

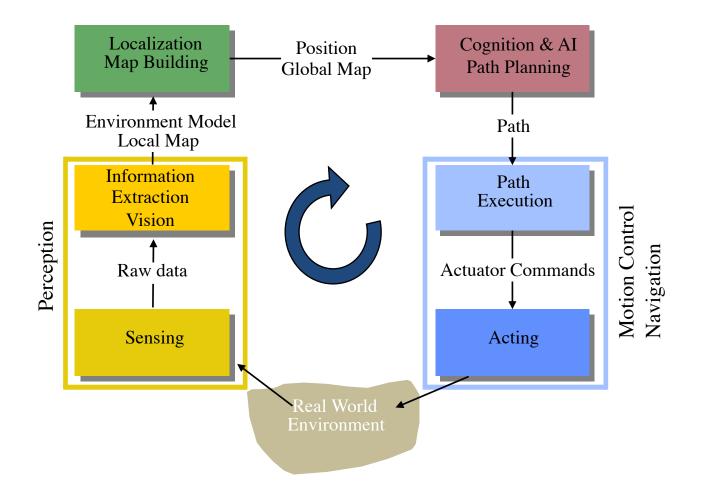
CS283: Robotics Fall 2020: Kinematics

Sören Schwertfeger / 师泽仁

ShanghaiTech University

KINEMATICS

General Control Scheme for Mobile Robot Systems



Motivation

- Autonomous mobile robots move around in the environment.
 Therefore ALL of them:
 - They need to know where they are.
 - They need to know where their goal is.
 - They need to know **how** to get there.

•Odometry!

- Robot:
 - I know how fast the wheels turned =>
 - I know how the robot moved =>
 - I know where I am ☺

Odometry

Robot:

- I know how fast the wheels turned =>
- I know how the robot moved =>
- I know where I am ☺
- Marine Navigation: Dead reckoning (using heading sensor)

• Sources of error (AMR pages 269 - 270):

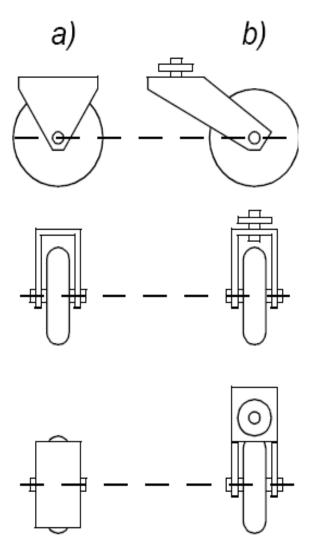
- Wheel slip
 - Uneven floor contact (non-planar surface)
 - Robot kinematic: tracked vehicles, 4 wheel differential drive..
- Integration from speed to position: Limited resolution (time and measurement)
- Wheel misalignment
- Wheel diameter uncertainty
- Variation in contact point of wheel

Mobile Robots with Wheels

- Wheels are the most appropriate solution for most applications
- Three wheels are sufficient to guarantee stability
- With more than three wheels an appropriate suspension is required
- Selection of wheels depends on the application

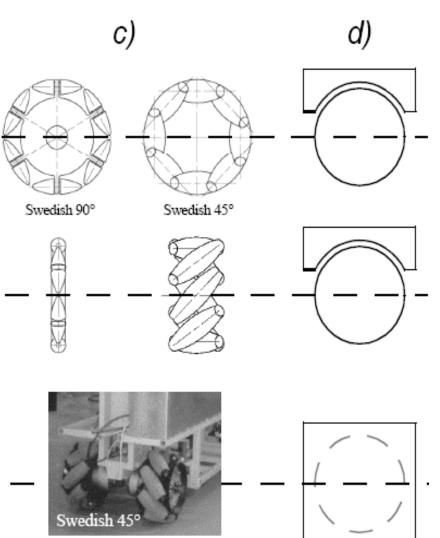
The Four Basic Wheels Types

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle



The Four Basic Wheels Types

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point
- d) Ball or spherical wheel: Suspension technically not solved

