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Exteroceptive Sensor Noise

• Sensor noise is mainly influenced by environment 
e.g. surface, illumination …

• and by the measurement principle itself
e.g. interference two Kinects

• Sensor noise drastically reduces the useful information of sensor readings. 
The solution is:
• to model sensor noise appropriately
• to take multiple readings into account
• employ temporal and/or multi-sensor fusion 
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Effector Noise: Odometry, Deduced Reckoning

• Odometry and dead reckoning: 
Position update is based on proprioceptive sensors
• Odometry: wheel sensors only
• Dead reckoning: also heading sensors

• The movement of the robot, sensed with wheel encoders and/or heading 
sensors is integrated to the position.
• Pros: Straight forward, easy
• Cons: Errors are integrated -> unbound

• Using additional heading sensors (e.g. gyroscope) might help to reduce the 
cumulated errors, but the main problems remain the same.
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Odometry:Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!
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Odometry:Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!
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Odometry:example of non-Gaussian error model

• Note: Errors are not shaped like ellipses!

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford
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Odometry: Calibration of Errors
• The unidirectional square path experiment
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Belief Representation
• How do we represent the robot position, 

where the robot “believes” to be?

• a) Continuous map
with single hypothesis 
probability distribution

• b) Continuous map
with multiple hypothesis
probability distribution

• c) Discretized map
with probability distribution

• d) Discretized topological
map with probability
distribution
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Single-hypothesis Belief – Continuous Line-Map
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Single-hypothesis Belief – 2D Grid and Topological Map
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Grid-based Representation - Multi Hypothesis
Courtesy of W.  Burgard
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Representation of the Environment

• Environment Representation
• Continuous Metric ® x, y, q
• Discrete Metric ® metric grid
• Discrete Topological ® topological grid

• Environment Modeling
• Raw sensor data, e.g. laser range data, grayscale images

• large volume of data, low distinctiveness on the level of individual values
• makes use of all acquired information

• Low level features, e.g. line other geometric features
• medium volume of data, average distinctiveness
• filters out the useful information, still ambiguities

• High level features, e.g. doors, a car, the Eiffel tower
• low volume of data, high distinctiveness
• filters out the useful information, few/no ambiguities, not enough information
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Map Representation:Continuous Line-Based
a) Architecture map
b) Representation with set of finite or infinite lines
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Map Representation: Exact cell decomposition
• Exact cell decomposition - Polygons
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Map Representation: Approximate cell decomposition (1)
• Fixed cell decomposition

• Narrow passages disappear
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• For example: Quadtree

Map Representation: Adaptive cell decomposition (2)
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Map Representation: Occupancy grid
• Fixed cell decomposition: occupancy grid example

• In occupancy grids, each cell may have a counter where 0 indicates that the cell has not been hit by any ranging 
measurements and therefore it is likely free-space. As the number of ranging strikes increases, the cell value is 
incremented and, above a certain threshold, the cell is deemed to be an obstacle

• The values of the cells are discounted when a ranging strike travels through the cell. This allows us to represent 
“transient” (dynamic) obstacles
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Map Building: The Problems
1. Map Maintaining: Keeping track of 

changes in the environment

e.g. disappearing
cupboard

- e.g. measure of belief of each 
environment feature

2. Representation and 
Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

§ probability densities for feature positions
§ Inconsistent map due to motion drift

?
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Cyclic Environments
• Small local error accumulate to arbitrary large global errors!
• This is usually irrelevant for navigation
• However, when closing loops, global error does matter
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Raw Odometry …

Courtesy of S. Thrun
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Scan Matching:
compare to sensor data from previous scan

Courtesy of S. Thrun
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SLAM overview
• Let us assume that the robot 
uncertainty at its initial location 
is zero. 

• From this position, the robot 
observes a feature which is 
mapped with an uncertainty 
related to the exteroceptive
sensor error model
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SLAM overview
• As the robot moves, its pose 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• At this point, the robot observes two 

features and maps them with an 
uncertainty which results from the 
combination of the measurement 
error with the robot pose uncertainty

• From this, we can notice that the 
map becomes correlated with the 
robot position estimate. Similarly, if 
the robot updates its position based 
on an observation of an imprecisely 
known feature in the map, the 
resulting position estimate becomes 
correlated with the feature location 
estimate.
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SLAM overview
• The robot moves again and its 
uncertainty increases under the 
effect of the errors introduced 
by the odometry
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SLAM overview
• In order to reduce its uncertainty, the 

robot must observe features whose 
location is relatively well known. 
These features can for instance be 
landmarks that the robot has already 
observed before. 

• In this case, the observation is called 
loop closure detection.

• When a loop closure is detected, the 
robot pose uncertainty shrinks. 

• At the same time, the map is 
updated and the uncertainty of other 
observed features and all previous 
robot poses also reduce
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The Three SLAM paradigms
• Most of the SLAM algorithms are based on the following three different 

approaches:
• Extended Kalman Filter SLAM: (called EKF SLAM)
• Particle Filter SLAM: (called FAST SLAM)
• Graph-Based SLAM
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EKF SLAM: overview
• Extended state vector yt : robot pose xt + position of all the features mi in the 

map:

• Example: 2D line-landmarks, size of yt = 3+2n : three variables to represent 
the robot pose + 2n variables for the n line-landmarks having vector 
components 

• As the robot moves and takes measurements, the state vector and covariance 
matrix are updated using the standard equations of the extended Kalman filter

• Drawback: EKF SLAM is computationally very expensive.
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• FastSLAM approach
• Using particle filters. 
• Particle filters: mathematical models that represent 

probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 
a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 
randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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Particle Filter SLAM
• FastSLAM approach 

• Particle set:
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FAST SLAM example 

Courtesy of S. Thrun
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FAST SLAM example

Courtesy of S. Thrun
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Graph-Based SLAM (1/3)
• SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
• The nodes of the graph are the robot locations and the features in the map.
• Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative 

position between the robot locations and the features observed from those locations.

Robotics ShanghaiTech University - SIST - Oct 15 2019 36



Graph-Based SLAM (2/3)
• Constraints are not rigid but soft constraints!
• Relaxation: compute the solution to the full SLAM problem =>

• Compute best estimate of the robot path and the environment map. 
• Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can 

then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)

• Significant advantage of graph-based SLAM techniques over EKF SLAM: 

• EKF SLAM: computation and memory for to update and store the covariance matrix is 

quadratic with the number of features.

• Graph-based SLAM: update time of the graph is constant and the required memory is linear 

in the number of features.

• However, the final graph optimization can become computationally costly if the 

robot path is long.
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ADMIN
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Admin
• Projects are 50% of the course score!

• Project time is starting!

• No lecture this Thursday!
• (as every week:) meet with your TA advisor – make appointment!

• Reminder: Project Proposal due Oct 17 (this Thursday); 22:00
• Ask the TA to create repo for your project!

• HW 3 is due Oct 21 (next Monday); 22:00

Robotics ShanghaiTech University - SIST - Oct 15 2019 40


