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PRESENTATION
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Sildes from Roland Siegwart and Davide Scaramuzza, ETH Zurich
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Connection to other disciplines
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Image
• Image : a two-dimensional array of pixels
• The indices [i, j] of pixels : integer values that specify the rows and columns in pixel 

values
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Digital Color Camera
• Bayer Pattern:

• 50% green, 25% red and 25% blue =>
• RGBG or GRGB or  RGGB.
• 1 Byte per square
• 4 squared per 1 pixel
• More green: eyes are more sensitive to green (nature!)

A micrograph of the corner of the photosensor 
array of a ‘webcam’ digital camera. 
(Wikimedia) 
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Pinhole camera

• Add a barrier to block off most of the rays
• This reduces blurring
• The opening known as the aperture
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Pinhole camera model

• Pinhole model:
• Captures pencil of rays – all rays through a single point
• The point is called Center of Projection
• The image is formed on the Image Plane

Slide by Steve Seitz
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Thin lenses

• Thin lens equation: 

• Any object point satisfying this equation is in focus
• This formula can also be used to estimate roughly the distance to the 

object (“Depth from Focus”)
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Perspective Projection onto the image plane
§ To project a 3D scene point P = (x,y,z) [meters] onto the 

camera image plane p=(u,v) [pixels] we need to consider:

§ Pixelization: size of the pixel and position of the CCD 
with respect to the optical center

§ Rigid body transformation between camera and scene

§ u = v = 0: where z-Axis passes trhough center of lens – z-
Azis prependicular to lens (coincident with optical axis)

Simple case 
(without pixelization)

With pixelization
u0, v0 are the coordinates 

of the optical center
Ku and Kv are in [pxl/m]
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§ Observe that we can also rewrite this 

in matrix form ( λ - homogeneous coordinates)

Projection onto the image plane
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Or alternatively

Mobile Robotics ShanghaiTech University - SIST - 18.12.2015 12



Projection onto the image plane
§ Rigid body transformation from the World to 

the Camera reference frame
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Radial distortion

Barrel distortion Pincushion distortion
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Camera Calibration

§ How many parameters do we need to model a camera?
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§ 5 “intrinsic” parameters: αu, α v, u0, v0, k1

§ Camera pose?
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How do we measure distances with cameras?
§ Structure from stereo (Stereo-vision): 

Øuse two cameras with known relative position and orientation

§ Structure from motion: 
Øuse a single moving camera: both 3D structure and camera motion 

can be estimated up to a scale
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Stereo Vision

Right Image

3D Object

Left Image

• Allows to reconstruct a 3D object from two images taken at different locations
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Stereo Vision - The simplified case

Distance

• b = baseline, distance between the optical centers of the two cameras
• f = focal length
• 𝒖𝒍-𝒖𝒓 = disparity

• The simplified case is an ideal case. It assumes that both cameras 
are identical and are aligned on a horizontal axis
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Stereo Vision: Correspondence Problem
§ Matching between points in the two images which are projection of the 

same 3D real point
§ Correspondence search could be done by comparing the observed 

points with all other points in the other image. Typical similarity measures 
are the Correlation and image Difference. 

§ This image search can be computationally very expensive! Is there a way 
to make the correspondence search 1 dimensional?
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Correspondence Problem: Epipolar Constraint
• The correspondent of a point in an image must lie on a line in the other image, 

called Epipolar Line
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• Determines a transformation of each image plane so that pairs of conjugate 
epipolar lines become collinear and parallel to one of the image axes  (usually 
the horizontal one)

Rotation

Focal lengths

Lens Distortion

Translation

Epipolar Rectification

Mobile Robotics ShanghaiTech University - SIST - 18.12.2015 21



Stereo Vision - summary

1. Stereo camera calibration -> compute camera relative pose
2. Epipolar rectification -> align images
3. Search correspondences
4. Output: compute stereo triangulation or disparity map
5. Consider  baseline and image resolution to compute accuracy!

