
西 南 交 通 大 学

本科毕业设计（论文）

Monocular Visual Odometry on the GPU

年 级： 2012 级

学 号： 20122779

姓 名： 侯佳维

专 业： 自动化

指导教师： 汪晓宁

Sören Schwertfeger

二零一六年六月

西南交通大学本科毕业设计（论文）

院系 信息科学与技术学院 专 业 自动化

年级 2012 级 姓 名 侯佳维

题目 Monocular Visual Odometry on the GPU

指导教师

评 语

指导教师 (签章)

评 阅 人

评 语

评 阅 人 (签章)

成 绩

答辩委员会主任 (签章)

 年 月 日

西南交通大学本科毕业设计（论文）

第 I 页

毕业设计（论文）任务书

班 级 自动化 2 班 学生姓名 侯佳维 学 号 20122779

发题日期： 2015 年 11 月 30 日 完成日期：2016 年 6 月 4 日

题 目 Monocular Visual Odometry on the GPU

1、本论文的目的、意义

 One of the main challenges of mobile robotics is to know the location of the robot as it

moves in the environment. This is important to build a map of the environment, to follow a

pre-computed path and to assess the progress towards the high level task goals of the

system. Visual data from cameras provide lots of data with a high update rate. Using this

visual data to estimate the odometry of a moving system and thus estimating its location is

a widely investigated approach in robotics. Achieving a high update rate, preferably with

real time performance, will allow for more accurate localization. Utilizing the Graphics

Processing Unit (GPU) for this computation yields in high processing speeds and high

efficiency. Using and improving state of the art open source software this project will

enable robots to utilize a single camera for efficient and real-time localization.

2、学生应完成的任务

1. Read and understand state of the art literature on visual odometry and write the

respective part of the thesis document.

2. Use available open source software to quickly reach the state of the art.

3. Devise and perform experiments to test the localization accuracy of the system.

4. Improve the theoretical and/ or implementation aspects of the used software packages

with respect to accuracy, usability or speed.

5. Use experiments to measure and document the achieved improvements.

 西南交通大学本科毕业设计（论文）

第 II 页

3、论文各部分内容及时间分配：（共 18 周）

第一部分 Literature research. (3 周)

第二部分 Develop monocular visual odometry system on the GPU using available

open source software. (4 周)

第三部分 Develop and perform experiments. (2 周)

第四部分 Improve certain aspects of the system. (5 周)

第五部分 Document improvements using experiments and finish the thesis. (3 周)

评阅及答辩 (1 周)

备 注

指导教师： 2015 年 11 月 30 日

 2015 年 11 月 30 日

审 批 人： 2015 年 月 日

 西南交通大学本科毕业设计（论文）

第 III 页

Abstract

Monocular visual odometry is an important topic in computer vision, which can apply

in computing the location and path of the robot as it moves in the environment.

This thesis is a study and research about monocular visual odometry as well as

practical implementation and experimentation of its theory. With monocular visual

odometry we can estimate the camera pose transformation between images taken by a

single camera at different points in time.

The algorithm starts by describing the SIFT (Scale-Invariant Feature Transform)

features and using SiftGPU for feature extraction and feature matching. On the basis of a

depth study and research on its mathematical foundation, epipolar geometry, the

fundamental matrix and essential matrix are described and derived as a highlight. Besides,

there is an introduction to camera calibration and the image coordinates normalization.

 The main algorithm of this thesis is the five-point algorithm with RANSAC (Random

Sample Consensus) to exclude outliers. The five-point algorithm, which is calculating the

essential matrix, is using the matched feature points which contain outliers. Also this

calculation does not exclude the pseudo-solutions. Therefore, using a single five-point

algorithm to get the correct essential matrix to get the camera pose transformation is not

reliable. This thesis's code is written by c++ language contained Eigen library,

programming to achieve the five-point algorithm with RANSAC to exclude the outliers of

the feature matching and the wrong roots of the essential matrix. This thesis describes the

algorithm with a lot of space, and explains how to use the epipolar constraint and Sampson

distance to check outliers, this method make the results greatly improved.

 The theories and methods introduced in this thesis have been verified by the

implementation, as can be seen in the tables of the experiments, using the five-point

algorithm with RANSAC can calculate the relative pose transform between two images

taken by a single camera at the same scene reliably.

Keywords: Monocular Visual Odometry; Epipolar Geometry; Five-point Algorithm;

RANSAC; SiftGPU

 西南交通大学本科毕业设计（论文）

第 IV 页

摘 要

单目视觉测程是计算机视觉中的一个重要课题，它可应用于计算机器人的位置和

路径，对机器人所在的环境进行测绘。

本论文是对单目视觉测程的学习研究，以及对理论的实践与实验，即是利用单个

相机在不同瞬间拍摄的图像估计相机的姿态变换。

论文首先介绍了 SIFT（Scale-Invariant Feature Transform）特征，并且使用

了 SiftGPU对图像进行特征提取与匹配。论文在深入学习研究了其数学理论对极几何

的基础上，重点推导描述了基本矩阵和本质矩阵。并介绍了标定相机以及对图像坐标

进行归一化的方法。

本论文最主要的算法是采用 RANSAC (Random Sample Consensus) 排除异常值的五

点算法。由于五点算法使用包含异常值的匹配特征点进行本质矩阵的计算，并且对计

算结果没有进行伪解的排除。因此，要使用单次五点算法来获得正确的表示相机姿态

变换的本质矩阵是不可能的。本论文采用包含了 Eigen 库的 c++代码，编程实现了使

用 RANSAC 进行异常特征点和本质矩阵伪解的排除的五点算法。文中使用了大量篇幅

介绍了该算法，并且介绍了如何使用极线约束和 Sampson距离进行异常值判断，这种

判断使结果正确率大大提高。该论文所述的理论及方法经过本人代码实践，通过验证

实验的数据表格可以看出，使用带 RANSAC 的五点算法可以以高正确率准确地计算出

使用单个相机在同一场景拍的两幅固定图像间相机的相对姿态变换。

关键词：单目视觉测程；对极几何；五点算法；RANSAC；SiftGPU

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Contents

1 Introduction... 1

1.1 The Significance and Background of the Thesis .. 1

1.1.1 The Significance of Monocular Visual Odometry... 1

1.1.2 Current Research Situation at Home and Abroad 2

1.2 Monocular Visual Odometry ... 4

1.2.1 Fundamental .. 4

1.2.2 Method and tools .. 5

1.2.3 The Overall Algorithm Flowchart .. 7

1.3 The Main Content of the Thesis .. 7

1.4 Thesis structural arrangements .. 8

2 Theory and Preparation... 10

2.1 Overview of ROS... 10

2.1.1 What is ROS?... 10

2.1.2 What do we do on ROS? ... 11

2.2 Features Detecting and Matching ... 11

2.2.1 What is SIFT? ... 11

2.2.2 The Purpose of Using SIFT ... 12

2.2.3 Introduction of GPU ... 14

2.2.4 Introduction to SiftGPU 14

2.3 Epipolar Geometry ... 16

2.3.1 Epipolar Geometry ... 16

2.3.2 Epipolar Constraint and Triangulation ... 17

2.4 The Fundamental Matrix .. 18

2.4.1 Overview of Fundamental Matrix .. 18

2.4.2 Geometric Derivation of Fundamental Matrix .. 19

2.4.3 Algebra Derivation of Fundamental Matrix.. 20

1 V�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2.4.4 The Necessary and Sufficient Condition of Fundamental

Matrix .. 21

2.4.5 The Camera Matrix Obtained from the Fundamental Matrix.. 22

2.5 The Essential Matrix.. 23

2.5.1 Camera Calibration... 23

2.5.2 The Essential Matrix.. 27

2.5.3 Recovering R and t from E... 29

2.5.4 Chapter Summary ... 31

3 Five-point Algorithm with RANSAC 32

3.1 Five-point Algorithm... 32

3.1.1 Basic Knowledge ... 32

3.1.2 The Method of Calculating the Essential Matrix .. 33

3.1.3 The Flowchart of the Five-point Algorithm ... 36

3.1.4 Result of Five-point Algorithm... 36

3.2 RANSAC 38

3.2.1 Overview of RANSAC.... 38

3.2.2 Fundamental of RANSAC 39

3.2.3 Parameters.. 39

3.2.4 Algorithm Complexity Analysis of RANSAC 42

3.3 Five-point Algorithm with RANSAC 43

3.3.1 Description of the Algorithm ... 44

3.4 Chapter Summary ... 44

4 Experimtal Setup and Results .. 45

4.1 Experimental Steps for Each Part .. 45

4.2 The Verification Experiment with Different Groups of Relative

Motion ... 46

4.2.1 Experiment with Images At Same Position... 46

4.2.2 First Rotation: Pitch ... 48

4.2.3 Second Rotation: Roll . 53

1 VI�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

4.2.4 Third Rotation: Yaw... 57

4.3 Testing Experiment with Different Parameters in RANSAC 61

4.3.1 Change Parameters of the No Motion Group... 61

4.3.2 Change Parameters of the Second Yaw Group ... 63

4.4 Chapter Summary ... 64

Conclusions .. 65

Acknowledgments.. 66

References.. 67

1 VII�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

1 Introduction

1.1 The Significance and Background of the Thesis

1.1.1 The Significance of Monocular Visual Odometry

In the research of mobile robots, to know the real-time position of the robot is

very important. But, most of methods have their limits. Using visual information to

locate the robots has become one of the current hot topics. We can get the current

environment information from the robot cameras, and then calculate the motion in-

formation when the robot moves (translation and rotation). Then we can compute

the related location of the robots.

This has many applications, for example in Simultaneous Localization And Map-

ping (SLAM). Here we need to know the location of the robot (Localization) in order

to create the map (Mapping). Other applications include the following of a pre-

computed path or the assessment of the progress towards the high level task goals

of the system. Visual data from cameras provide lots of data with a high update rate.

Using this visual data to estimate the motion (odometry) of a moving system and

thus estimating its location is a widely investigated approach in robotics.

In visual odometry we use the information provided by the camera by comparing

the previous camera image (frame) with the current frame. The goal is to compute

how the camera pose (position and orientation) changed between the two images. If

the camera is rigidly mounted on the robot we can then easily deduct the motion of

the robot from the calculated motion of the camera, thus achieving visual odometry.

Achieving a high update rate, preferably with real time performance, will allow

for more accurate localization. Utilizing the Graphics Processing Unit (GPU) for

this computation yields in high processing speeds and high efficiency. GPUs are

nowadays available on a wide range of devices: from supercomputers, over desktop

and laptop PCs to mobile phones.

Using and improving state of the art open source software, this project enables

robots to utilize a single camera for efficient and real-time localization. We will test

this software using real robots. The experiments will demonstrate the performance

and shortcomings of monocular visual odometry.

1 1�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

1.1.2 Current Research Situation at Home and Abroad

Visual Odometry is an approach to estimate the agent motion which only uses

the visual data with a single or several cameras. There is a good tutorial [1] for be-

ginners, from which I summary some good introduction in my thesis. Its application

includes robotics, augmented reality, wearable computing, and automotive. Visual

odometry, this term, is created by Nistèr in 2004 in his paper [2]. How can visual

odometry estimate the motion? Its principle is to detect the differences between

adjacent frames from the camera, which are different due to the the motion of the

agent.

In the following the state of the research on visual odometry between 1980 and

2015 will be presented. Most visual odometry implementations in the first-twenty

years are offline. Some real-time implementations began to appear in the third

decade. What is this real-time approach for? visual odometry estimates the poses

of the argent frame by frame. After accumulation of time, the track of the camera

can be computed. For this great progress, visual odometry was first used on another

planet, Mars, by the Mars explorations[3, 4]. More precisely, Visual Odometry is a

special part of SFM (Structure From Motion). The algorithm for extracting the cam-

era poses and 3D structure from a series of images from calibrated or calibrated or

uncalibrated camera is called SFM in Computer Vision. Compared to visual odom-

etry, SFM is more generic. It deals with the three-dimensional reconstruction of the

poses and the structure of the camera from a set of images - in order or not in order.

But visual odometry focuses on real-time and sequential (once a new frame arrival)

computation to estimate the three-dimensional movement of the camera.

Using only the visual data to estimate the egomotion of the vehicle began in the

early 1980s. There is a description by Moravec[5]. What is interesting is that we

find that most the study of visual odometry in beginning is for planet explorations,

especially motivated by NASA (National Aeronautics and Space Administration)

Mars exploration program.

As we all known, wheel odometry always encounters the problems with the ac-

curacy. For example, wheel sliding on the floor or just wheel rotation can lead to

non-uniform movement, which can produce distance errors. And the problem can

be more complex if the wheels travel on a non-smooth surface. What’s worse, the

error accumulates as the time goes. Compared to unreliable wheel odometry, visual

odometry can provide much higher accuracy trajectory estimates. Therefore, it is

1 2�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

widely required by some applications where the usage of wheel odometry is unre-

liable, such as space exploration project, underwater project, and so on. It strives to

provide with calibrated all-terrain detectors to measure their six degrees of freedom

of movement when wheels travel upon uneven and rough terrain.

Most of research on visual odometry is based on stereo camera systems. It is

common among these works that, for every stereo pair, the 3D points are triangu-

lated. And the relative motion problem is seen as a 3D to 3D point location problem

to solve. Comport et. al.[6] introduced a different approach of motion estimation.

Unlike the before scheme to use 3D to 3D point registration or 3D to 2D point cam-

era poses estimation technology, it depends on the quadrifocal tensor. This method

allows motion to be computed in 2D to 2D point image matches, which doesn’t need

to triangulate 3D points in stereo pairs. Using original 2D points directly instead of

triangular 3D points results in more accurate calculations.

Instead of stereo visual odometry we want to use monocular visual odometry

in this project. In this case, only the location information is available. Therefore, it’s

disadvantage is the motion can only be restored to a scale factor. Its absolute size can

be obtained from direct measurements (for example, measuring a scale factor of the

scene), motion constraints, or other sensors integrated, such as IMU and distance

sensor. Under certain situations, stereo visual odometry degrades in performance

and we have to use monocular visual odometry. When the distance to the scene

is much longer than the distance between the two cameras of the stereo system,

stereo visual odometry does not work anymore. Different to the stereo scheme, both

relative motion and 3D structure in monocular visual odometry should be computed

from 2D image data.

In the last ten years, a successful outcome over long distances with single camera

has been obtained using perspective and omnidirectional camera[7–12]. There are

three methods for the work: feature-based method, appearance-based method, and

hybrid approaches. The first method is the work by the authors of [2, 8, 9, 11, 13–

15]. It bases on the feature which are obvious and can be tracked in the frames. The

second method makes use of all the pixel intensities or a part of pixels. The hybrid

approach is a combination of both of them.