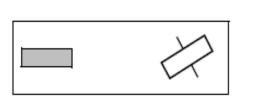


Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is be guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque or reductions in the gear box.
- Most arrangements are non-holonomic (see chapter 3)
 - require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

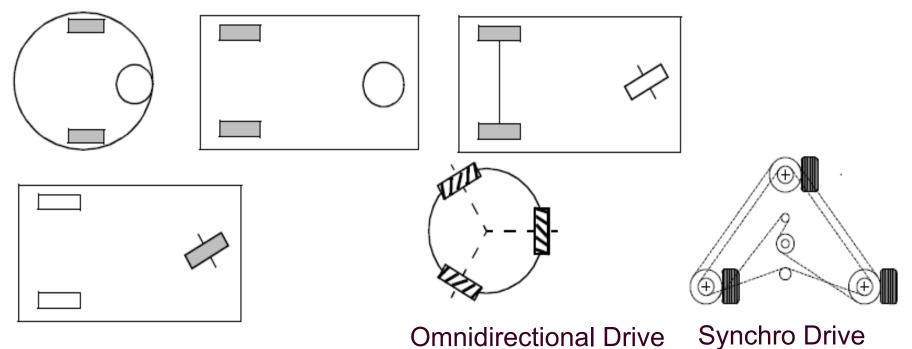
Different Arrangements of Wheels I

Two wheels



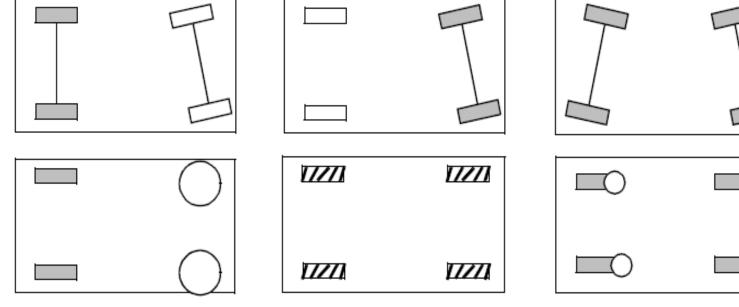
Center of grav	vity below axle
----------------	-----------------