Right Image

3D Object

Left Image

Mobile Robotics ShanghaiTech University - SIST - 18.12.2015 22



Structure from motion
• Given image point correspondences, xi n xi

/,determine R and T
• Rotate and translate camera until stars of rays intersect
• At least 5 point correspondences are needed

x x/

C
C /
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Multiple-view structure from motion

x1j

x2j

x3j

Xj

P1

P2

P3
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• Results of Structure from motion from 2 million user images 
from flickr.com

Multiple-view structure from motion
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Optical Flow
• It computes the motion vectors of all pixels in the image (or 

a subset of them to be faster)

• Applications include collision avoidance
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Color Tracking
• Motion estimation of ball and robot for soccer playing using color tracking
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Color segmentation with fixed thesholds
• Simple: constant thresholding: 

• selection only iff RGB values (r,g,b) simultaneously in R, G, and B ranges:
• six thresholds [Rmin,Rmax], [Gmin,Gmax], [Bmin,Bmax]:

• Alternative: YUV color space 
• RGB values encode intensity of each color
• YUV: 
• U and V together color (or chrominance) 
• Y brightness (or luminosity) 
• bounding box in YUV space => greater stability wrt. changes in illumination
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VISION
Image Processing

"Position" 
Global Map

Perception Motion Control

Cognition

Real World
Environment

Localization

PathEnvironment Model
Local Map



Image filtering
• Filer: frequency domain processing where “filtering” refers to the process of accepting or 

rejecting certain frequency components. E.g.:
• Lowpass filer: pass only low frequencies  => blur (smooth) an image
• spatial filters (also called masks or kernels): same effect

Lowpass filtered image Highpass filtered image
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standard test picture 
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Spatial filters
• Let Sxy denote the set of coordinates of a neighborhood centered on an arbitrary point (x,y) in an image I
• Spatial filtering generates a corresponding pixel at the same coordinates in an output image I’ where the value of that 

pixel is determined by a specified operation on the pixels in Sxy

• For example, an averaging filter is: 
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Linear filters
• In general, linear spatial filtering of an image with a filter w of size m x n is given by the expression

Type	equation	here.
Type	equation	here.

where m=2a+t and n=2b+1 are usually assumed odd integers. The filter w is also called kernel, mask, or window.

• As observed in this formula, linear filtering is the process of moving a filter mask over the entire image and computing 
the sum of products at each location. In signal processing, this particular operation is also called correlation with the 
kernel w or alternatively, convolution with the kernel w

• The operation of convolution with the kernel w can be written in a more compact way as

where * denotes the operator of convolution
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Smoothing filters (1)
• A constant averaging filter yields the standard average of all the pixels in the mask. For a 3x3 mask this writes:

• where notice that all the coefficients sum to 1. This normalization is important to keep the same value as the original 
image if the region by which the filter is multiplied is uniform.

ShanghaiTech University - SIST - 18.12.2015

This example was generated with a 21x21 mask
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Smoothing filters (2)
• A Gaussian averaging write as

• To generate, say, a 3x3 filter mask from this function, we sample it about its center. For example, with 
σ=0.85, we get

• Very popular: Such low-pass filters effectively removes high-frequency noise =>
• First derivative and especially the second derivative of intensity far more stable
• Gradients and derivatives very important in image processing =>
• Gaussian smoothing preprocessing popular first step in computer vision algorithms
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Edge Detection
• Ultimate goal of edge detection 

• an idealized line drawing. 

• Edge contours in the image correspond to important scene contours.
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Edge is Where Change Occurs

• Edges correspond to sharp changes of intensity 
• Change is measured by 1st derivative in 1D
• Biggest change, derivative has maximum magnitude
• Or 2nd derivative is zero.
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Image gradient
• The gradient of an image: 

• The gradient points in the direction of most rapid change in intensity

§ The gradient direction is:

§ The gradient magnitude is:
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The discrete gradient
• How can we differentiate a digital image f[x,y]?

• Option 1:  reconstruct a continuous image, then take gradient
• Option 2:  take discrete derivative (finite difference)

§ How to implement this as a spatial filter?

w
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Gradient Edge Detectors
• Roberts

• Prewitt

• Sobel
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Effects of noise
• Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

§ Where is the edge?
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§ Where is the edge?  