The first real-time, large scale monocular visual odometry was performed by Nis-

ter et. al.[7] They use RANSAC to reject outliers and estimate camera pose to compute

the coming poses. The five-point minimal solver[7] is used in this thesis to calculate

the motion with RANSAC, which made the five-point algorithm results became ex-

1 3�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

actly in visual odometry[7, 9, 11]. To compute the visual odometry data, five-point

algorithm will be used in our project.

An important tool that I will use in my project is SiftGPU(SIFT on GPU). Andrea

Vedaldi’s sift++[16] and Sudipta N Sinha et al’s GPU-SIFT[17] make great contribution

to SiftGPU’s development. So far, many parameters in SiftGPU are inherited from

sift++ (for instance, number of DOG levels, number of octaves, edge threshold, and

so on). And Sift on GPU is based on feature detecting and matching[17]. In my

project, we use SiftGPU to detect and match features.

1.2 Monocular Visual Odometry

1.2.1 Fundamental

Monocular visual odometry is a method that use the images taken by a single

camera fixed on a agent as the input to calculate the relative motion information be-

tween frames, and finally obtained the agent poses by superimposing the motions.

For the single camera, assume that the image sequence photographed at various

times is donated as I0:n = I0, ..., In. The main task of the visual odometry is to cal-

culate the relative transformations Tk between the frames Ik and Ik−1 for k = 1, ..., n,

then recover the current pose of the camera Cn through series the relative transfor-

mations.

There are two main implementations can be used to calculate the relative motion:

the appearance (or global) based method, which uses the intensity information of all

pixels of two input images, as well as feature-based approach, which uses only the

features extracted (or track) from the images. The appearance-based approach is not

as accurate as feature-based method, and more expensive computationally. Feature-

based method requires a robust matched (or tracked) features between the frames,

but is faster and more accurate than the appearance-based approach. Thus, most of

the visual odometry programs are on feature-based method.

In this thesis, I use the feature-based implementation as well. With this method,

to estimate the relative motion between the instant k and k− 1, that the relative trans-

formation Tk, first of all, after we obtain the frames Ik and Ik−1, we need to extract the

features from these two images then match the corresponding features. Note that I

chose to use feature matching approach rather than feature tracking, both have been

mentioned at section 2.2.2. Feature tracking means to find the feature in one image

and then in the next one image uses a local search technique to track them; and fea-

1 4�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

ture matching means to independently identify the features in each frame, and then

based on some similarity to matching them between frames. Then we calculate the

transform between the corresponding image points as the transform between two

frames. However, there are must some outliers in these matches. For a accurate mo-

tion estimation, the matching features, as the input, can not include outliers, so we

need to use some outliers excluded method to select the inliers as much as possible

to be the input of the motion estimation. Calculation the relative transformation of

two frames actually is to calculate the mapping between the corresponding image

points, expressed as the essential matrix (when the image point coordinates are nor-

malized coordinates). The matching features coordinates for motion estimation are

calibrated, by the knowledge of the epipolar geometry, using the normalized image

coordinates (that is say have been calibrated) can directly work out the essential ma-

trix. The essential matrix contains the translation and rotation information, so the

camera matrix between two images (assume camera matrix of the image Ik−1 is [I|0],
the rotation matrix R and translation vector t of the image Ik is the relative rotation

and translation between two images) can be extracted from the essential matrix. The

camera matrix extracted from essential matrix is not unique (mentioned in section

2.5.3). Therefore, we triangulate the corresponding points to select the correct solu-

tion, that choose a solution which image points are both in the front of the two cam-

eras. After getting the camera matrix, we can also use triangulation to re-projection

to exclude some of the wrong essential matrix.

After obtaining the relative transformation between every two frames, we can

get the final camera pose through seriesing the transforms. The camera pose in the

moment k, donated as Ck, is the integration of Ck−1 and Tk, that Ck = Ck−1Tk. Sup-

pose the camera pose in the moment k = 0 is C0, the camera’s current pose is the

integration of all the relative transforms Cn = C0(T1...Tn).

1.2.2 Method and tools

We chose the Asus Xtion to take pictures for us. It is a equipment with depth cam-

era (there are three cameras on it), but in view of our project needs, we only use the

normal camera. The package openni2 launch contains the driver OpenNI-compliant

for the camera on ROS. Tbe openni2 launch start command can replace roscore com-

mand to start ROS, drive camera, then publish the topics /camera/rgb/image raw.

In this way, we can subscribe this topic in the code to get the images captured by the

1 5�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

camera.

After receiving the image, we use powerful visualization tools Rviz to view real-

time images captured by the camera. We need to start the Rviz, and then add the

image display in Rviz and subscribe the topics /camera/rgb/image raw in order

to see the image captured by the camera. In addition, we can also use the tool im-

age view to see the camera images taken in real time, and right-click it to save images

at a time. In this way, we can use the fixed frames as the test data.

Visualization tools are just a way to view the image, which is not necessary. In

my code, one approach is to use the fixed frames to test the code, in which I take

pictures and tell the pictures’ path to the code, then the code can find the pictures.

When we want to use the successive frames, we can not save each moment frame

(which consume a lot of memory, but not necessary). In this order we can use another

method, in the code directly subscribe the topic to get images’ information, and then

calculate the transformations directly.

After incoming the image information to the code, we need to extract the features

in each frame. And then to match the features between the frame and the previous

frames, we use use SIFT to detect and match features for its outstanding robustness

and accuracy. But we do not need to write code to detect features by outselves, we

used SiftGPU open source code, as long as we use its interface function in our code.

Then it will output the coordinates of the matched features between frames, with

these we can calculate the relative transformation between frames.

First we need to get the internal parameters of the camera, the image point pre-

multiplied by the inverse of the internal parameters matrix K can be converted to the

normalized coordinate form. We use the camera calibration’s cameracalibrator.py

node over ROS to calibrate the camera. Then we can get the camera internal param-

eter matrix K and radial distortion vector D. And the camera will publish a distortion

corrected topic after use the cameracalibrator.py node. Thus, we can use the distor-

tion corrected topic directly, without using the distortion vector D in the code.

After obtaining the normalized image points set, we use a five-point algorithm

to compute the essential matrix. Since the matching features may include some

wrong matches, we can use RANSAC algorithm, with five-point algorithm, to ex-

clude outliers. With this algorithm, we can get the essential matrix calculated by

normal matches. This is the most important part of our project, in section 3 has a

very detailed introduction. Then, we use SVD decomposition to obtain relative mo-

tion, rotation matrix R and translation t, from the essential matrix E. Finally, we can

1 6�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

use bundle adjustment to optimize the results.

In the next chapter the flowchart for the whole process will be drawn.

1.2.3 The Overall Algorithm Flowchart

Begin

Use Asus Xtion to capture images.

Calibrate the camera to get the internal parameter matrix K,
and the camera publish the topic ”/camera/rgb/image color rect” of the calibrated images.

Use fixed images to test the code: save images with image view.

Detect the features for each frame.

Match corresponding features between frames.

The image point coordinates premultiply K to obtain normalized coordinates.

Calculate the essential matrix E with five-point algorithm (with RANSAC).

Recover rotation matrix R and translation vector t from the essential matrix E.

End

Figure 1-1 The Overall Algorithm Flowchart

1.3 The Main Content of the Thesis

This thesis introduces the monocular visual odometry project, namely using the

images to estimate the relative motion of the camera. Realization of this project in-

cludes the following parts:

1) Use Robot Operating System[18] (ROS) to capture (live) images from cameras.

2) Use ROS to calibrate the camera and obtain the camera parameters.

3) Use available open source software in SiftGPU to extract features and descriptors

and to match the images’ features.

1 7�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

4) Use Nister’s Five-Point Motion Estimation Algorithm to compute the visual

odometry.

5) Use five-point algorithm combining with RANSAC to exclude outliers and make

the results more accurate.

6) Collect data with ground truth motion.

7) Do experimental validation of the algorithm under different configuration pa-

rameters.

Before all the principles being introduced, it will use a chapter explains the basic

principles of monocular visual odometry, and the overall algorithm, as a overview

of all the algorithms and principles. As the prepare part of the thesis, there is a intro-

duction of the operating system my project based on, ROS, and a simple description

of the GPU. In the project implementation process, before the beginning of each part,

read the relative papers while recording there principle. After achieving the code of

this part successfully, it’s necessary to write its principles and algorithms in my the-

sis. The thesis uses a lot of space introduces the main algorithms used in this project,

the five-point algorithm, and the fundamental it mainly based on the epipolar ge-

ometry, and the algorithm combining with RANSAC. Besides, there is a reasonable

space for SiftGPU, the method of detecting and matching features. Incidentally, an-

alyze the advantages and disadvantages of these algorithms. In the final part of the

thesis, there is the detailed process and result of my experimental, after which the

experimental results were analyzed and evaluated.

1.4 Thesis structural arrangements

This thesis is structured as follows:

The chapter 1 is the introduction, including the background and significance of

this thesis, after that there is a overview of monocular visual odometry. In this

part, it introduces the principle of monocular visual odometry and the research

tools(including algorithms and fundamental knowledge) involved. Then a flowchart

of its implementation is given to let readers understand what the thesis is doing, and

the details of every research parts will be included in the following chapters. Finally

it introduces the main content and structure of the thesis.

The chapter 2 is the prepare part, which includes two parts. First it gives an in-

troduction of ROS and SIFT(including SiftGPU). The first part is about what is ROS

1 8�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

and about the features’ extraction and matching, and introduction of the features of

SIFT and GPU. At last of this part, it gives an introduction of tools of extraction of

features and matching tools—SiftGPU. The second part is the introduction of epipo-

lar geometry, fundamental matrix and essential matrix. Epipolar geometry is the

basic mathematical principle of monocular visual odometry, and we gives the de-

tails of the mathematical mapping relationship between the process of the camera

transformation obtained by the image points of the two images. Besides, we find the

fundamental matrix of the transform by epipolar geometry. After introducing the

calibration of camera and coordinate normalization, we introduce the essential ma-

trix and explain how to extract rotation and shift information from essential matrix.

The chapter 3 is the five-point algorithm, RANSAC algorithm and five-point al-

gorithm with RANSAC. The five-point algorithm is the main algorithm of the thesis,

while RANSAC algorithm can greatly exclude outliers. So, the five-point algorithm

with RANSAC is used in the thesis.

The chapter 4 is the experimental setting and experimental results. Two experi-

ments are included in the thesis. The first one is using different rotation transform

as input to verify the correctness of the code. The second one uses the fixed im-

ages as input, and changes the parameters of RANSAC, to test the correctness and

calculation time of the code. For the two experiments, this chapter has a detailed in-

troduction of the experimental procedures with corresponding codes listed. At last,

we have analysis the every results of the experiments.

The chapter 5 is the conclusion of the whole thesis.

1 9�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2 Theory and Preparation

Before calculating the motion of the camera, we need to first get the camera frame

of every moment. Estimating camera motion is actually calculating the camera rel-

ative position and pose transforms between each of two frames, which is decided

by the image features points conversion between views. Thus, after obtaining the

frame from the camera in every moment, it needs to extract the features from the

frame and match features between this frame and the last frame. Then, it can output

the matching feature points for the next step calculation.

The most important arithmetic in this project is five-point algorithm, and the

basic theory of the algorithm is epipolar geometry. Thus, to facilitate describing the

five-point algorithms in next chapter, this chapter is actually a introduction of the

five-point algorithm basic theory, the epipolar geometry. When we get the calibrated

matching features between the images, we can use five-point algorithm to obtain the

essential matrix, which can be easily described after introducing the fundamental

matrix.

2.1 Overview of ROS

2.1.1 What is ROS?

The Robot Operating System (ROS) is an open-source meta-operating system for

robot[18]. It provides the necessary services for operating system, including the hard-

ware abstraction, the underlying device control, commonly used functions, message

passing between processes, and package management. It also provides tools and

library functions for obtaining, compiling, writing codes, and running code across

computers. In certain aspects ROS equivalent of a robot frameworks.

ROS running process is a loosely coupled peer-to-peer network based on ROS

communications infrastructure. ROS implements several different means of commu-

nication, including those based on synchronous RPC-style communication services

mechanism, based on asynchronous data streaming topics server mechanisms and

parameters server. Our project communication is based mainly on the topic mecha-

nisms.

1 10�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2.1.2 What do we do on ROS?

The main objective of ROS is to provide code reusing support for robotics re-

search and development. ROS is a distributed process (i.e. nodes) framework, these

processes are encapsulated in easily share and publish packages and feature packs

sets. ROS support a joint system similar to code repository, which can also achieve

project collaboration and publishing. This design allows the development and im-

plementation of a project from the file system to the user interface completely inde-

pendent decisions (without ROS limitation). At the same time, all projects can be

integrated by ROS basic tools.

In this project, it mainly uses openni2 launch to drive the camera Asus Xtion.

This package contains a launch file, using OpenNI-compliant to drive the type of

kinect camera over ROS, and publish the topics. A detailed introduction can be

found in [19].

In addition, ROS has many useful tools. For example, in this project, we used rviz

visualization tool to view the input images, use the bag file to record data as input

and used rqt to draw the waveform of the output data.

2.2 Features Detecting and Matching

After getting the frames from the camera, we should detect and match the fea-

tures in frames. Then we can use these matched features pairs to calculate the rel-

ative motion between frames. In my project, the SiftGPU, SIFT for GPU, was used

for detecting and matching features. Therefore I will introduce SIFT and GPU, and

discuss why I use SIFT compared with other detectors/discriptors.

2.2.1 What is SIFT?

SIFT (Scale-Invariant Feature Transform) is a local feature extraction algorithm,

looking for extreme value in scale space, extracting location, scale, rotation invariant.

It is a kind of outstanding blob detector. SIFT was proposed by D.G.Lowe in 1999[20],

and he developed and summarized the algorithm in 2004[21]. Later Y.Ke improved it

through using PCA to replace histogram in descriptor part[22].

SIFT features are local features in the images, keeping invariance of rotation, scal-

ing, brightness changes, also maintaining a certain degree of stability for viewpoint

changing(up to 60 degrees), affine transformation and noise. Based on these charac-

teristics, they are highly notable and relatively easy to be captured. Large amount

1 11�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

of information of SIFT descriptors makes it suitable for fast and accurate matching

in massive database. When SIFT features are used under the conditions of small

features database, it is accessible to instant computation on recognition speed.

In Mikolajczyk’s invariance comparative experiments[23] for 10 kinds of local de-

scriptors, SIFT and its expansion algorithm have been confirmed that have the most

robust in the same type of descriptors.

2.2.2 The Purpose of Using SIFT

Given a sequence of images, generally speaking, there are two methods that can

be used to find the corresponding features between two frames. One method is to

find the features in the first frame, and then track these features in the next frames.