• Three wheels

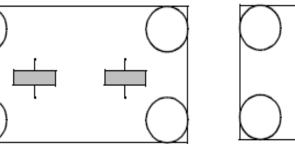


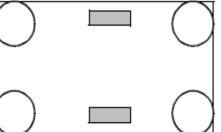
Different Arrangements of Wheels II

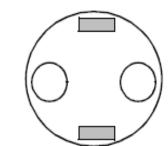
Four wheels



Six wheels

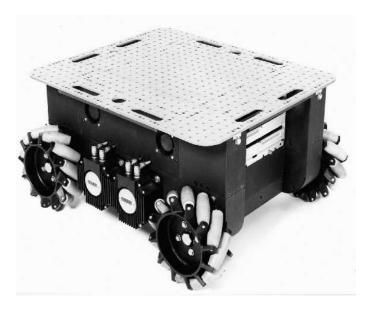


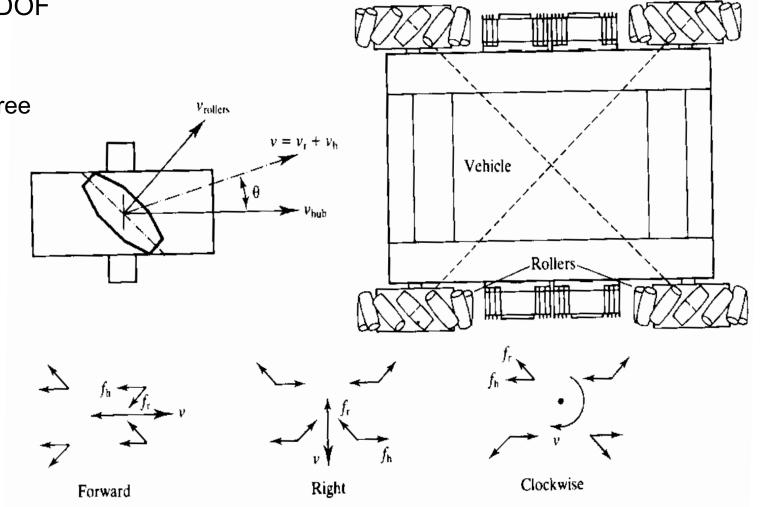




Uranus, CMU: Omnidirectional Drive with 4 Wheels

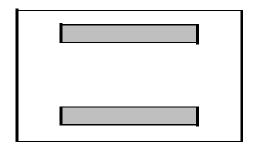
- Movement in the plane has 3 DOF
 - thus only three wheels can be independently controlled
 - It might be better to arrange three swedish wheels in a triangle

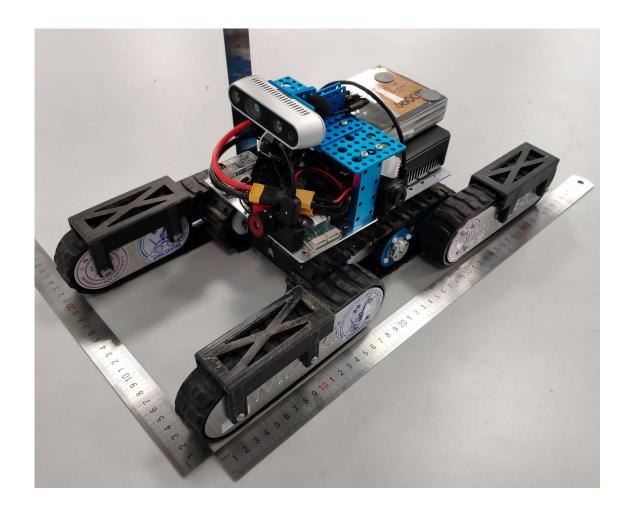




MARS Rescue Robot: Tracked Differential Drive

- Kinematic Simplification:
 - 2 Wheels, located at the center



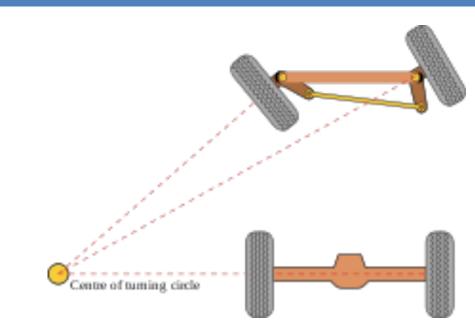


Differential Drive Robots



Ackermann Robot

- No sideways slip than differential drive during turning ⁽ⁱ⁾
- Cannot turn on the spot 🛞



Introduction: Mobile Robot Kinematics

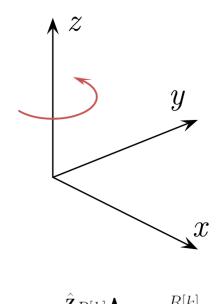
• Aim

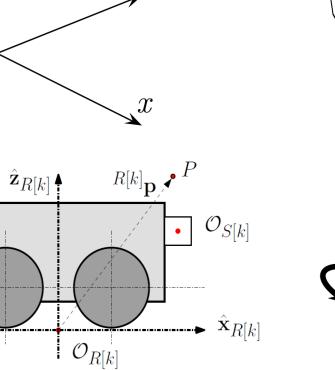
- Description of mechanical behavior of the robot for design and control
- Similar to robot manipulator kinematics
- However, mobile robots can move unbound with respect to its environment
 - there is no direct way to measure the robot's position
 - Position must be integrated over time
 - Leads to inaccuracies of the position (motion) estimate
 - -> the number 1 challenge in mobile robotics