Solution:  smooth first

§ Look for peaks in 
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Derivative theorem of convolution

• This saves us one operation:
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The Canny Edge Detector
• Consider  

Laplacian of Gaussian
operator

§ Where is the edge?  § Zero-crossings of bottom graph
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2D Canny edge detector

• Two perpendicular filters:
• Convolve imge 𝐼(𝑥, 𝑦) with 𝑓;(𝑥, 𝑦) and 𝑓<(𝑥, 𝑦) – obtaining 𝑅;(𝑥, 𝑦) and 𝑅<(𝑥, 𝑦)
• Use square of gradient magnitude: 𝑅 𝑥, 𝑦 = 	𝑅;? 𝑥, 𝑦 + 𝑅<? 𝑥, 𝑦
• Mark peaks in 𝑅 𝑥, 𝑦 above a threshold
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The Sobel edge detector

original image (Lena image)
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The Sobel edge detector

norm of the gradient
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The Sobel edge detector

thresholding
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The Sobel edge detector

thinning
(non-maxima suppression)
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IMAGE FEATURES

• Lines
• Points

•Harris
•SIFT



Example: Build a Panorama

This panorama was generated using AUTOSTITCH (freeware), available at
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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How do we build panorama?
• We need to match (align) images
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Matching with Features
• Detect feature points in both images
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Matching with Features
• Detect feature points in both images
• Find corresponding pairs
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Matching with Features
• Detect feature points in both images
• Find corresponding pairs
• Use these pairs to align images
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Matching with Features
• Problem 1:

• Detect the same point independently in both images

no chance to match!

We need a repeatable detector
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Matching with Features
• Problem 2:

• For each point correctly recognize the corresponding one

?

We need a reliable and distinctive descriptor
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More motivation…  
• Feature points are used also for:

• Robot navigation 
• Object recognition
• Image alignment (panoramas)
• 3D reconstruction
• Motion tracking
• Indexing and database retrieval -> Google Images 
… other
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Most Famous Feature Detectors
• Overview

• Harris Detector (1988)

• SIFT Detector (2004)
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HARRIS CORNER DETECTOR

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



Finding Corners

• Key property: in the region around a corner, image gradient 
has two or more dominant directions

• Corners are repeatable and distinctive
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• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

• => define a corner response function

“edge”:
no change along the 

edge direction

“corner”:
significant change in 

all directions

“flat” region:
no change in all 

directions

The basic idea
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How do we implement this?
• Let I be a grayscale image. Consider taking an image patch centered on (u,v) and shifting it 

by (x,y). The Sum of Squared Differences between these two patches is given by:

• can be approximated by a first order Taylor expansion. Let    and     be 
the partial derivatives of I, such that

• This produces the approximation

• Which can be written in a matrix form as

),( yvxuI ++ xI yI
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How do we implement this?

• M is the “second moment matrix”

• Since M is symmetric, we can rewrite M as

where λ1 and λ2 are the eingenvalues of M
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How do we implement this?
• As mentioned before, a corner is characterized by a large variation of in all directions of the 

vector (x,y). The Harris detector analyses the eigenvalues of M to decide if we are in 
presence of a corner or not.

• We can visualize M as an ellipse with axis lengths determined by the eigenvalues and 
orientation determined by R
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Visualization of second moment matrices
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Visualization of second moment matrices
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Corner response function
Based on the magnitudes of the eigenvalues, the 
following inferences can be made based on this 
argument:
•If both λ1 and λ2 are small, SSD is almost 
constant in all directions (i.e. we are in presence 
of a flat region).
•If either λ1 >> λ2 or λ2 >> λ1 , we are in presence 
of an edge: SSD has a large variation only in one 
direction, which is the one perpendicular to the 
edge.
•If both λ1 and λ2 are large, SSD has large 
variations in all directions and then we are in 
presence of a corner.

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;

“Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

λ1

λ2

Because the calculation of the eigenvalues is computationally expensive, Harris and Stephens
suggested the use of the following “cornerness function” instead:

Where k is a between 0.04 and 0.15

§ Finally, the last step of the Harris corner detector consists in extracting the local maxima of the
cornerness function
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Harris Detector: Workflow
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Harris Detector: Workflow
• Compute 

corner 
response 
R
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• Find
points 
with 
large 
corner 
response: 
R > 
threshold

Harris Detector: Workflow
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• Take only 
the points 
of local 
maxima 
of R

Harris Detector: Workflow
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Harris Detector: Workflow
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Harris detector: properties
§ How does the Harris detector behaves to image transformations?
§ Will we be able to re-detect the same corners under 

§ Rotations
§ View-point changes
§ Zoom changes
§ Illumination changes? 