The second method is detecting features in each frame, then doing feature matching

between every two adjacent frames.

The first method is suitable for the case that most features of the first frame can be

traced in the second frame, that is, the viewpoint changing between the two frames

is small, i.e., during the time between taking two photos, the camera only made a

little movement. Most of early visual odometry works[5, 24–26] use this approach.

The second method is more suitable for the camera made large movement or

large viewpoint changed between two frames. In this case, the features from the

first frame are difficult to be trace in the second frame. It is used more frequently

in the last decade[2, 9, 11, 13, 14]. This is because the early VO researches are based on

small scale movements, and the main visual odometry work in recent years was in

large-scale environments. It makes it possible to use images with large movements

in between. The advantage of this method is to avoid feature drift in the tracking

process based on cross-correlation.

Some properties a good feature detector should have are:

* good localization accuracy (including in location and scale),

* reproducibility (majority of the detected features can be detected in the next

frames),

* computation efficiency,

* robustness (noise, blur and compression artifacts),

* distinctiveness (these features can be accurately detected in the different

frames),

1 12�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

* invariance (under different illumination, scale, geometric transformations and

fluoroscopy distortion).

There are many points feature detector described in the VO literature, for exam-

ple, point detector[5, 27–29], blob detectors[21, 30–32] and various detectors, each detec-

tor has its advantages and disadvantages.

Table 2-1 Properties and performance comparison of feature detectors[1]

C
or

ne
r

D
et

ec
to

r

Bl
ob

D
et

ec
to

r

R
ot

at
io

n
In

va
ri

an
t

Sc
al

e
In

va
ri

an
t

A
ffi

ne
In

va
ri

an
t

R
ep

ea
ta

bi
lit

y

Lo
ca

liz
at

io
n

A
cc

ur
ac

y

R
ob

us
tn

es
s

Ef
fic

ie
nc

y

Haris Y N Y N N +++ +++ ++ ++
Shi-Tomasi Y N Y N N +++ +++ ++ ++

FAST Y N Y Y N ++ ++ ++ ++++
SIFT N Y Y Y Y +++ ++ +++ +
SURF N Y Y Y Y +++ ++ ++ ++

CENSURE N Y Y Y Y +++ ++ +++ +++

From Table 2-1, we know that blob detector performs better than corner detector

in term of invariance(scale invariance and affine invariance). Though it is not as

strong as corner detector in localization accuracy, its repeatability and robustness

performance was phenomenal.

SIFT is a kind of outstanding blob detector. And it’s widely used for the following

advantages:

a) SIFT descriptor has a excellent robustness as local features in invariance.

b) Besides, it have well distinctiveness, and rich information.

c) A mount of SIFT features can be obtained from a few objects .

d) It provides high computation speed. The optimized SIFT algorithm can be seen

as a real-time method under current computer hardware.

e) Its outstanding scalability makes it can easily be combined with other forms of

feature vectors.

For these excellent properties, we can confirm that SIFT is really a good feature

detector. And it’s worth to use SIFT to detect and match features.

1 13�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2.2.3 Introduction of GPU

NVIDIA first proposed the concept of GPU when they announced the GeForce

256 graphics processing chips in 1999. From then on, NVIDIA use this new name

to call the chip of graphics[33, 34]. GPU makes the graphics reduce the dependence

on CPU, and it replaces CPU to do some works, especially in the 3D graphics pro-

cessing. GPU is no longer confined to the 3D graphics processing now, its general

computing technology has caused quite a lot of attention. It turns out that in the

aspects of the floating point computing, parallel computing, etc., GPU can provide

dozens of times or even a hundred times better than the CPU in performance. Gen-

eral standard in computation for GPU are: CUDA, OpenCL and ATI STREAM.

Computing industry is developing from using only the CPU central processing to

the CPU and GPU co-processing. Graphics card maker NVIDIA introduced CUDA

(Compute Unified Device Architecture) programming model that is wanted to take

advantage of the respective advantages of CPU and GPU in the application. CUDA

is a a universal parallel computing architecture introduced by NVIDIA, the archi-

tecture makes the GPU can solve complex computational problems. It includes the

CUDA Instruction Set Architecture (ISA) and the GPU parallel computing engine.

Developers can use C language to write programs for the CUDA architecture, the

program can be run on the CUDA processor to support ultra-high performance.

OpenGL Shading Language is used in OpenGL shader programming, that de-

velopers write short custom programs. They are executed on the GPU, instead of

the fixed part of the rendering pipeline, so the rendering pipeline has programming

types in different levels. For example: view transformation, projection conversion.

GLSL (GL Shading Language) shader code is divided into two parts: Vertex Shader

and Fragment, and sometimes there is Geometry Shader.

2.2.4 Introduction to SiftGPU

SiftGPU is an implementation of SIFT[21] (Scale Invariant Feature Transform) for

GPU[35]. It provides two implementations: CUDA and GLSL. And it runs on GLSL

by default. SiftGPU can processes pixels/features in parallel to do the work in fol-

lowing step:

1) SiftGPU converts color input images to intensity and up-samples or down-

samples them.

1 14�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2) Builds Gaussian pyramids and detects DoG Keypoints.

3) Generates compact feature lists according to GPU list generation[36].

4) Processes features in parallel and determines their orientations and descriptors.

During this process, SiftGPU uses the GPU/CPU mixed method, which improves

the calculation speed considerably.

We can get the SiftGPU codes of Changchang Wu and its manual from [35].

The program package includes some functions about reading the pictures, convert-

ing colour image to intensity image, detecting features from images, and match-

ing features between images, etc. In addition, it requires that the GPU has a

large graphics memory and supports dynamic branch. It defaults to using GLSL,

and CUDA is not used by default. If you want to use CUDA, you should set

CUDA SIFTGPU ENABLED in compiler and recompile. But my computer doesn’t

support CUDA, so GLSL is used.

In my code, it use SIFT::RunSIFT function, than it is easy to get features from the

image by using SIFT::GetFeatureVector function. After getting features from both

two images, match these features with SiftMatchGL::GetSiftMatch function. As be-

fore shown to you, the program use Changchang Wu’s code to detect and match

features instead of writing the codes to do this by myself.

The following figure is a feature matching instances. In the figure 2-2, I used

circle represents the detected feature points and the straight lines connecting the

corresponding features. In the figure, there are some matches are wrong, but not

many (looks not more than 10%).

Figure 2-1 SIFT Features in the Image

1 15�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 2-2 Match the Features Between Two Images

2.3 Epipolar Geometry

In the beginning introduction of this chapter, we have known the relationship be-

tween the five-point algorithm, essential matrix and the epipolar geometry. It found

that the essential matrix is deduced from the epipolar geometry. Therefore, it’s es-

sential to telling the fundamental and the derivation of the epipolar geometry before

the description of the essential matrix. In this subsection, it highlight the fundamen-

tal matrix F, and its associated mathematical relationship will be derived in detail,

in order to give the relationship between the essential matrix E and the fundamental

matrix F in the next subsection.

2.3.1 Epipolar Geometry

Epipolar geometry is the intrinsic projective geometry between two views[37]. It

does’t depend on scene structure, but only decided by the camera internal parame-

ters and the relative pose between two cameras. Due to the reason that it uses the

images which were taken by a single camera at different instants, it can be seen as

that it uses two camera to take two images respectively and calculate the relative

pose of these two cameras from these two images.

The geometric entities included in epipolar geometry are shown in Figure 2-3.

For stereo vision system(two cameras), definite the optical center of the two cameras

are C and C′. Assume that there is a 3D scene point X in 3D space. The plane made

up by the space point X and camera centers C, C′ is called epipolar plane. Every

camera has its own view, denoted as Image1 and Image2. The line CX intersects

Image1 at point x, and the line C′X intersects Image2 at point x′. Two camera centers

1 16�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 2-3 Epipolar Geometry[38]

intersect Image1 and Image2 at points e and e′ respectively. These two points are

called epipoles(or epipolar points). The line connecting two camera centers CC′ is

baseline. The epipolar plane intersects two image planes(Image1 and Image2) at the

two epipolar lines l and l′ separately. What’s the relation between the epipolar lines

l and l′? They are corresponding to each other, on which the point x, e and x′, e′ lie

correspondingly. The rays from x and x′ to the space point X is coplanar, which tells

that more significance of the epipolar plane is to find the correspondence between x

and x′.

2.3.2 Epipolar Constraint and Triangulation

The epipolar plane is constituted by the ray from x to X and the baseline, and x′

is on the plane, which implies that we can find the x′ take advantage of this relation-

ship. If we have know the projection point x in image1 and the relative pose between

two cameras, it’s convenient to find the projection point x′ in image2 with epipolar

constraint. The definition of epipolar constraint is that, for every space point X, if

the projection point x in image1 is known, its corresponding epipolar point x′ must

lie on the only corresponding epipolar line l′ of x. Because x is known, then its corre-

sponding epipolar line l′ can be calculated. According to the epipolar constraint, we

can just find the other projection point x′ on the epipolar line l′ but not finding it on

the whole image2. The epipolar constraint between two cameras can be described as

the essential matrix E or the fundamental matrix F. However, it uses a single camera

in this thesis, so the relative pose between two views is not fixed that the epipolar

constraint is not used for finding the corresponding points between two views. We

1 17�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

use it in another aspect, verifying the essential matrix E. When the essential matrix

E is worked out, and we get a number of pairs of corresponding epipoles x and x′

in image1 and image2 respectively, then we can use epipolar constraint to verify the

relative pose, the essential matrix E, between two views.

Triangulation has a opposite usage against epipolar constraint, with which we

can get space point X from its two projection points x and x′. If the x, x′ and their

projection lines are known, these two lines must intersect at X in 3D space. Therefore

triangulation is useful in structure recovery.

Figure 2-4 Epipolar Constraint[37]
Figure 2-5 Triangulation[39]

2.4 The Fundamental Matrix

2.4.1 Overview of Fundamental Matrix

Fundamental matrix is a algebra representation of epipolar geometry, encapsu-

lating this internal geometry relationship, which is a 3*3 matrix, denoted as F. It can

be computed from the scenes image points without knowing the cameras internal

parameters or their relative poses. There introduces the fundamental matrix very

specifically in [38]. According to Figure 2-4, to every projection point x, there is the

only corresponding epipolar line l′. This mapping is denoted as x 7→ l′, which can

be described by F. For a space point X, if x is its projection on image1 and x′ is that

on image2, then their corresponding fundamental matrix satisfy the condition

x′TFx = 0 (2-1)

Its derivation will be showed in Section 2.4.4. Now let’s derived the fundamental

matrix from two directions.

1 18�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2.4.2 Geometric Derivation of Fundamental Matrix

As described above, fundamental matrix F is a mapping from a point on one

image to a line on another image. This mapping can be decomposed into two steps:

in the first step, there is a point x′ on image2 corresponding to the point x, lying on

the epipolar line l′; in the second step, the epipolar line l′ is a line joining the points

x′ and epipole e′.

Figure 2-6 The point transform through a plane Hπ

The first step is a point transform through a plane. As the Figure 2-6 illustrated,

suppose that the plane Hπ doesn’t through two camera centers C and C′, the line

passing C and x intersects the plane Hπ at space point X. And the projection point

of X on image2 is x′. This process is a point transform through plane. For every pair

of x and x′, there is a homography Hπ, then the mapping can be described as

x′ = Hπx (2-2)

Then we construct the epipolar line l′ in the second step. Because the epipolar

line l′ join the point e′ and x′, it can be described as

l′ = e′ × x′ = [e′]×x′ (2-3)

The cross product of e′ and x′ can be written as [e′]×x′, the definition of [e′]× can

refer to [40].

Substitute the formula (2-2) into the formula (2-3), we have

l′ = [e′]×Hπx = Fx (2-4)

where F is defined as

F = [e′]×Hπ (2-5)

1 19�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

The rank of [e′]× is 2, and the rank of Hπ is 3, thus the rank of F is two. In other

words, F is a mapping space from a 2D image point to a 1D epipolar line l′ passing

the epipolar point e′, so it is a matrix of rank 2.

2.4.3 Algebra Derivation of Fundamental Matrix

From the fundamental matrix F to the camera projection matrix P,P′ form can be

obtained from the algebraic derivation. The relationship of x and X can be described

as PX = x(it will be deduced in the Section 2.5.1). The solution of the ray can be

expressed as

X(λ) = P+x + λC (2-6)

where P+ is the pseudo-inverse of P (P+P = I), and C is the camera center, which

is a null-vector. Thus, PC = 0. The equation (2-6) shows a ray parameterized by λ.

There are two points: when λ = 0, the point is P+x; when λ = ∞, the point is C(the

camera center). According to x′ = P′X, there are two corresponding points on the

ray back-projected from x′ by P′: P′P+x and P′C. The epipolar line l′ joining these

two point, which can be written as

l′ = (P′C)× (P′P+x) (2-7)

where P′C is the projection of the first camera center on the image2, denoted by e′.

Thus, we have

l′ = [e′]×(P′P+x) = Fx (2-8)

Then, we obtain the fundamental matrix

F = [P′C]×P′P+ = [e′]×P′P+ (2-9)

Compared the formula (2-9) with the formula (2-4),

Hπ = P′P+

which shows that the homography Hπ can be obtained from the two camera matri-

ces.

Assume there are two calibrated camera matrix

P = K[I|0] P′ = K′[R|t] (2-10)

1 20�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

then we have

P+ =

K−1

0T

 C =

0

1

 (2-11)

Combine the equation (2-9) with the equations (2-10) and (2-11), F can be written

as

F = [P′C]×P′P+

= [K′t]×K′RK−1 = K′−T[t]×RK−1 = K′−TR[RTt]×K−1

= K′−TRKT[KRTt]× (2-12)

Because the two epipoles are

e = P

−RTt

1

 = KRTt e′ =

0

1

 = K′t (2-13)

Substitute the equation (2-13) into the equation (2-12), we can see that the funda-

mental matrix F can also be written as

F = K′−TRKT[e]× (2-14)

2.4.4 The Necessary and Sufficient Condition of Fundamental Matrix

A 3× 3 matrix F is the fundamental matrix corresponding the transform between

x and x′ if and only if the matrix F satisfy the condition(2-1):

x′TFx = 0

We can verify that it is the necessary and sufficient condition of fundamental

matrix as follows.

If x′ is the correspondence epipole of x, and lies on the epipolar line l′. That

x′Tl′ = 0, combine with formula(2-8), we get x′TFx = 0 as required. Conversely,

if the matrix F satisfies the condition (2-1), the back-projection rays from x and x′

is coplanar, thence it’s the necessary condition for the two points corresponding to

each other.

The significance of this conclusion is that it gives a expression of F without going

through the camera matrix P or P′ that F can be directly obtained from the corre-

sponding image point calculated.