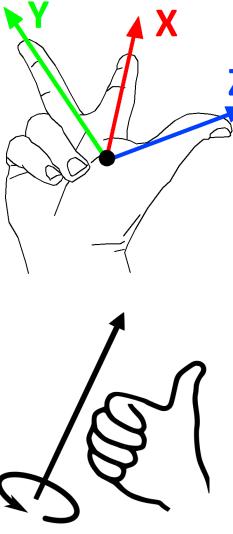
COORDINATE SYSTEM

Right Hand Coordinate System

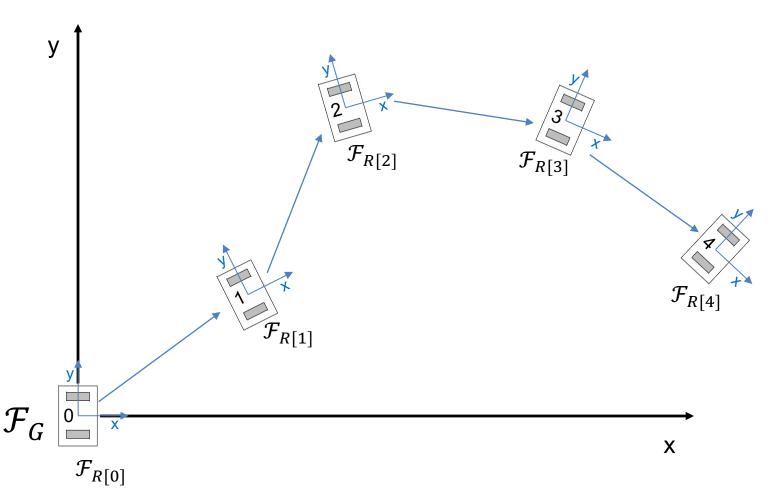
- Standard in Robotics
- Positive rotation around X is anti-clockwise
- Right-hand rule mnemonic:
 - Thumb: z-axis
 - Index finger: x-axis
 - Second finger: y-axis
 - Rotation: Thumb = rotation axis, positive rotation in finger direction
- Robot Coordinate System:
 - X front
 - Z up (Underwater: Z down)
 - Y ???







Odometry



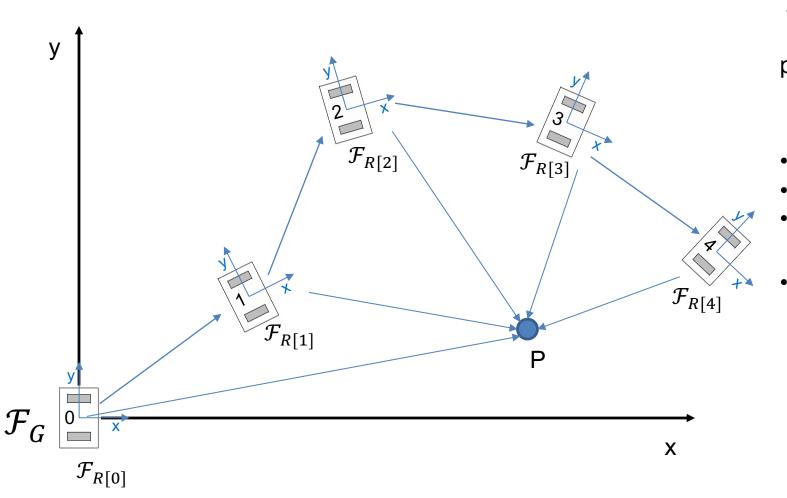
With respect to the robot start pose: Where is the robot now?

Two approaches – same result:

- Geometry (easy in 2D)
- Transforms (better for 3D)

 $\mathcal{F}_{R[X]}$: The *F*rame of reference (the local coordinate system) of the *R*obot at the time *X*

Use of robot frames $\mathcal{F}_{R[X]}$



 $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$ (coordinates (0, 0)

 $\overrightarrow{\mathcal{O}_{R[X]}P}$: position vector from $\mathcal{O}_{R[X]}$ to point P - $\begin{pmatrix} x \\ y \end{pmatrix}$