§ In order to answer these questions, we need a model of these 
transfomations.

§ The detector can then be modified to be invariant to such 
transformations
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Models of Image Change
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Harris Detector: Some Properties
• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some Properties
• But: non-invariant to image scale!

All points will be 
classified as edges

Corner !
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Harris Detector: Some Properties
• Quality of Harris detector for different scale changes

Repeatability rate:
# correspondences

# possible correspondences
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Summary on Harris properties
• Harris detector is an approach for detecting and extracting corners (i.e. points 

with high intensity changes in all directions)

• The detection is Invariant to 
• Rotation
• Linear intensity changes
• However, to make the matching invariant to these we need an opprtune matching criterion 

(for example, SSD in not Rotation nor affine invariant!)

• The detection is NOT invariant to 
• Scale changes
• Geometric affine changes (Intuitively, an affine transformation distorts the neighborhood of the feature along the x and y directions and, 

accordingly, a corner can get reduced or increased its curvature)
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Scale Invariant Detection
• Consider regions (e.g. circles) of different sizes around a point
• Regions of corresponding sizes will look the same in both images
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Scale Invariant Detection
• The problem: how do we choose corresponding circles independently in 

each image?

Mobile Robotics ShanghaiTech University - SIST - 18.12.2015 80



Scale Invariant Detection
• Solution:

• Design a function on the region (circle), which is “scale invariant” (the same for 
corresponding regions, even if they are at different scales)

• For a point in one image, we can consider it as a function of region size (circle radius) 

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same.

scale = 1/2
f

region size

Image 1 f

region size

Image 2
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Scale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!
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Scale Invariant Detection
• A “good” function for scale detection:

has one stable sharp peak

• For usual images: a good function would be a one which responds to contrast (sharp 
local intensity change)

f

region size

bad

f

region size

bad

f

region size

Good !
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Scale Invariant Detection
• Functions for determining scale

2 2

21 2
2

( , , )
x y

G x y e σ
πσ

σ
+

−

=

( , , ) ( , , )DoG G x y k G x yσ σ= −

Kernel Imagef = ∗
Kernels:

where Gaussian

Note: This kernel is invariant to 
scale and rotation

(Difference of Gaussians)
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Scale Invariant Detectors
• SIFT

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
D

oG
 →
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Scale Invariant Detectors
• Experimental evaluation of detectors 

w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences
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What is SIFT ?
• Scale Invariant Feature Transform (SIFT) is an approach for detecting and 

extracting local feature descriptors that are reasonably invariant to changes in:
• rotation
• scaling
• small changes in viewpoint
• illumination

Mobile Robotics ShanghaiTech University - SIST - 18.12.2015 87



Invariant Local Features
• Image content is transformed into local feature coordinates that are invariant 

to translation, rotation, scale, and slight view-point and illumination changes
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SIFT descriptor
• SIFT matching features between different images invariant to:

• Rotation
• Small image scale
• Small view point changes

• This is made possible by the use of an opportune feature descriptor 
(remember, Harris does not use a descriptor for matching)

• What is a descriptor? A descriptor is a “description”, identity card, which allows 
to recognize a given feature uniquely among many others!
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Generation of keypoint descriptor
• keypoint descriptor: computing gradient magnitude and orientation 

at each image sample point in a region around the keypoint location 
• Samples are accumulated into orientation histograms with the length 

of each bin corresponding to the sum of the gradient magnitudes 
near that direction within the region.

• The descriptor is therefore a vector containing the values of all the 
orientations histogram entries

• This vector is normalized to enhance invariance to changes in 
illumination

• Peaks in the histogram correspond to dominant orientations. If more 
than one peak is found, a separated feature is assigned to the same 
point location.

• All the properties of the keypoint are measured relative to the 
keypoint orientation, this provides invariance to rotation.

0 2π

0 2π
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Key point localization
• Final keypoints with selected orientation and scale
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Feature stability to view point change
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Planar recognition

• Planar surfaces can be reliably recognized at 
a rotation of 60° away from the camera

• Only 3 points are needed for recognition
• But objects need to possess enough texture 

(i.e. no monochrome objects!)
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Recognition under occlusion
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Place recognition
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Multiple panoramas from an unordered image set
SIFT is used in current consumer cameras and smart phones to build 

panoramas from multiple shots!
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