1 21�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

2.4.5 The Camera Matrix Obtained from the Fundamental Matrix

One of the important usefulness of fundamental matrix is that we can extract the

pair of camera matrices from it. However, the pair of camera matrix is not unique

due to the projection invariance of fundamental matrix. In this case, we can ob-

tain the canonical form of the pair of camera matrices from the fundamental matrix,

which is unique. Now, let me introduce the projection invariance of the fundamental

matrix F and the canonical form of the camera matrix to you.

As we can see from the formula x′TFx = 0 and l′ = Fx, the fundamental matrix

F is the mapping from a image point to a image line or point, that means that F is

only measured by the image coordinate, but not any world units(such as meter or

degree). That is to say, the relationship between x and l′ is just projection relation-

ship, for which we can say the image relationship is projection invariance. When we

make a projection transform for x and x′: let x̂ = Hx and x̂′ = H′x′, there is their

corresponding mapping: l̂′ = F̂x̂, where F̂ = H′−TFH−1, it is a rank 2 matrix.

The camera matrix P does not only depend on the image coordinate frame mea-

suring, but also on world coordinate frame measuring for the reason that it connects

the image measuring and the world measuring forms. Different from the camera

matrix, the fundamental only depends on the projection property of the camera ma-

trices, which make it have no matter with the world frame measuring. For example,

a projection transform on camera matrices (P, P′) does not affect the fundamental

matrix F. More specifically, let’s suppose a 3D space projection transform H, which is

a 4× 4 matrices, impose the projection transform H on the camera matrices (P, P′),

the fundamental matrix corresponding to the camera matrices (P, P′) and the camera

matrices (PH, P′H) are same.

In fact, different projection transform between camera matrix pairs is the only

ambiguity. For this ambiguity, we specify the canonical form of the camera matrix

pair (P, P′) corresponding to the fundamental matrix F. In the canonical form, we

define P = [I|0], where I is a 3D identity matrix and 0 is a 3D null-vector, then the

pair of camera matrices corresponding to the F is unique.

To prove it is feasible, we can expand the camera matrix P to a 4× 4 matrix P∗,

let H = P∗−1, then PH = [I|0] as required.

The projection invariance can be use in turn: if both camera matrices pairs (P, P′)

and (P̂, P̂′) correspond to the same fundamental matrix F, there must exists a 4× 4

nonsingular matrix H such that P̂ = PH andP̂′ = P′H.

1 22�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

There is a useful theorem: Support a pair of camera matrices P = [I|0] and P′ =

[M|m], to which the fundamental matrix corresponds is F = [m]×M. If and only

if P′TFP is a skew-symmetric matrix, F is the fundamental matrix corresponding to

(P, P′).

Camera matrix is a mapping from 3D world points to 2D image points, repre-

sented as x = PX[41]. The specific definition of the camera matrix will be introduced

later. If the image points have been calibrated, P = [I|0] is the camera matrix of the

first image. If we use the image points calibrated in advance, we can compute the

essential matrix directly, and get the camera matrix in canonical form from the es-

sential matrix without doing projection transform(finding the transform matrix H).

Therefore, in my project, it’s necessary to calibrate the camera and use the calibrated

image points to compute the essential matrix, with no necessary to compute the fun-

damental matrix, then get the camera matrices in canonical form. I will introduce the

camera calibration and the relationship between the essential matrix and the funda-

mental matrix in the section 2.5.

2.5 The Essential Matrix

In the previous subsection fundamental matrix F have been derived according to

the epipolar geometry, which is calculated under the image uncalibrated case, as the

representation of transform between views. If we have calibrated the camera, and

use the calibrated image points (using normalized coordinates) to calculate the rel-

ative transformation between views, which can be represent as the essential matrix

E. Therefore, this subsection will focus on how to calibrate the camera, and the de-

duction of use normalized coordinates of the image points to get the essential matrix

E. After obtaining the essential matrix E, we’ll show you how to extract the rotation

matrix R and translation vector t from essential matrix.

2.5.1 Camera Calibration

The purpose of camera calibration in my thesis is to get the internal camera pa-

rameters matrix K, which can calibrate the image, and let us compute the essential

matrix directly. In detail, camera calibration can help us to find:

* The image center (x0, y0). It is generally not the point at (width
2 , height

2) of the

image, but should be the optical center of the camera.

* The focal length of the camera f .

1 23�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

* Different scaling factor of column pixels and row pixels (Figure differentscal-

ing.jpg), kx, ky. It is because the pixels maybe not square. Its imaging process

is shows in Figure 2-7, which is the reason why the scaling of pixels in columns

and rows is different.

* The skew factor s, imaging skew is shown at Figure ??. The scaling factor

transforms pixel units to length of image coordinate.

* The len distortion D, which results pin-cushion effect Figure 2-8, it happens

seriously on fish eye camera.

Figure 2-7 Scaling factor of column pixels and row pixels may be different[42]: The

output from camera may be analog, then AD converter samples NTSC signal, and

digitizing may make the pixels not square.

Figure 2-8 Distortion[39] and skew[42]

If both image point and space point were represented in homogeneous vectors,

the cental projection is a linear projection(Figure 2-9).

According to the principle of similar triangles,

xi = f
xs

zs
yi = f

ys

zs
(2-15)

After camera calibration, we get the image center(x0, y0), and the scaling factor kx,

ky. In general, the matched features coordinate we got from SiftGPU is in pixel units

1 24�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 2-9 Cental projection[39]

(xpix, ypix), its coordinate origin is the pixel at the lower left corner of the image,

and the scaling between the pixel and the cental projection coordinate of width and

height is kx and ky separately. Their relationship is shown in Figure 2-10.

Figure 2-10 Transformation from pixel to image coordinate[42]

Obviously, this transformation can be written as

xpix = kxxi + x0 ypix = kyyi + y0 (2-16)

Combine (2-15) with (2-16), there is

xpix = f kx
xs + zsx0

zs
ypix = f ky

ys + zsy0

zs
(2-17)

let

αx = f kx αy = f ky (2-18)

1 25�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

and

xpix =
u
w

ypix =
v
w

(2-19)

written as the matrix form:
u

v

w

1

 =

αx 0 x0 0

0 αy y0 0

0 0 1 0

xs

ys

zs

1

 (2-20)

Add the skew factor s into this transformation,
u

v

w

1

 =

αx s x0 0

0 αy y0 0

0 0 1 0

xs

ys

zs

1

 =

αx s x0

0 αy y0

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

xs

ys

zs

1

 (2-21)

then we get the calibration matrix K:

K =

αx s x0

0 αy y0

0 0 1

 (2-22)

In our project, we don’t need to write a code to calibrate the camera, but just use

the cameracalibrator.py node of the camera calibration package in ROS[43]. The cam-

era calibration’s cameracalibrator.py node is a convenient tool to calibrate a monoc-

ular camera with a raw image over ROS, with which we need a large checkerboard

with known size and number of its squares and th e camera output raw image

through ROS. In our calibration, we use a 8*6 squares checkerboard, and we should

move it to make it lie on different positions (as the Figure 2-11 shown) of the view.

Finally, it will output the internal parameters of camera K and some other calibration

parameters to us.

1 26�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 2-11 Checkerboard lies on the camera’s left and right, top and bottom of field

of view(the 1-3th picture); toward/away and tilt from the camera(the 4-5th picture);

checkerboard filling the whole field of view(the 6th picture) [43]

My camera calibration parameters is as follows:

D = [0.047492863768895464, −0.1038925599268795, 0.01385209245928748, −7.160814536273587e− 05, 0.0]

K = [545.9860520978382, 0.0, 314.44397065234756; 0.0, 546.773154836032, 259.894806022969; 0.0, 0.0, 1.0]

Generally speaking, we need to use D to correct imaging distortion in code. How-

ever, we needn’t due to the node will outputs another topic for calibrated images,

which is a image message, in which the images distortion has been corrected. And

we can use this topic directly and needn’t use the D vector in code.

2.5.2 The Essential Matrix

Essential matrix is the special form of the fundamental matrix under the case

of which is calculated in the normalized image coordinate form. In the history of

the development of computer vision, essential matrix was presented (by Longuet-

Higgins[44] in 1981) earlier than the fundamental matrix (by QT Luong[45]). Funda-

mental matrix shouldn’t need to consider the calibration of the image, which is a

generalization of the essential matrix. Compared with the fundamental matrix, the

essential matrix has fewer degrees of freedom and more properties. Its properties

will be given in the following description (the properties of the fundamental matrix

have been described in the previous parts).

To introduce the essential matrix, I will describe what normalized coordinates is

first. Consider a camera matrix P = [R|t], and x = PX is a point on the image. If

1 27�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

the calibration matrix K of this image is known, then we can make the x normalized

by premultiplying the inverse of K to x, there is x̂ = K−1x. Then we obtain x̂ =

[R|t]X, where x̂ is the image point x representing in the normalized coordinate form.

This expression can also be seen as x̂ is the point on the image imaging with the

camera matrix [R|t] corresponding to the space point X. That is to say, the calibration

matrix of it is a 3× 3 identity matrix. The camera matrix P̂ = K−1P = [R|t] is called

normalized camera matrix, in which the necessity of the calibration matrix K has

been removed.

Let’s support that there is a pair of normalized camera matrices P = [I|0], P′ =

[R|t], the fundamental matrix corresponds to which is denoted as essential matrix E.

The form of the essential matrix is

E = [t]×R = R[RTt]× (2-23)

According to the formula(2-1), the necessary and sufficient conditions of essential

matrix can be expressed as

x̂′
T

Ex̂ = 0 (2-24)

which is also the expression of the mapping between the corresponding points on the

two images in normalized coordinates. Substitute x̂ = K−1x to the formula (2-24),

then we have

x′TK′−TEK−1x = 0 (2-25)

Compared the formula (2-25) with (2-1), it’s easy to derive the relationship be-

tween the essential matrix E and the fundamental matrix F is

E = K′TFK (2-26)

Essential matrix only has five degrees of freedom: the rotation matrix R and

translation vector t both have three degrees of freedom, but there is a scale ambi-

guity of it, and it is a matrix with homogeneous quantity. The reducing degree of

freedom is an additional condition the essential matrix should satisfy, compared to

the fundamental matrix.

A 3 × 3 matrix can be an essential matrix if and only if the two values of its

singular value decomposition are equal, and the third value is zero, the proof of

which can be found in [38].

1 28�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Therefore, in the SVD expression E = Udiag(1, 1, 0)VT, both U and V have three

degrees of freedom. However, since two values of its singular values are equal,

the SVD of E is a family of one-parameter SVD family, in the other word, which is

not unique. Thus, the singular value decomposition of the essential matrix can be

written as

E = (Udiag(R2×2, 1))diag(1, 1, 0)(diag(RT
2×2, 1))VT (2-27)

where R2×2 can be any 2× 2 rotation matrix.

2.5.3 Recovering R and t from E

When we get the essential matrix E (calculated according to the five-point

algorithm[46, 47]), the camera matrix (containing the rotation matrix and transla-

tion vector) can be extracted from the essential matrix. The camera matrix extracted

from the essential has four possible solutions, with a scaling ambiguity. Among

them, exactly only one camera matrix is correct, this will be mentioned later. Let us

assume that the first camera matrix is P = [I — 0], in order to calculate the second

camera matrix, let E be decomposed into the product of a skew-symmetric matrix S

and a rotation matrix R. Support that the SVD of E is E = Udiag(1, 1, 0)VT, which

can be decompose in two possibilities (including two probable R):

S = UZUT R = UWVT or R = UWTVT (2-28)

where

W =

0 −1 0

1 0 0

0 0 1

 Z =

0 1 0

−1 0 0

0 0 0

 (2-29)

It is easy to check that both of these two decompositions are true, and there is no

another disintegration except them.

Obviously, the decomposition (2-28) of E determines the t in the camera matrix

does not contain scales. Compare E = SR with (2-23), we get S = [t]×, and the

Frobenius norm of S is
√

2, that the scaling factor included in S is ||t|| = 1, which

is simply normalized with the baseline between two camera matrix. Since St =

0(according to the property of cross product), the translation vector can be obtained

as

t = ±U(0, 0, 1)T = ±u3 (2-30)

1 29�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

where u3 is the last column of the vector U. But the translation vector still can’t be

determined exactly due to the fact that the sign of the essential matrix can not be

determined.

In summary, for a given essential matrix E we can solve four possible camera

matrix P ’, which contains two different R solution and two different symbols for t.

Formally, for a given essential matrix E = Udiag(0, 0, 1)VT, assume the first camera

matrix is P = [I|0], there four possible solutions for the second camera matrix P′:

P = [UWVT|u3]

P = [UWVT| − u3]

P = [UWTVT|u3]

P = [UWTVT| − u3]

(2-31)

Obviously, in (2-31) the difference between the first two solutions is just the opposite

direction of the translation. And the relationship between the first and the third

solution is shown below:

[UWTVT|u3] = [UWVT|u3]

VWTWTVT

1

 (2-32)

where VWTWTVT = Vdiag(−1,−1, 1)VT is a 180 degree rotation regarding the

baseline between two camera centers.

Figure 2-12 The four solutions for the second camera matrix P′[38]

1 30�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Imaging significances of these four solutions represented are shown in Figure 2-

12: the space point X position reconstructed corresponding to the four camera matrix

solutions respectively. Only the reconstruction of point X in the Figure (a) is located

in front of two cameras (point A, B represents the two camera centers), in Figure

(d) the reconstruction of the X point behind two cameras, and in the corresponding

figures at up and down made a 180 degrees rotation from each other. Therefore, only

the Figure (a) is the correct solution for camera matrix P′.

2.5.4 Chapter Summary

In the first part of this chapter, the program running plat ROS and how to get the

images from the camera by Rviz over ROS are introduced, which actually the tool

for capturing frames. And then we introduce the SiftGPU, before which it introduces

something about features extracting and matching and the overview of SIFT feature

and GPU. It do the composition between SIFT feature and other feature detectors

and descriptors.

As we known from the first chapter, the five-point algorithm is a method to solve

the essential matrix between views with the corresponding image points, match-

ing features. This section then gives a detailed description of epipolar geometry,

in which a variety of mathematical relationships will be derived, and then a high-

light introduction of fundamental matrix and essential matrix, both of which can

be derived from the epipolar geometry. Especially, the essential matrix includes the

transform information of the camera.

1 31�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

3 Five-point Algorithm with RANSAC

This chapter is an introduction to the five-point algorithm and RANSAC. The

most important mainly algorithm in this project is five point algorithm, use to calcu-

late the essential matrix, that estimate the relative poses transformation through the

corresponding points between the images of the camera. Because in the previous

step matching feature points is not necessarily the real match points, even with the

real match points to calculated the essential matrix there is a certain probability of

error. As a result, simply calculating essential matrix E with five-point algorithm

is substantially not qualified. The RANSAC algorithm was used here as an opti-

mization algorithm of the five-point algorithm to improve the probability of getting

correct essential matrix E.