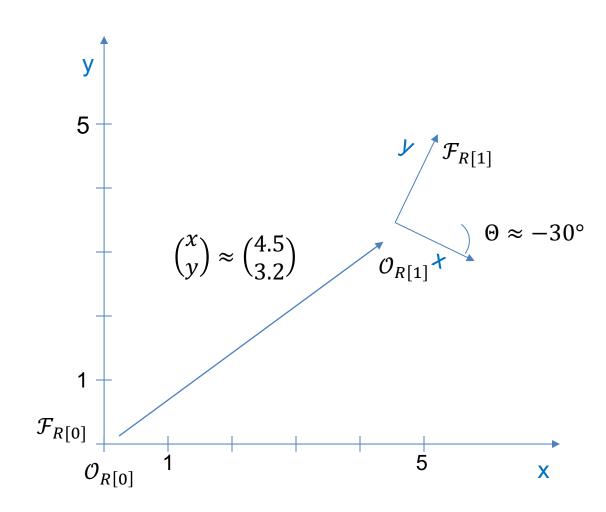
- Object P is observed at times 0 to 4
- Object P is static (does not move)
- The Robot moves

(e.g. $\mathcal{F}_{R[0]} \neq \mathcal{F}_{R[1]}$)

=> (x, y) coordinates of P are different in all frames, for example:

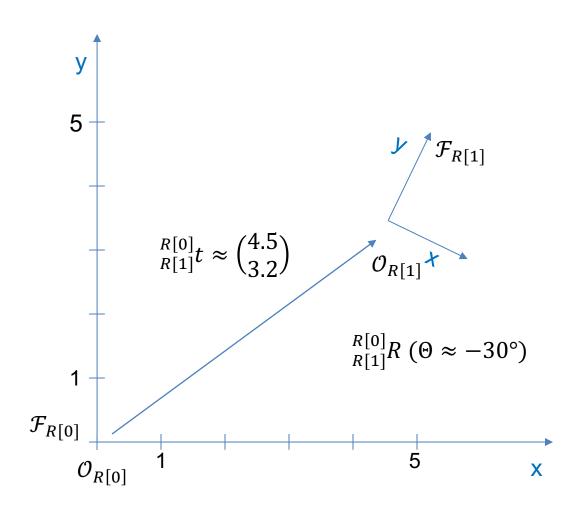
•
$$\overline{\mathcal{O}_{R[0]}}\vec{\mathsf{P}} \neq \overline{\mathcal{O}_{R[1]}}\vec{\mathsf{P}}$$

Position, Orientation & Pose



- Position:
 - $\binom{x}{y}$ coordinates of any object or point (or another frame)
 - with respect to (wrt.) a specified frame
- Orientation:
 - (Θ) angle of any oriented object (or another frame)
 - with respect to (wrt.) a specified frame
- Pose:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ position and orientation of any oriented object
 - with respect to (wrt.) a specified frame

Translation, Rotation & Transform



- Translation:
 - $\begin{pmatrix} x \\ y \end{pmatrix}$ difference, change, motion from one reference frame to another reference frame
- Rotation:
 - (Θ) difference in angle, rotation between one reference frame and another reference frame
- Transform:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ difference, motion between one reference frame and another reference frame

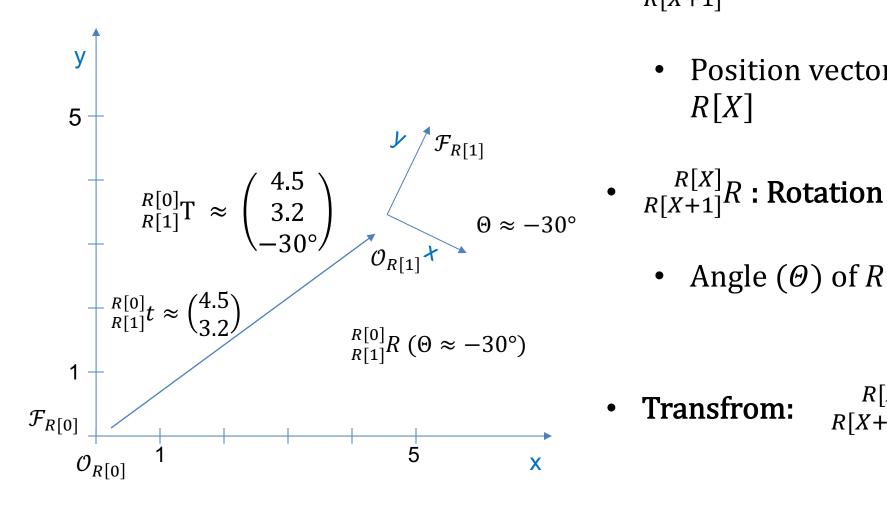
Position & Translation, Orientation & Rotation

