vision – the general case
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§ To estimate the 3D position we just construct the system of equations of the 
left and right camera
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Stereo Vision: Correspondence Problem
§ Matching between points in the two images which are projection of the 

same 3D real point
§ Correspondence search could be done by comparing the observed 

points with all other points in the other image. Typical similarity measures 
are the Correlation and image Difference. 

§ This image search can be computationally very expensive! Is there a way 
to make the correspondence search 1 dimensional?
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Correspondence Problem: Epipolar Constraint
• The correspondent of a point in an image must lie on a line in the other image, 

called Epipolar Line

Mobile Robotics ShanghaiTech University - SIST - 15.12.2015 48



Correspondence Problem: Epipolar Constraint
§ Thanks to the epipolar constraint, conjugate points can be searched 

along epipolar lines: this reduces the computational cost to 1 dimension!
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• Determines a transformation of each image plane so that pairs of conjugate 
epipolar lines become collinear and parallel to one of the image axes  (usually 
the horizontal one)

Rotation

Focal lengths

Lens Distortion

Translation

Epipolar Rectification
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Stereo Vision Output 1 – Disparity map

Left image Right image

Disparity map

• Find the correspondent points of all image 
pixels of the original images

• For each pair of conjugate points compute 
the disparity d = v-v’

• d(x,y) is called Disparity map. 

§ Disparity maps are usually visualized 
as  grey-scale images. Objects that are 
closer to the camera appear lighter, 
those who are further appear darker.
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Totally:

10 parameters for each camera need to be estimated

PLUS
5 parameters for each camera in order to compensate for lens 

distortion (radial & tangential distortion)
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Estimates the parameters that manage the 3D – 2D transformation

Stereo Camera Calibration
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Estimates the parameters that manage the 3D – 2D transformation

Stereo Camera Calibration
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Totally:

10 parameters for each camera need to be estimated
Estimates the parameters that manage the 3D – 2D transformation

Stereo Camera Calibration
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PLUS
5 parameters for each camera in order to compensate for lens 

distortion (radial & tangential distortion)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅++

++⋅⋅
+⎥
⎦

⎤
⎢
⎣

⎡
⋅+++=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅++

++⋅⋅
+⎥
⎦

⎤
⎢
⎣

⎡
⋅+++=⎥

⎦

⎤
⎢
⎣

⎡

vukcvkc

ukcvukc
v
u

kckckc
v
u

vukcvkc

ukcvukc
v
u

kckckc
v
u

RR

RR
RRR

Rd

Rd

LL

LL
LLL

Ld

Ld

,4
22

,3

22
,4,36

,5
4

,2
2

,1
,

,

,4
22

,3

22
,4,36

,5
4

,2
2

,1
,

,

2)2(

)2(2
)1(

2)2(

)2(2
)1(

ρ

ρ
ρρρ

ρ

ρ
ρρρ

Stereo Camera Calibration

Mobile Robotics ShanghaiTech University - SIST - 15.12.2015 56



Stereo Vision - summary

1. Stereo camera calibration -> compute camera relative pose
2. Epipolar rectification -> align images
3. Search correspondences
4. Output: compute stereo triangulation or disparity map
5. Consider  baseline and image resolution to compute accuracy!

Right Image

3D Object

Left Image
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