3.1 Five-point Algorithm

3.1.1 Basic Knowledge

If the pair of images have been calibrated, their camera matrices is P = [I|0] and

P′ = [R|t]. The essential matrix corresponds to this pair of camera matrices is

E = [t]×R (3-33)

where

[t]× =

0 −t3 t2

t3 0 −t1

−t2 t1 0

 (3-34)

Therefore, the form of the fundamental matrix is

F = K−T
2 [t]×RK−1

1 (3-35)

According to the epipolar constraint, the fundamental matrix should satisfy the con-

dition:

x′TFx = 0 (3-36)

A rank 2 real non-zero 3× 3 matrix F must satisfy the following cubic singularity

condition[48], which can be a fundamental matrix:

det(F) = 0 (3-37)

1 32�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

For the calibrated image points (x,x’), assuming they have premultiplied the in-

verse of K, the essential matrix E should satisfy the epipolar constraint:

x′TEx = 0 (3-38)

Compared with the fundamental matrix F, the essential matrix E should satisfy

the additional condition, that its two non-zero singular values are equal, and the

third singular value is zero. It gives the following equation[48] that the essential

matrix must satisfy:

EETE− 1
2

trace(EET)E = 0 (3-39)

3.1.2 The Method of Calculating the Essential Matrix

The most basic condition in this algorithm (3-38), the epipolar constraint, can be

written as

q̃T Ẽ = 0 (3-40)

where (assume the image points (in homogeneous coordinates) are: x = (x1, y1, z1)
T,

x′ = (x2, y2, z2)
T)

q̃ = [x1x2 x2y1 z1x2 x1y2 y1y2 z1y2 x1z2 y1z2 z1z2]
T

(3-41)

Ẽ = [E11 E12 E13 E21 E22 E23 E31 E32 E33]
T (3-42)

Compute q̃ (3-41) for all pairs of image points (assume there are N pairs), we get

a N × 9 matrix Q. Assume there are four nine-dimensional vectorX̃, Ỹ, Z̃, W̃, which

make up the right null space of the matrix Q. Since they correspond to the smallest

singular values of the matrix Q, they can be computed by doing SVD decomposition.

Then reshape them as four 3× 3 matrix respectively: X, Y, Z, W. The expression of

E, expressed by these four matrix, can be obtained from (3-40):

E = xX + yY + zZ + wW (3-43)

where x, y, z, w are some scalars. This expression is derived as follows.

Since the four vector X̃, Ỹ, Z̃, W̃ span the right null-space of the matrix Q, this

relationship can be expressed as

Q̃(xX̃ + yỸ + zZ̃ + wW̃) = 0 (3-44)

1 33�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

where x, y, z, w are some scalars. If Ẽ satisfies the constraint (3-40), according to the

knowledge of SVD, we obtain

Ẽ = xX̃ + yỸ + zZ̃ + wW̃ (3-45)

where Ẽ is a nine-dimensional vector. Reshape Ẽ as a 3× 3 matrix E, correspondingly,

the formula (3-45) can be written as (3-43) E = xX + yY + zZ + wW as required.

The equation (3-39) gives nine equations on the elements of E, but of which only

two are independence on algebraic. Substituted E, expression (3-43), into the condi-

tion (3-37) can obtain another equation. Then we have enough equations to solve the

essential matrix E.

Since these four coefficients in the expression (3-43) can be defined on any arbi-

trary scale, in order to facilitate the calculation, let w = 1. The nine equations from

condition (3-39) gives form a coefficient matrix of 9× 20, which corresponds to 20

terms (written as a vector space of the monomials):

[x3, y3, z3, x2y, x2z, x2, xy2, y2z, y2, xyz, xy, xz2, xz, x, yz2, yz, y, z2, 1] (3-46)

In the David Nistèr’s 5-point algorithm, Nistèr use Gauss - Jordan elimination

method for the coefficient matrix of the equations system and form another coeffi-

cient matrix A (an upper triangular matrix). Then he performed some algebra oper-

ation on the matrix A and obtained two 4× 4 (here we use CVPR version, because

CVPR version is easier to understand, in the PAMI version it obtains a 3 * 3 matrix).

Then he do a further elimination to give a ten-degree polynomial. Finally, solve the

roots of z (ten roots). After that another unknowns x and y can be solved by back

substitution method.

Gauss - Jordan elimination is really a complex method to solve the variables. The

code referencing to a more simple method[47], which is based on hidden-variable

resultant[49] but not on Gauss - Jordan elimination such a cumbersome method, to

solve these three variables.

Hidden-variable resultant is a well-known algebraic elimination method, and

easy to implement. It can easily and quickly eliminate the variable from polyno-

mial equations. Its main principle is as follows. Given a equations system composed

of M homogeneous polynomial equations (in which every homogeneous polynomial

equation pi = 0, for i = 1 ... M), containing N variables (x1, x2, ..., xN), we can see one

of the variables as a parameter (i.e. x1). Then the equation system can be rewritten

1 34�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

as

C(x1)X = 0 (3-47)

where C(x1) is the coefficient matrix of X. X is the vector space only concluding the

terms of the other N − 1 variables. And the coefficients in the matrix C(x1) includes

a parameter x1.

If in the rewritten equation system, the number of equations is equal to the num-

ber of the terms in the X (i.e. C(x1) is a square matrix), then if and only if the deter-

minant of C(x1) is zero the equation systems has non-trivial solutions. The condition

gives a equation

det(C(x1)) = 0 (3-48)

By solving the equation (3-48), we can get the roots of the variable x1, that can be

seen as we eliminate the other N − 1 variables at once.

We can apply this method on solving the variables x, y, z[47]. We can obtain 9

equations from condition (3-39). Adding another equation obtained from condition

(3-37), there are totally 10 equations in the equation system. Let’s make the variable

z as a parameter, the equations system can be rewritten as

C(z)X(x, y) = 0 (3-49)

where X(x, y) is the vector space consisting of the homogeneous monomial terms of

variables x and y

[x3, y3, x2y, x2, xy2, y2, xy, x, y, 1] (3-50)

Obviously, the rewritten equations only has 10 terms, then the number of equations

equal to the number of terms in X. For making this equation system have non-trivial

solutions, it must satisfy the equation

det(C(z)) = 0. (3-51)

The equation (3-51) is an univariate polynomial, which only consist the variable z.

Therefore, we can easily solve the roots of z by solving this equation. Obviously,

there are only at most 10 roots for z, so the five-point problems can have at most 10

solutions.

Next, we can use the substitution method to obtain the rest of the unknowns. But

the substitution step will be done for many times, due to the fact that there are many

1 35�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

z solutions, that’s why it is somewhat cumbersome. We can use a more convenient

way to get other variables, that is doing SVD decomposition for C(z). The vector

space X(x, y) has included all the combinations of variables x and y up to degree

three. Thus, from the equation (3-49), it’s obviously that the solutions of x and y

are the right null-space of C(z). In the other words the solutions of x and y can be

conveniently computed by doing a SVD decomposition for C(z).

After computing the coefficients x, y, z, combining with the vectors X, Y, Z, W

known before, we can obtain the solutions of the essential matrix E. Finally, we

can recover the motion information, rotation matrix R and the translation vector t,

from the essential matrix E.

3.1.3 The Flowchart of the Five-point Algorithm

Begin

For every pair of matching features (x = [x1, y1, 1], x′ = [x2, y2, 1]),
compute the x̃ vector to get a N × 9 matrix Q

[U, S, V]=svd(Q), X, Y, Z, W are the last four columns of V

Substitute the expression of E (3-43) into equation (3-37) and (3-39) to obtain 10 equations

Treat z as a parameter, rewrite the equation system as C(z)X(x, y) = 0

Solve equation det(C(z)) = 0 to get the roots of z

Do SVD decomposition of C(z).
The solutions of x and y are the right null space of C(z).

End

Figure 3-1 Flowchart of five-point algorithm

3.1.4 Result of Five-point Algorithm

Since the process of solving E is actually solving a ten-degree polynomial, the

determinant of the coefficient matrix equation (3-51) with z as the parameter. There-

fore, the roots of the E have wrong solutions (these solutions are not true represents

of the camera pose). Here the results of a single five-point calculation with two fixed

images (corresponding to Roll movement) are shown.

1 36�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 3-2 The results of a single five-point calculation with two fixed images.

1 37�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Obviously, only the fourth solution is correct, the rest are spurious solutions,

which happen in the case that the inputs are well enough, or all the solutions should

be wrong. Visible, use a single five-point algorithm to obtain the correct essential

matrix is unrealistic, so we use RANSAC to exclude spurious solutions.

3.2 RANSAC

3.2.1 Overview of RANSAC

Though we got match features from SiftGPU, they are not all the exact matches.

That’s say, there are some outliers. To solve the problem, we can use RANdom SAm-

ple Consensus (RANSAC) algorithm, which can help us reject outliers[50] in visual

odometry computation well.

RANSAC is short for RANdom SAmple Consensus[51]. It is an algorithm to com-

pute the math model according to a dataset including outliers, and obtaining the

effective sample data (inliers). It was first proposed by the Fischler and Bolles[52]

in 1981. The RANSAC algorithm is often applied in robotics, for instance, extract-

ing line from 2D image, extracting plane from 3D structure, and extracting structure

from motion.

The basic assumption of the RANSAC algorithm is that a sample contains the cor-

rect data (inliers, can be described by the data model), but also contains abnormal

data (outliers, deviation from the normal range very far, unable to adapt to the math-

ematical model of the data), that the dataset contains noise. And it also assumes that

there exists a method that can calculate the model parameters which are consistent

with this data. RANSAC is an iterative, non-deterministic algorithm. It estimates

the model parameters by iterations. As far as to its non-determinacy, it gets different

model in each iteration, and it has a possibility to get a reasonable model. For getting

a good enough model, the number of iterations should be improved.

RANSAC is a learning algorithm, it gets model parameters through sampling

points randomly. Given a dataset, which including inliers and outliers, RANSAC

use vote scheme to find the optimal model. To put it simply, the elements in the data

set vote for the models. There are two assumptions about the vote scheme. First, any

outlier is impossible to vote for a single model all along. Second, there are enough

features to fit a good model.

1 38�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

3.2.2 Fundamental of RANSAC

The RANSAC algorithm is given a set of observed data, the method to obtain a

fitting model, and some reasonable parameters of the algorithm as its inputs. Then

RANSAC repeats the steps as follows to get enough inliers in consensus set:

a) Choose minimal points from the observed data set to compose a subset, called

hypothetical inliers.

b) Fit a model from the subset(compute its model parameters).

c) Test each point in the observed values data set to see whether they are consistent

to the fitting model we got in step one. When the error between the testing point

and the model is less than the threshold we set, add the point as an inlier of this

model. If a point does not fit the fitting model and away from it more than a

certain threshold we setted, it will be regard as a outliers, belong to noise.

d) We get a set of inliers from the fitting model, which was called ”consensus set”.

If there are enough points in the consensus set, the model will be regarded as a

good model.

e) Then we use all points in consensus set to compute a better model.

The algorithm repeats the steps above until there are enough inliers in the con-

sensus set in certain iteration. In every iteration, a model with too less inliers will be

throw out, or it can be insteaded by the model with more inliers in other iterations,

which make us get the best model.

We can get a Matlab implementation of some kinds of model fitting and robust

estimation using RANSAC algorithm from [53]. And some C++ implementations

code also can be found in [54] and [55].

3.2.3 Parameters

Some important parameters we should set at the code beginning is as follows[51].

K is the maximum number of iterations. It can be caculated in section below

(Algorithm Complexity Analysis of RANSAC),which is determined by how high

the possibility we want to find the best model, the number of elements in the input

dataset, and the number of inliers for the best model.

N is the minimum number of points to fit the model required.It is decided by

what model you want to fit. For fitting a 2D line, we need at least 2 points. Therefore,

1 39�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

for this example, N is 2. In this thesis, we need to use 5-point algorithm to fit a

essential matrix, thus, N equal to 5 here.

T is the threshold measuring if the point fit the model. If the error between the

point and the model less than T, the point can be add as a inliers to consensus set.

D is a threshold to decide whether a model is a good model. If the number of

inliers in consensus set reachs the threshold, the model will be regarded as a good

model. It also can be a rate of the numbers of inliers and all points.

The inputs and outputs of the algorithm is listed as follow:

Input:

InputData (A set of observed datas(points)),

K, N, T, D,

FittingFunction (A function can fitting a model with least points).

Output:

BestModel (Finally RANSAC returns a best model (it is possible to return NULL

if it can not find any good model)).

1 40�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Begin

Input D(decide is a model a good model), K(number of iterations),
T(decide if a point fit the model), N(minimum number of points for fitting a model),

BestModel=Null, BestError(a very large number)

iterations > K

Sample N points randomly as a subset

Fit a model with the subset

Check every point,if the point fit the model,add it to consensus set(ConseInliers)

ConseInliers>D

BetterModel = this model

Compute ModelError(how well the model is)

ModelError<BestError

BestModel = this model, BestError = ModelError

increase iteration

End

No

No

Yes

No

Yes

Yes

Figure 3-3 Overall flowchart of RANSAC

1 41�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

3.2.4 Algorithm Complexity Analysis of RANSAC

In the RANSAC algorithm, the first layer of loop is K times iterations for all steps,

besides initialization. Therefore, how large the K is really effecting how long the

program runs. K can be decided according to our conputation.

When we get a dataset of observed data point, We can estimate the proportion of

the inliers in this set based on experience. Assuming that there are n0 inliers in this

input dataset, and n points in the dataset in total. Let W be the probability to choose

an inlier in the dataset each time select a single point: W = n0/n.

In each iteration, we need to select N points to fit a model. Obviously, the pos-

siblility WN that we select N points and all of them are inliers is WN=WN. It is easy

to infer, the probability of we get at least one outlier from these selected N points is

1−WN. When this happened, the model fitting function will fit a bad model, and it

is hard to get a good model in this iteration, not to mention a best model. If we get

at least one outliers from N selected points in all K iterations, there is no doubt that

the output of the algorithm, BestModel, will be null. The possibility to happen this

thing is

P = (1−WN)K (3-52)

Therefore, the possibility of getting a good model is 1− P.

In summary, a reasonable K can be computed below:

K =
log(P)

log(1−WN)
(3-53)

It’s really not a large number. As to my RANSAC for fitting a essential matrix,

N = 5, it has a 99 percent probability of the model can be obtained(P = 0.01), and,

according to experiment, there are about 60 percent of the input match features are

inliers(W = 0.5). Then K can be computed:

K =
log(0.01)

log(1− 0.55)
= (int)145.05072 = 146

where the K = 146 will be used in the code, we can seen from the experimental (in

the section 4.2) that these group of parameters are good enough in most cases.