У 5 $\mathcal{F}_{R[1]}$ ${}^{R[0]}_{R[1]}t \approx \begin{pmatrix} 4.5 \\ 3.2 \end{pmatrix}$ $\mathcal{O}_{R[1]}$ ${}^{R[0]}_{R[1]}R \ (\Theta \approx -30^{\circ})$ $\mathcal{F}_{R[0]}$ 5 $\mathcal{O}_{R[0]}$ Χ

- $\mathcal{F}_{R[X]}$: Frame of reference of the robot at time X
- Where is that frame $\mathcal{F}_{R[X]}$?
 - Can only be expressed with respect to (wrt.) another frame (e.g. global Frame \mathcal{F}_G) =>
 - Pose of $\mathcal{F}_{R[X]}$ wrt. \mathcal{F}_{G}
- $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$
 - $\overrightarrow{\mathcal{O}_{R[X]}\mathcal{O}_{R[X+1]}}$: **Position** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$
 - so $\mathcal{O}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$
 - $\triangleq \frac{R[X]}{R[X+1]}t$: Translation
- The angle Θ between the x-Axes:
 - **Orientation** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

 $\triangleq {}_{R[X+1]}^{R[X]} R : \text{Rotation of } \mathcal{F}_{R[X+1]} \text{ wrt. } \mathcal{F}_{R[X]}$

Transform

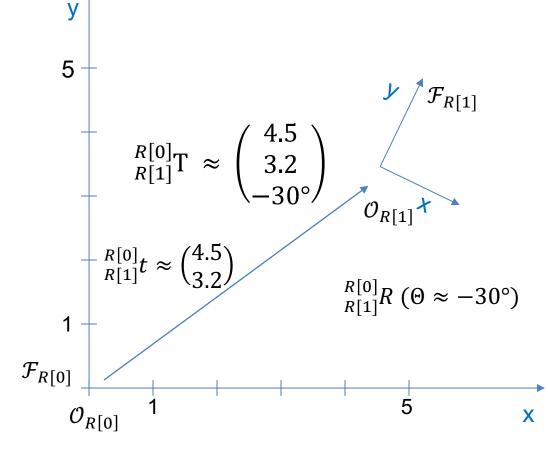


- $\frac{R[X]}{R[X+1]}t$: Translation
 - Position vector (x, y) of R[X + 1] wrt. R[X]
 - - Angle (Θ) of R[X + 1] wrt. R[X] \bullet
- ${}_{R[X+1]}^{R[X]}T \equiv \begin{cases} {}_{R[X+1]}^{R[X]}t \\ {}_{R[X]}^{R[X]}R \end{cases}$ Transfrom: •

Geometry approach to Odometry

We want to know:

- Position of the robot (x, y)
- Orientation of the robot (Θ)
- => together: Pose $\begin{pmatrix} x \\ y \\ \Theta \end{pmatrix}$