As was described above, the parameter K can be decided by the inliers number

and the possibility of getting good results, both of which are decided by experiment.

1 42�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

3.3 Five-point Algorithm with RANSAC

Begin

Input D(decide is the E a good essential matrix),K(number of iterations),
T(decide if the pair of image points fit the essential),

N(minimum number of points for fitting a E: 5),Best E=Null, Best error(a very large number)

iterations > K

Sample 5 points randomly

Fit a essential matrix E with these 5 pairs of image points

Check every pair of image points, if the pair of image points fit the E,
padd it to consensus set(EInliers)

EInliers>D

Better E = this E

Compute how well the E is (ModelError)

ModelError<Best error

Best E = this E, Best error = ModelError

increase iteration

End

No

No

Yes

No

Yes

Yes

Figure 3-4 Overall flowchart of five-point algorithm with RANSAC

1 43�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

3.3.1 Description of the Algorithm

In the previous two subsections, respectively, we described the five-point algo-

rithm and RANSAC algorithm. In our project, we use the five-point algorithm with

RANSAC algorithm. In the description we know, RANSAC requires some algorithm

to build the model (get the model parameters). This model is in fact to find the es-

sential matrix E, and we use five-point algorithm to find the matrix E. The algorithm

requires the minimum number of points is five. So in each iteration of the algorithm,

we need a minimum of sampling points is five. Then use the five-point algorithm to

calculate the essential matrix E, and then use the E to test each pair of image points.

For a pair of corresponding points, there are two method to check the inliers in my

code. First is using the epipolar constraint (x′TEx). If the differential of x′TEx and

0 less than a threshold T, then the points are considered as a inlier for this essential

matrix. Second is using the Sampson distance[56]:

d =
N

∑
i=1

(x′Ti Exi)
2

(Exi)
2
1 + (Exi)

2
2 + (ETx′i)

2
1 + (ETx′i)

2
2

(3-54)

Then we add all the well-fitting points of this essential matrix to the consensus

set. If the number of points in the consensus set is bigger than a certain threshold

D, this essential matrix can be seen as a good solution. During this process, we need

to calculate how well the image points fit the essential matrix E. When the deviation

of the points and the fitting model is less than the Best error (the initial value of this

variable is a very large number), we give the E to the Best E variable. After all times

of iteration, the finial Best E is the best essential matrix.

3.4 Chapter Summary

My code is mainly according to this chapter. First it introduce the five-point al-

gorithm, then the RANSAC, which is a outliers rejecting algorithm. As a combine, it

introduces how to use five-point algorithm with RANSAC to select the inliers among

the matching features to calculate the essential matrix finally. After that, it tells how

to recover rotation and translation information from the essential matrix.

1 44�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

4 Experimtal Setup and Results

4.1 Experimental Steps for Each Part

For testing the code, it uses the fixed images to collect data, in which all groups

(two images as a group) of image include the following relative motions:

a) Pure rotation: yaw.

b) Pure rotation: pitch.

c) Pure rotation: roll.

In addition, do experimental of the algorithm under different configuration pa-

rameters, and compare the calculate speed (time) and the correct rate.

For each set of relative movement (with fixed image), do the following steps re-

spectively:

1) Capture two images and save them as the input when the camera do the desig-

nated motion.

2) Do feature extraction and matching for these two images.

3) Use five-point algorithm with RANSAC (with the set of parameters having higher

correct rate) to calculate the essential matrix between two images, then extracts

the rotation matrix R and translation vector t.

4) Use five-point algorithm implemented by OpenCV to calculate the essential ma-

trix between two images, then extracts the rotation matrix R and translation vec-

tor t.

5) Draw the inliers and outliers of matches outputted by my code and OpenCV re-

spectively.

After completing the above experiments, pick a group of fixed images as input,

change RANSAC algorithm parameters for several times, and record the correct rate

and the time of the calculation process.

1 45�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

4.2 The Verification Experiment with Different Groups of Relative
Motion

Now, let’s begin the first experiment, verify the code with different relative mo-

tions.

In this testing experiment, the parameters of the RANSAC algorithm are set as

follows:

T=1e-04(To test if the pair of image point fit the essential matrix),

D=0.5*Match Num (If there are 0.5 image points fit the essential matrix, which can

be seen as a good essential matrix),

K=146(Through K iterations to find the best essential matrix), it means 99% proba-

bility of finding a reasonable essential matrix if there are more than 0.5 points are

inliers.

4.2.1 Experiment with Images At Same Position

First, capture two frames when the camera stay at the same position:

Figure 4-1 Two images at the same position

Secondly, extract and match the features between two images:

1 46�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 4-2 Extract and match the features between two images (Same position)

From the output of the code, SIFT extracts 673 features in the first image and 66

features in the second image. And there are 575 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

Figure 4-3 The inliers and outliers selected by RANSAC (No motion)

SiftGPU outputs 575 pairs of matches between the two images, which are used

to calculate the essential matrix. After running the code for 50 times, there are 50

groups of results are correct. And the top ten sets of results of my code (5-point

algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

1 47�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Table 4-1 Result of no motion groups (rotation unit: degree)

X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -1.71e-13 -1 1.87e-13 -1.75e-14 2.45e-15 -9.76e-15 573 7.6604 My code

2 -5.15e-14 -1 2.88e-14 -5.91e-12 -8.52e-26 3.29e-12 489 8.4228 My code

3 -1.71e-13 -1 -8.51e-13 -1.96e-11 2.82e-15 -9.75e-11 538 7.1157 My code

4 -1.65e-13 -1 2.95e-12 -1.89e-11 1.08e-15 3.38e-10 445 7.6277 My code

5 7.48e-14 -1 -2.31e-13 8.58e-12 5.38e-16 -2.64e-11 398 7.3972 My code

6 1.61e-13 -1 -3.37e-13 -2.71e-15 3.12e-24 -2.39e-15 572 6.7222 My code

7 1.21e-13 -1 -3.60e-14 1.39e-11 -3.62e-16 -4.13e-12 550 7.3098 My code

8 1.06e-13 -1 -2.84e-13 -7.67e-15 1.74e-24 -7.55e-16 558 6.7453 My code

9 5.59e-14 -1 -1.83e-13 -1.00e-14 1.33e-15 -6.17e-15 509 7.6162 My code

10 -1.37e-14 -1 -1.19e-13 3.18e-15 -2.02e-15 -1.58e-15 572 6.9295 My code

11 0.297 -0.028 0.954 -178.827 -34.570 -3.761 78 0.8051 OpenCV

In the table we can see that the rotation and translation values are all very very

near to zero. Notice that the scaling factor ||t|| = 1, so the translation values can not

be all zero. The inliers in most group are more than 0.8 of the number of all matches.

In fact, more than 90% of the matches are correct. Then we can find the reason why

its computation time is very long. It is because the number of matches between these

two images is quite big, and most of them are inliers, which make it easy to obtain

a correct E from random 5 points. So most of E enter the following computations,

computing a better essential matrix and recovering camera matrix P, and even join

the comparing step. Obviously, if every iteration takes a long time, the total time will

be very long.

In the second experiment, the number of iterations is reduced to 8 (when the

inliers are more than 90%, it means 99% chance to get a correct essential matrix).

4.2.2 First Rotation: Pitch

a) Pitch: The First Group

First, capture two frames when the camera do the motion pitch:

1 48�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 4-4 Two images of pitch

Secondly, run the code to extract and match the features between two images:

Figure 4-5 Extract and match the features between two images (Pitch)

From the output of the code, SIFT extracts 722 features in the first image and 677

features in the second image. And there are 285 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

1 49�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 4-6 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 285 pairs of matches between the two images, which are used

to calculate the essential matrix. the parameters of the RANSAC algorithm are set as

follows: T=1e-04, D=0.3*Match Num, K=146. After running the code for 50 times,

there are 49 groups of results are correct. And the top ten sets of results of my code

(5-point algorithm with RANSAC) and a group of result of the openCV implement

are as follows:

Table 4-2 Result of pitch

X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -0.999 0.009 0.042 0.959 12.806 -0.323 88 4.9197 My code

2 -0.999 0.009 0.046 0.991 12.929 -0.309 102 5.1579 My code

3 -0.999 0.009 0.046 0.985 12.998 -0.292 103 4.9039 My code

4 -0.999 0.007 0.047 1.028 12.956 -0.324 92 4.8772 My code

5 -0.999 0.010 0.047 1.006 12.936 -0.292 97 5.1170 My code

6 -0.999 0.007 0.050 1.135 13.383 -0.293 86 5.3559 My code

7 -0.999 0.007 0.046 0.986 12.939 -0.337 94 4.9777 My code

8 -0.999 0.010 0.046 0.993 12.876 -0.286 96 5.3071 My code

9 -0.999 0.006 0.043 0.979 12.821 -0.276 86 5.3168 My code

10 -0.999 0.009 0.048 1.015 12.951 -0.292 87 4.9576 My code

11 -0.581 0.151 -0.799 0.257 12.091 -0.545 135 0.8273 OpenCV

Set D = 0.4 ∗ Match Num for other groups but set D = 0.3 ∗ Match Num for

this two images. It’s because when setting D = 0.4 ∗ Match Num for these group,

the most results are wrong. Observe the inliers numbers selected by RANSAC in the

1 50�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

table, we find in most time it’s less than 0.4*Match Num. Therefore it’s hard to obtain

a good E when D = 0.4 ∗Match Num. Meanwhile, it leads to the long computation

time (about 5 seconds). It is hard to get 5 inliers in the 5 random sampling points,

which make it take a long time to find all-inlier sampling points.

.

b) Pitch: The Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-7 Two images of pitch

Secondly, run the code to extract and match the features between two images:

Figure 4-8 Extract and match the features between two images (Pitch)

From the output of the code, SIFT extracts 757 features in the first image and 854

features in the second image. And there are 240 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

1 51�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

below:

Figure 4-9 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 240 pairs of matches between the two images, which are used

to calculate the essential matrix. Set the parameters of the RANSAC algorithm as

follows: T=1e-04, D=0.2*Match Num, K=146. After running the code for 50 times,

there are 50 groups of results are correct. And the top ten sets of results of my code

(5-point algorithm with RANSAC) and a group of result of the openCV implement

are as follows:

Table 4-3 Result of pitch

X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -0.999 0.016 0.044 -3.627 18.317 -1.645 53 4.8628 My code

2 -0.999 0.014 0.045 -3.588 18.365 -1.652 58 4.1036 My code

3 -0.999 0.015 0.049 -3.581 18.470 -1.646 64 4.9039 My code

4 -0.999 0.013 0.042 -3.625 18.244 -1.691 70 4.0905 My code

5 -0.999 0.015 0.043 -3.626 18.262 -1.667 52 4.3203 My code

6 -0.999 0.016 0.043 -3.619 18.282 -1.648 50 4.4061 My code

7 -0.999 0.016 0.042 -3.617 18.126 -1.633 49 4.4866 My code

8 -0.999 0.016 0.043 -3.602 18.289 -1.649 59 4.6820 My code

9 -0.999 0.015 0.043 -3.609 18.341 -1.653 49 4.3048 My code

10 -0.999 0.016 0.042 -3.684 18.144 -1.645 53 4.2936 My code

11 -0.952 -0.168 -0.252 -2.894 15.043 -1.012 137 0.7963 OpenCV

Set D = 0.3 ∗ Match Num for last group but set D = 0.2 ∗ Match Num for this

group. It’s because when setting D = 0.3 ∗Match Num, the most results are wrong.

1 52�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Observe the inliers numbers selected by RANSAC in the table, we find in most time

it’s less than 0.3*Match Num. Therefore it’s hard to obtain a good E when D =

0.3 ∗ Match Num. Therefore, it also take a long time (about 4 seconds) to obtain a

good E.

4.2.3 Second Rotation: Roll

a) Roll: the First Group

First, capture two frames when the camera do the motion pitch:

Figure 4-10 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-11 Extract and match the features between two images

From the output of the code, SIFT extracts 704 features in the first image and 542

features in the second image. And there are 234 matches between these two images.

1 53�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

Figure 4-12 The inliers and outliers selected by RANSAC (Roll)

SiftGPU outputs 234 pairs of matches between the two images, which are used

to calculate the essential matrix. After running the code for 50 times, there are 48

groups of results are correct. And the top ten sets of results of my code (5-point

algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

Table 4-4 Result of roll
X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -0.877 0.408 -0.250 0.158 3.382 12.721 118 3.6170 My code

2 -0.956 0.256 -0.142 0.338 5.472 12.6581 131 2.9162 My code

3 -0.882 0.238 -0.406 0.290 2.965 11.947 121 2.9411 My code

4 -0.977 0.119 -0.172 1.031 6.129 11.960 96 2.8901 My code

5 -0.882 0.442 -0.156 0.210 -3.647 12.994 124 2.8490 My code

6 -0.892 0.305 -0.331 0.150 3.768 12.424 128 2.6903 My code

7 -0.845 0.154 -0.510 0.339 2.921 11.599 123 2.8021 My code

8 -0.485 0.137 -0.863 0.012 0.820 11.300 95 2.8945 My code

9 -0.846 0.140 -0.512 0.670 2.748 11.542 111 2.7527 My code

10 -0.894 -0.232 0.381 -32.957 -47.833 26.408 124 2.6364 My code

11 0.468 0.811 -0.347 -0.456 -1.767 12.927 166 0.8150 OpenCV

The computation time is about 2.8 second, which is not a short time. The table

1 54�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

tells us that the inliers are about 0.5 of the number of matches. Therefore it is also

not easy to obtain a good E that can fit 0.4 of the matches. In general, the results are

good enough so far. And if we reduce the parameter D, the rotation values can be

more precise.

.

b) Roll: the Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-13 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-14 Extract and match the features between two images

From the output of the code, SIFT extracts 704 features in the first image and 353

features in the second image. And there are 125 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

1 55�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

below:

Figure 4-15 The inliers and outliers selected by RANSAC (Pitch)

SiftGPU outputs 125 pairs of matches between the two images, which are used

to calculate the essential matrix. After running the code for 50 times, there are 49

groups of results are correct. And the top ten sets of results from my code (5-point

algorithm with RANSAC) and a group of result from the openCV implement are as

follows:

Table 4-5 Result of roll
X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 0.791 0.290 -0.537 -0.292 -4.186 25.267 75 2.3513 My code

2 0.910 0.379 -0.162 -1.352 -6.423 27.012 70 1.9119 My code

3 -0.998 0.031 0.035 4.279 8.828 25.552 53 1.8509 My code

4 0.730 0.313 -0.606 -0.040 -3.338 25.175 95 1.6796 My code

5 -0.998 0.058 -0.019 3.816 8.004 25.505 53 1.6932 My code

6 -0.995 0.085 -0.030 3.160 6.817 25.513 63 1.8197 My code

7 -0.980 0.116 -0.159 2.686 5.587 25.287 63 1.7493 My code

8 -0.975 0.136 -0.170 2.690 6.153 25.430 61 1.5259 My code

9 -0.994 0.094 -0.045 3.078 6.695 25.525 64 1.7111 My code

10 -0.998 0.042 0.017 4.211 8.786 25.586 54 1.7188 My code

11 -0.410 -0.137 0.901 0.032 -3.000 24.152 61 0.8215 OpenCV

The computation time is around 1.7 second, which is a shorter time. Because

there are more than 0.5 of the matches are inliers. Therefore it is easy to obtain a

good E that can fit 0.4 of the matches. In general, the results are good enough so far.

1 56�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

And if we reduce the parameter D, the rotation values can be more precise.

4.2.4 Third Rotation: Yaw

a) Yaw: The First Group

First, capture two frames when the camera do the motion pitch:

Figure 4-16 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-17 Extract and match the features between two images

From the output of the code, SIFT extracts 767 features in the first image and 818

features in the second image. And there are 296 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

1 57�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 4-18 The inliers and outliers selected by RANSAC (Yaw)

SiftGPU outputs 296 pairs of matches between the two images, which are used

to calculate the essential matrix. After running the code for 50 times, there are 49

groups of results are correct. And the top ten sets of results of my code (5-point

algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

Table 4-6 Result of yaw

X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -0.997 0.011 0.079 13.931 6.730 -2.348 172 1.1087 My code

2 -0.999 0.037 0.021 14.039 6.899 -2.181 157 1.0750 My code

3 -0.999 0.026 0.014 13.856 7.775 -1.970 159 1.0970 My code

4 -0.993 0.009 0.114 13.764 5.933 -2.547 171 1.1244 My code

5 -0.999 0.036 -0.003 13.965 7.735 -1.949 157 1.1077 My code

6 -0.996 0.018 0.080 13.826 5.926 -2.510 209 1.2098 My code

7 -0.995 0.013 0.092 13.853 6.463 -2.406 155 1.2474 My code

8 -0.998 0.023 0.058 13.822 6.091 -2.453 158 1.1432 My code

9 -0.997 0.021 0.063 13.811 6.084 -2.460 167 1.1928 My code

10 -0.993 -0.006 0.114 14.160 7.101 -2.346 152 1.1214 My code

11 -0.481 -0.335 0.809 14.444 8.246 -2.173 127 0.8090 OpenCV

Observe the inliers numbers selected by RANSAC in the table, we find in most

time it’s more than 0.5 of the matches. Therefore it’s easy to obtain a good E when

D = 0.4 ∗Match Num. Therefore, it needn’t take a long time to obtain a good E.

.

1 58�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

b) Yaw: The Second Group

First, capture two frames when the camera do the motion pitch:

Figure 4-19 Roll

Secondly, run the code to extract and match the features between two images:

Figure 4-20 Extract and match the features between two images

From the output of the code, SIFT extracts 767 features in the first image and 773

features in the second image. And there are 205 matches between these two images.

The code with RANSAC selects the inliers to compute the essential, the code are

run for one time and the inliers (green lines) and outliers (black lines) are drawn

below:

1 59�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

Figure 4-21 The inliers and outliers selected by RANSAC (Yaw)

SiftGPU outputs 205 pairs of matches between the two images, which are used

to calculate the essential matrix. After running the code for 50 times, there are 42

groups of results are correct. And the top ten sets of results of my code (5-point

algorithm with RANSAC) and a group of result of the openCV implement are as

follows:

Table 4-7 Result of yaw

X-axis Y-axis Z-axis Yaw Pitch Roll Inliers Time (s) Code

1 -0.998 0.012 0.047 31.773 16.886 -1.631 107 1.5873 My code

2 -0.998 0.051 -0.025 31.559 17.703 -0.273 103 1.0123 My code

3 -0.999 0.029 0.005 33.300 15.676 -2.555 105 1.0715 My code

4 -0.999 0.018 0.033 31.701 17.491 -1.138 136 1.0228 My code

5 -0.999 0.020 0.017 31.643 19.369 0.251 121 0.8853 My code

6 -0.003 0.999 -0.003 0.175 0.008 0.569 162 0.9507 My code

7 -0.998 0.046 -0.017 31.583 17.945 -0.209 110 0.9468 My code

8 -0.999 0.008 0.040 31.777 19.173 -0.137 109 0.9384 My code

9 -0.999 0.018 0.028 32.547 13.944 -3.605 116 0.9394 My code

10 -0.999 0.023 0.016 32.901 15.963 -2.360 122 0.9233 My code

11 -0.427 0.351 -0.833 38.949 15.755 -1.458 108 0.802 OpenCV

The computation time is around 1 second, which is not a long time. Because

there are more than 0.5 of the matches are inliers. Therefore it is easy to obtain a

good E that can fit 0.4 of the matches. Besides, we find that the fluctuation of the

rotation values in a wide range, which means that the best E given finally is not

1 60�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

obtained through enough comparisons. To solve this problem, reducing the D is a

good choose.

4.3 Testing Experiment with Different Parameters in RANSAC

We use two groups of images to do the experiment in this chapter. In this chapter,

the code will be run two hundred times to verify the correctness of the code as well

as the computation time.

4.3.1 Change Parameters of the No Motion Group

a) The Significance of Changing Parameters

First of all, the group taken at the same position is important, whose matches

almost all are inliers. For this reason, it’s easy to obtain 5 inliers in 5 random points,

which leads to a small number of iterations. We can compute a reasonable iteration

number as follows:

K =
log(P)

log(1−WN)
=

log(0.01)
log(1− 0.85)

= (int)11.599 = 12

where P is the possibility of getting a correct model (essential matrix E) after K itera-

tions, which is 99%, and we assume the inliers are 0.9 of the matches. Besides, I will

set K = 86 (sufficient number of iterations) in contrast.

In addition, change the D (if the inliers fitting the model are more than D, it can

be seen as a good model) and T (if the error between the point and the model is less

than T, the point can be regarded as a inlier) for several times, then we can find the

relationship between the operation time and the T and D.

b) Compare the Results

Record the computation time and correct rate after 200 times running code in the

below table:

Table 4-8 Different parameters of the no motion group

K D(of match number) T Correctness Computation time(s) Deviation Inliers

12 0.8 1e-4 173/200 0.8631 0.01 544.66/575

86 0.8 1e-4 200/200 4.7681 1e-11 555.27/575

12 0.4 1e-4 179/200 0.6681 0.001 502.2/575

12 0.8 1e-2 177/200 1.2315 0.01 539.61/575

12 0.8 1e-14 146/200 0.5212 0.0001 553.2/575

86 0.8 1e-14 200/200 4.3475 1e-11 529.53/575

1 61�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

c) Analyze the Experiment Results

According to the table, we can get the following conclusion:

(1) When K=86, all the results obtained by running the program are correct, which

says that it is enough to get very good essential matrix by 86 iterations. And

form the figure, we can see that the error is as small as 1e-11. So we have rea-

son to think that we can get nearly one hundred percent of correct results with

very accurate numerical values when the input is good(having little outliers of

matching features), and iteration number is enough. But, it needs more time to

achieve the good property, more than 4 seconds.

(2) T=1e-14 means a very strict fitting requirements, that is the value is normal if

and only if the deviation of point and model is litter that 1e-14. This kind of

parameter setting has no effect on the correctness for K=86, and all the results are

right. But the effect is a little big if K=12, with accuracy dropped from 173/200

to 146/200. In an iteration, it is hard to guarantee that 0.8 of matching features

points are very fit to established model(essential matrix). So, if the iteration times

is a little less, we cant find the correct model(essential matrix) with too high

requirements.

(3) Compared to D=0.8*match num, if D=0.4*match num, the computation time is

shorter, deviation is smaller, and correct results are more, but normal values are

fewer. It is not bad that the normal values are fewer, contrarily, it can be con-

sidered to be a good model if the setting requires that only more than 0.4 of

matching fit the building model. It lowers the threshold of a good model, and

then some more accuracy points can have bigger opportunity to build a more

accuracy model. With more opportunities to try, it’s easier for us to get right re-

sults. Besides, more opportunities to try should lead to longer calculation times,

but we ca save time by using fewer points in every calculation of a better E, since

only fewer points are considered to be normal values.

(4) Another way to lower the threshold of a good model is to increase T, which

causes more points to be considered normal(If it is big,abnormal values also will

be considered to be normal). It is not to make more precise points have more

chance to participate in the calculation, on the contrary, it makes less precise

points have the opportunity to participate in the establishment of models. When

the input includes fewer abnormal values, it does not reduce the accuracy rate,

1 62�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

and even improves the accuracy, but the calculation time is prolonged.

4.3.2 Change Parameters of the Second Yaw Group

a) The Significance of Changing Parameters

Let’s select the second yaw group to do this testing experimental. Only about 0.5

of the matches are inliers, which means the input is not good enough (contrary to

the no motion group). For this reason, it’s not easy to obtain 5 inliers in 5 random

points, which leads to the result that it’s hard to get a good E in one iteration. Let

P=99%, which means there are99% possibility to get a good essential matrix from the

algorithm. We can compute a reasonable iteration number as follows:

K =
log(P)

log(1−WN)
=

log(0.01)
log(1− 0.55)

= (int)145.0507 = 146

we assume the inliers are 0.5 of the matches. Besides, set K = 86 (sufficient number

of iterations) in contrast.

In addition, change the D (if the inliers fitting the model are more than D, it can

be seen as a good model) and T (if the error between the point and the model is less

than T, the point can be regarded as a inlier) for several times, then we can find the

relationship between the operation time and the T and D.

b) Compare the Results

Record the computation time and correct rate after 200 times running code in the

below table:

Table 4-9 Different parameters of the yaw group

K D(of match number) T Correctness Computation time(s) Deviation Inliers

146 0.5 1e-4 173/200 1.8088 0.5 114.3/205

146 0.3 1e-4 135/200 1.8567 1.7 72.5/205

246 0.5 1e-4 164/200 1.5384 1.3 114/205

146 0.5 1e-2 177/200 0.9407 1.4 116.5/205

c) Analyze the Experiment Results

According to the table, we can get the following conclusion:

(1) Compared to K=246, K=146 does not bring advantage, or even lower the correct

rate, which is very surprising. In the case of the input is relatively poor (contains

more outliers), more iterations may give outliers more opportunities to partici-

pate in the calculation.

1 63�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

(2) Another result opposite of last experiment is that when D is reduced to D =

0.3*match num, the correct rate is down, and the rate of decline is very seri-

ous.Because the input is bad, lowering the standard of good model does not

mean making a few more precise points to build a model, but means making

more incorrect model be considered to be a correct model. So, while the correct

rate is reduced, the calculation time is not reduced.

(3) When we increase the T to 0.01, we find that the correct rate is increased, and the

computation time is reduced to a large extent.As mentioned earlier, an increase

in T causes more points to be considered as a normal value, resulting in less

precise points have the opportunity to participate in the establishment of the

model.When the camera does a larger movement, the coordinates of points have

larger change, and their corresponding coordinates will become less accurate. At

this time, if we increase T to a reasonable threshold, it is more conducive to the

establishment of the correct model.

4.4 Chapter Summary

In this chapter we do two experiments. In the first one we use different image

pairs to verify the code. We use good input (images taken at the same position) and

not good input (especially the pitch pair) to calculate their camera pose transform,

and record their correctness and computation speed, and compare their results with

that of the OpenCV code. In the second experiment, we use the same pair of im-

ages as input, but change the parameters of the RANSAC algorithm, to see how the

correctness, computation time and the deviation change. In order to obtain rigorous

results, we use a pair with good matching and a pair with bad matching to do the

experiment. And finally, we analyze the results in detail after every experiment.

1 64�

ÜÜÜHHH���ÏÏÏ���ÆÆÆ������...������OOO£££ØØØ©©©¤¤¤

In this thesis, the main parts of monocular vision measurement is completed: one

is the extraction and matching of features, another is the calculation of the transfor-

mations of camera by the corresponding image points (this thesis mainly completes

the calculation of rotation part). In this thesis, for the features detection and match-

ing, we have used the open source code, SiftGPU, while my own code is mainly on

five-point algorithm with RANSAC. SIFT feature is a kind of significant and robust

feature. By the pictures 2-1, we can see that most of the features matched by SiftGPU

are correct. The code of using the five point algorithm with RANSAC to calculate the

essential matrix has been achieved before by others, which mostly used the epipolar

constraint(the distance between the corresponding points to its polar line is minimal)

or Sampson distance(deduced from the epipolar line, but its results much better) to

check the inliers. My code uses both of them, which make the result improve in a

large degree. From the pictures from the RANSAC’s outputs (figure 4-6, 4-18, 4-12,

4-9, 4-21, 4-15 and 4-3), we can see almost all the outliers are removed with good

parameters of RANSAC. In this thesis, it uses OpenCV code results to compare with

the results of my code, showing the calculation time of mine is not much longer than

the OpenCV’s. Although fluctuation range of the results of mine is relatively larger,

but they are basically accurate (in rotation information aspect). The translation infor-

mation results of my code is not good, and because the scale factors are not included

in t vector, so it is hard to confirm the accuracy of the translation results. OpenCV

results are very bad for the images at the same position (i.e., no camera movement),

but my code results are incredibly accurate and with high correctness (table 4-1). In

this thesis, the five-point algorithm with RANSAC are talked about a lot. As we

know from the previous discription, using a single time five-point algorithm to cal-

culate the essential matrix will have a number of wrong solutions (since solving E

is actually to solve ten times polynomial), so use RANSAC for outliers exclusion is

very necessary.