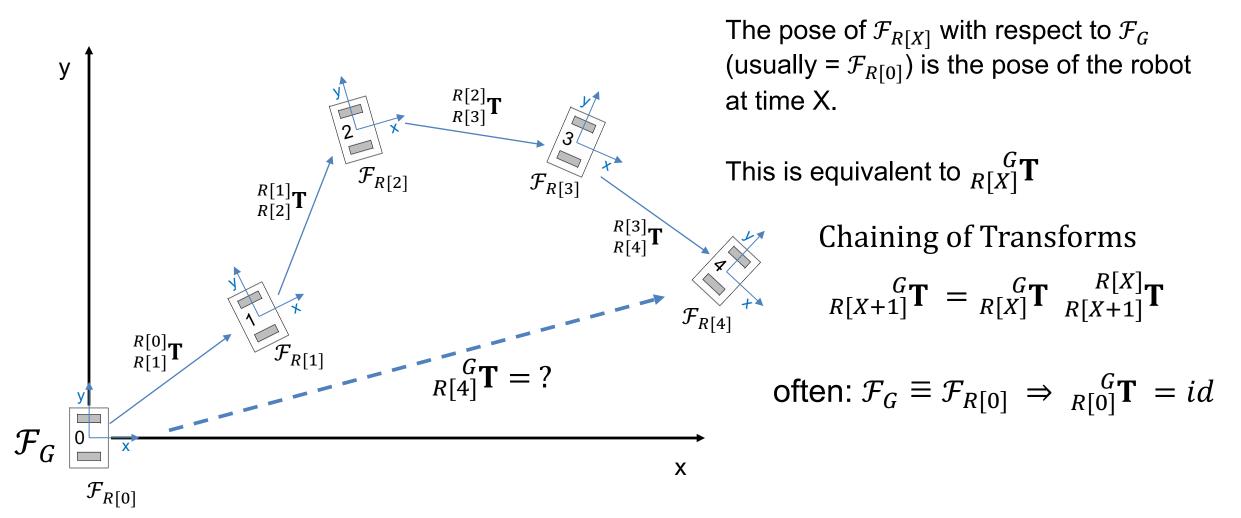
With respect to (wrt.) \mathcal{F}_G : The global frame; global coordinate system

$$\mathcal{F}_{R[0]} = \mathcal{F}_{G} \Rightarrow {}^{G}\mathcal{F}_{R[0]} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$${}^{G}\mathcal{F}_{R[1]} = {}^{R[0]}_{R[1]} \mathbf{T} \approx \begin{pmatrix} 4.5\\3.2\\30^{\circ} \end{pmatrix}$$

Blackboard: ${R[1] \atop R[2]} T \approx \begin{pmatrix} 2 \\ 3 \\ 60^{\circ} \end{pmatrix}$

Mathematical approach: Transforms

Where is the Robot now?



Affine Transformation

- Function between affine spaces. Preserves:
 - points,
 - straight lines
 - planes
 - sets of parallel lines remain parallel
- Allows:
 - Interesting for Robotics: translation, rotation, (scaling), and chaining of those

 $\cos\theta$

 $-\sin\theta$

0

- Not so interesting for Robotics: reflection, shearing, homothetic transforms
- Rotation and Translation:

(0,0

No change

0

(1,0)

X

Reflect about origin Reflect about x-axis Reflect about y-axis

Translate

Х

0

(X,Y

Scale about origin

0 0

(O,H)

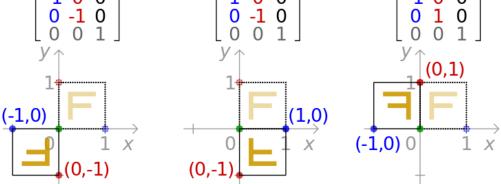
Shear in y direction

0 0

В

(W,0)

(1,B)



 $\sin\theta$

 $\cos\theta$

0

 X^{-}

Y

1

Math: Rigid Transformation

- Geometric transformation that preserves Euclidean distance between pairs of points.
- Includes reflections (i.e. change from right-hand to left-hand coorinate system and back)
- Just rotation & translation: rigid motions or proper rigid transformations:
 - Decomposed to rotation and translation
 - => subset of Affine Transofrmations

• In Robotics: Just use term Transform or Transformation for rigid motions

Lie groups for transformations

- Smoothly differentiable Group
- No singularities
- Good interpolation

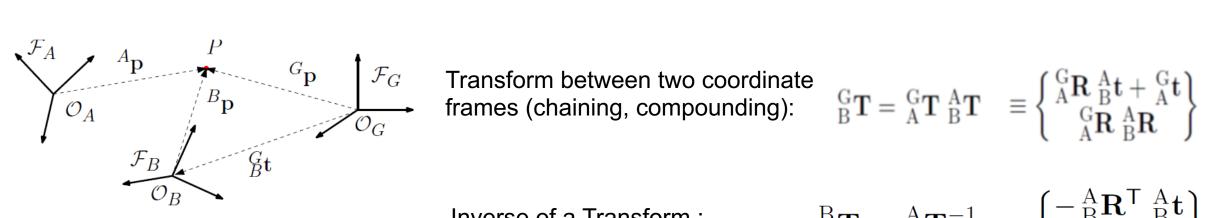
- SO: Special Orthorgonal group
- SE: Special Euclidian group
- Similarity transform group