1 65�

 西南交通大学本科毕业设计（论文）

第 65 页

Conclusions

In this thesis, the main parts of monocular vision measurement is completed: one is the

extraction and matching of features, another is the calculation of the transformations of

camera by the corresponding image points (this thesis mainly completes the calculation of

rotation part). In this thesis, for the features detection and matching, we have used the open

source code, SiftGPU, while my own code is mainly on five-point algorithm with

RANSAC. SIFT feature is a kind of significant and robust feature. By the pictures 2-1, we

can see that most of the features matched by SiftGPU are correct. The code of using the

five point algorithm with RANSAC to calculate the essential matrix has been achieved

before by others, which mostly used the epipolar constraint or Sampson distance(deduced

from the epipolar line, but its results much better) to check the inliers. My code uses both of

them, which make the result improve in a large degree. From the pictures from the

RANSAC's outputs (figure 4-6, 4-18, 4-12, 4-9, 4-21, 4-15 and 4-3), we can see almost all

the outliers are removed with good parameters of RANSAC. In this thesis, it uses OpenCV

code results to compare with the results of my code, showing the calculation time of mine

is not much longer than the OpenCV's. Although fluctuation range of the results of mine is

relatively larger, but they are basically accurate (in rotation information aspect). The

translation information results of my code is not good, and because the scale factors are not

included in t vector, so it is hard to confirm the accuracy of the translation results. OpenCV

results are very bad for the images at the same position (i.e., no camera movement), but my

code results are incredibly accurate and with high correctness (table 4-1). In this thesis, the

five-point algorithm with RANSAC are talked about a lot. As we know from the previous

description, using a single time five-point algorithm to calculate the essential matrix will

have a number of wrong solutions (since solving E is actually to solve ten times

polynomial), so use RANSAC for outliers exclusion is very necessary.

Some shortcomings of this thesis is we calculate the rotation transform of camera well,

but the results of translation is actually need to be improved. As we known, the translation

vector t extracted from the essential matrix is without the scaling factor. Obviously, in

this thesis the translation vector t satisfy ||t||=1 but not actually correct in direction. To

converse the vector t to some units we use in usual (i.e. meter), we need to put some mark

in the scene, then we can converse the distance in the photos to that in the world. But fixing

the problem about the translation direction is more important.

 西南交通大学本科毕业设计（论文）

第 66 页

Acknowledgments

 Thanks to my two distinguished teachers --Sören Schwertfeger and Wang Xiaoning.

 Professor Wang is not only strict but also kind. When I leave for Shanghai Tech

University, she asked me to pay attention to safety. During my bachelor thesis outside our

school, she usually sent e-mails to me and talked with me on QQ to supervise my thesis

complete progress. When I had difficulties in debugging the program, she encouraged me

not to give up, and told me dawn is in front.

 Sören is easy to get along, who is not only my teacher but also my friend. He usually

help me to debug my program, and discuss the theory problems with me. Since my English

writing is really poor, he is always help me to fix the grammar mistakes in my thesis

carefully. With his help, my English writing quality and speed have been improved.

 Family support and care is essential for my education. My family’s pay make me could

concentrate on my study happily. I am very grateful to them

 Finally, thanks the teachers who attend the thesis review and defense.

 西南交通大学本科毕业设计（论文）

第 67 页

References

[1] Friedrich Fraundorfer, Davide Scaramuzza. Visual Odometry: Part II: Matching,

Robustness, Optimization, and Applications[J]. Robotics & Automation Magazine

IEEE, 2012, 19(2):78-90.

[2] Nistér D, Naroditsky O, Bergen J. Visual odometry[C]. Computer Vision and Pattern

Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society

Conference on. IEEE, 2004: I-652-I-659 Vol.1.

[3] Maimone M, Cheng Y, Matthies L, et al. Two years of Visual Odometry on the Mars

Exploration Rovers[J]. Journal of Field Robotics, 2007, 24(3): 169-186.

[4] Maimone M, Cheng Y, Matthies L, et al. Two years of Visual Odometry on the Mars

Exploration Rovers[J]. Journal of Field Robotics, 2007, 24(3): 169-186.

[5] Moravec H P. Obstacle avoidance and navigation in the real world by a seeing robot

rover[D]. Ph.D. dissertation, Stanford University, 1980.

[6] Comport A I, Malis E, Rives P. Accurate Quadrifocal Tracking for Robust 3D Visual

Odometry[C], Proceedings - IEEE International Conference on Robotics and

Automation. 2007:40-45.

[7] Nister D, Naroditsky O, Bergen J R, et al. Visual odometry for ground vehicle

applications[J]. Journal of Field Robotics, 2006, 23(1): 3-20.

[8] Corke P, Strelow D, Singh S. Omnidirectional visual odometry for a planetary rover[C].

Intelligent Robots and Systems, 2004 IEEE/RSJ International Conference on, 2004(4):

4007-4012.

[9] Lhuillier M. Automatic scene structure and camera motion using a catadioptric

system[J]. Computer Vision and Image Understanding, 2008, 109(2): 186-203.

[10] Goecke R, Asthana A, Pettersson N, et al. Visual Vehicle Egomotion Estimation using

the Fourier-Mellin Transform[J]. Intelligent Vehicles Symposium IEEE, 2007:

450-455.

[11] Tardif J, Pavlidis Y, Daniilidis K, et al. Monocular visual odometry in urban

environments using an omnidirectional camera[C]. Intelligent RObots and Systems,

2008: 2531-2538.

[12] Michael J. Milford. Single camera vision-only SLAM on a suburban road network [C].

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on IEEE,

2008: 3684 – 3689.

 西南交通大学本科毕业设计（论文）

第 68 页

[13] Mouragnon E, Lhuillier M, Dhome M, et al. Real Time Localization and 3D

Reconstruction[C]. 2014 IEEE Conference on Computer Vision and Pattern

Recognition, 2006(1): 363-370.

[14] Scaramuzza D, Fraundorfer F, Siegwart R. Real-time monocular visual odometry for

on-road vehicles with 1-point RANSAC[C], IEEE International Conference on

Robotics and Automation. IEEE Press, 2009:4293-4299.

[15] Pretto A, Menegatti E, Pagello E, et al. Omnidirectional dense large-scale mapping and

navigation based on meaningful triangulation[J]. International Conference on Robotics

and Automation, 2011.

[16] VLFeat. SIFT++[CP]. http://vision.ucla.edu/~vedaldi/code/siftpp.html, 2016-2-17.

[17] Sinha S N, Frahm J M, Pollefeys M, et al. GPU-based Video Feature Tracking and

Matching[J]. Workshop on Edge Computing Using New Commodity Architectures,

2006, 2000(Oct 21):189-196.

[18] Dirk Thomas. Wiki: Ros/introduction — wikipedia, the free encyclopedia[EB/OL].

http://wiki.ros.org/ROS/Introduction, 2015-12-17.

[19] PiyushKhandelwal. Wiki: openni_launch[EB/OL]. http://wiki.ros.org/openni_launch,

2016-1-15.

[20] Lowe D G. Object recognition from local scale-invariant features[C]. Computer Vision,

1999. The Proceedings of the Seventh IEEE International Conference on. IEEE, 1999,

2:1150-1157.

[21] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International

Journal of Computer Vision, 2004, 60(60):91-110.

[22] Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image

descriptors[J]. Computer Vision and Pattern Recognition, 2004, (2): 506-513.

[23] Mikolajczyk K, Schmid C. Performance evaluation of local descriptors.[J]. Pattern

Analysis & Machine Intelligence IEEE Transactions on, 2005, 27(10):1615-1630.

[24] Matthies L, Shafer S A. Error modeling in stereo navigation[J]. IEEE Journal on

Robotics and Automation, 1987, 3(3): 239-248.

[25] Lacroix S, Mallet A, Chatila R, et al. Rover Self Localization in Planetary-Like

Environments[J]. Artificial Intelligence, 1999, 440:433.

[26] Olson C F, Matthies L H, Schoppers M, et al. Robust Stereo Ego-motion for Long

Distance Navigation[J]. 2000, 2:453-458 vol.2.

[27] Harris C G, Pike J M. 3D positional integration from image sequences[J]. Image &

Vision Computing, 2013, 6(2):87-90.

http://vision.ucla.edu/%7Evedaldi/code/siftpp.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/openni_launch

 西南交通大学本科毕业设计（论文）

第 69 页

[28] Shi, J, Tomasi, C. Good features to track[C]. Computer Vision and Pattern Recognition,

1994. CVPR 1994. Proceedings of the 1994 IEEE Computer Society Conference on,

1994:593-600.

[29] Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection[C],

European Conference on Computer Vision. Springer-Verlag, 2006:430-443。
[30] Bay H, Ess A, Tuytelaars T, et al. Speeded-Up Robust Features (SURF)[J]. Computer

Vision & Image Understanding, 2008, 110(3):346-359.

[31] Agrawal M, Konolige K, Blas M R, et al. CenSurE: Center Surround Extremas for

Realtime Feature Detection and Matching[J]. European Conference on Computer

Vision, 2008: 102-115.

[32] Siegwart R, Nourbakhsh I R, Scaramuzza D, et al. Introduction to Autonomous Mobile

Robots, second edition[J]. Mit Press, 2011, 2(4):645 - 649.

[33] Wikipedia contributors. Graphics processing unit [EB/OL].

https://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=7211536

81, 2016-3-25.

[34] Absurdwho. GPU 概念[EB/OL]. http://www.docin.com/p-516164711.html, 2016-3-25.

[35] Changchang Wu. SiftGPU: A GPU implementation of scale invariant feature transform

(SIFT) [EB/OL]. http://cs.unc.edu/~ccwu/siftgpu, 2016-2-1.

[36] G. Ziegler and et al. GPU point list generation through histogram pyramids[R].

Saarbrücken: Max-Planck-Institut für Informatik, 2006.

[37] Wikipedia contributors. Epipolar geometry — wikipedia, the free encyclopedia

[EB/OL].

[38] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]: Epipolar

Geometry and the Fundamental Matrix pp. 239-261. Second edition. Cambridge

University Press, 2004.

[39] Jianxiong Xiao. Multi-view 3d reconstruction for dummies [R]. Princeton University,

2016.

[40] Wikipedia contributors. Skew-symmetric matrix — wikipedia, the free

encyclopedia[EB/OL].https://en.wikipedia.org/w/index.php?title=Skew-symmetric_m

atrix&oldid=709299705, 2016-3-22.

[41] Wikipedia contributors. Camera matrix — wikipedia, the free encyclopedia[EB/OL].

https://en.wikipedia.org/w/index.php?title=Camera_matrix&oldid=693428164,

2015-12-27.

[42] Ramani Duraiswami. Camera Calibration - UMIACS [R]. University of Maryland

https://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=721153681
https://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=721153681
http://www.docin.com/p-516164711.html
http://cs.unc.edu/%7Eccwu/siftgpu
https://en.wikipedia.org/w/index.php?title=Skew-symmetric_matrix&oldid=709299705
https://en.wikipedia.org/w/index.php?title=Skew-symmetric_matrix&oldid=709299705
https://en.wikipedia.org/w/index.php?title=Camera_matrix&oldid=693428164

 西南交通大学本科毕业设计（论文）

第 70 页

Institute for Advanced Computer Studies, 2000.

[43] Bradknox. Wiki: camera_calibration/Tutorials/MonocularCalibration[EB/OL].

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration , 2015-3-7.

[44] Longuet-Higgins H C. A computer algorithm for reconstructing a scene from two

projections[J]. Nature, 1981, 293(5828):133-135.

[45] Q T Luong. Matrice fondamentale et auto-calibration en vision par ordinateur[D]. PhD

thesis, Universite de Paris-Sud, Orsay, 1992.

[46] Nister D. An efficient solution to the five-point relative pose problem[J]. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 756-777.

[47] Li H, Hartley R. Five-Point Motion Estimation Made Easy[J]. International

Conference on Pattern Recognition Hong Kong, 2006, 1:630-633.

[48] Nister D. An efficient solution to the five-point relative pose problem[C]. IEEE

Computer Vision and Pattern Recognition, 2003(2): 195–202.

[49] David A Cox, John Little, O’Shea D. Using algebraic geometry[M]. 2nd Edition.

Springer Verlag, 1998.

[50] Strutz T. Data Fitting and Uncertainty[M]. Vieweg+Teubner, 2016.

[51] Wikipedia contributors. Ransac — wikipedia, the free encyclopedia[EB/OL].

https://en.wikipedia.org/w/index.php?title=RANSAC&oldid=709504871, 2016-3-11.

[52] Martin A Fischler, Robert C Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography[M].

Morgan Kaufmann Publishers Inc. 1987:726-740.

[53] P. D. Kovesi. MATLAB and Octave Functions for Computer Vision and Image

Processing [EB/OL]. http://www.peterkovesi.com/matlabfns/, 2016-2-23.

[54] Jose Luis Blanco. RANSAC C++ examples[CP].

http://www.mrpt.org/tutorials/programming/maths-and-geometry/ransac-c-examples/,

2016-4-3.

[55] Z. Yaniv. Random sample consensus (ransac) algorithm, a generic implementation[J].

Insight Journal, 2010.

[56] 王文斌, 刘桂华, 刘先勇,等. 本质矩阵五点算法伪解的两种剔除策略[J]. 光電工

程, 2010, 37(8):46-52.

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
https://en.wikipedia.org/w/index.php?title=RANSAC&oldid=709504871
http://www.peterkovesi.com/matlabfns/
http://www.mrpt.org/tutorials/programming/maths-and-geometry/ransac-c-examples/

	打印首.pdf
	论文正文.pdf
	Introduction
	The Significance and Background of the Thesis
	The Significance of Monocular Visual Odometry
	Current Research Situation at Home and Abroad

	Monocular Visual Odometry
	Fundamental
	Method and tools
	The Overall Algorithm Flowchart

	The Main Content of the Thesis
	Thesis structural arrangements

	Theory and Preparation
	Overview of ROS
	What is ROS?
	What do we do on ROS?

	Features Detecting and Matching
	What is SIFT?
	The Purpose of Using SIFT
	Introduction of GPU
	Introduction to SiftGPU

	Epipolar Geometry
	Epipolar Geometry
	Epipolar Constraint and Triangulation

	The Fundamental Matrix
	Overview of Fundamental Matrix
	Geometric Derivation of Fundamental Matrix
	Algebra Derivation of Fundamental Matrix
	The Necessary and Sufficient Condition of Fundamental Matrix
	The Camera Matrix Obtained from the Fundamental Matrix

	The Essential Matrix
	Camera Calibration
	The Essential Matrix
	Recovering R and t from E
	Chapter Summary

	 Five-point Algorithm with RANSAC
	Five-point Algorithm
	Basic Knowledge
	The Method of Calculating the Essential Matrix
	The Flowchart of the Five-point Algorithm
	Result of Five-point Algorithm

	RANSAC
	Overview of RANSAC
	Fundamental of RANSAC
	Parameters
	Algorithm Complexity Analysis of RANSAC

	Five-point Algorithm with RANSAC
	Description of the Algorithm

	Chapter Summary

	Experimtal Setup and Results
	Experimental Steps for Each Part
	The Verification Experiment with Different Groups of Relative Motion
	Experiment with Images At Same Position
	First Rotation: Pitch
	Second Rotation: Roll
	Third Rotation: Yaw

	Testing Experiment with Different Parameters in RANSAC
	Change Parameters of the No Motion Group
	Change Parameters of the Second Yaw Group

	Chapter Summary

	Conclusions
	Acknowledgments
	References

	打印尾.pdf
	Conclusions
	Acknowledgments
	References