Group	Description	Dim.	Matrix Representation
SO(3)	3D Rotations	3	3D rotation matrix
SE(3) 3D Rigid transformations	3D Bigid transformations	6	Linear transformation on
	5D Rigid transformations		homogeneous 4-vectors
SO(2)	2D Rotations	1	2D rotation matrix
SE(2) 2D Rigid transformations	2D Rigid transformations	3	Linear transformation on
	5	homogeneous 3-vectors	
Sim(3)	3D Similarity transformations	7	Linear transformation on
	(rigid motion + scale)		homogeneous 4-vectors

http://ethaneade.com/lie.pdf

	Notation	Meaning	
Transform	$\mathcal{F}_{\mathrm{R}[k]}$	Coordinate frame attached to object 'R' (usually the robot)	
		at sample time-instant k .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathcal{O}_{\mathrm{R}[k]}$	Origin of $\mathcal{F}_{\mathbf{R}[k]}$.	
	$\mathcal{O}_{\mathrm{R}[k]} \ \mathbf{R}^{[k]}\mathbf{p}$	For any general point P , the position vector $\overrightarrow{\mathcal{O}_{\mathbf{R}[k]}} \overrightarrow{P}$ resolved	
		in $\mathcal{F}_{\mathbf{R}[k]}$.	
	${}^{ m H}\hat{{f x}}_{ m R}$	The x-axis direction of \mathcal{F}_{R} resolved in \mathcal{F}_{H} . Similarly, ${}^{H}\hat{\mathbf{y}}_{R}$,	
		${}^{\mathrm{H}}\hat{\mathbf{z}}_{\mathrm{R}}$ can be defined. Obviously, ${}^{\mathrm{R}}\hat{\mathbf{x}}_{\mathrm{R}} = \hat{\mathbf{e}}_{1}$. Time indices can	
FB Bt	- (1)	be added to the frames, if necessary.	
\mathcal{O}_B	${}^{\mathrm{R}[k]}_{\mathrm{S}[k']}\mathbf{R}$	The rotation-matrix of $\mathcal{F}_{\mathcal{S}[k']}$ with respect to $\mathcal{F}_{\mathcal{R}[k]}$.	
	$_{ m S}^{ m R}{ m t}$	The translation vector $\overrightarrow{\mathcal{O}_R\mathcal{O}_S}$ resolved in \mathcal{F}_R .	
Transform between two coordinate frames ${}^{G}_{A}t \triangleq \overrightarrow{\mathcal{O}_{G}}\overrightarrow{\mathcal{O}_{A}}$ resolved in \mathcal{F}_{G} ${}^{G}_{A}t = \overrightarrow{\mathcal{O}_{G}}\overrightarrow{\mathcal{O}_{A}}$ resolved in \mathcal{F}_{G} ${}^{G}_{A}t = {}^{G}_{A}\mathbf{R} \ {}^{A}\mathbf{p} + {}^{G}_{A}t$ ${}^{G}_{A}\mathbf{p} = {}^{G}_{A}\mathbf{R} \ {}^{A}\mathbf{p} + {}^{G}_{A}t$ ${}^{G}_{A}\mathbf{T}(\ {}^{A}\mathbf{p}).$		$\begin{pmatrix} {}^{\mathrm{G}}\mathbf{p} \\ 1 \end{pmatrix} \equiv \begin{pmatrix} {}^{\mathrm{G}}\mathbf{R} & {}^{\mathrm{G}}\mathbf{t} \\ 0_{1\times [2,3]} & 1 \end{pmatrix} \begin{pmatrix} {}^{\mathrm{A}}\mathbf{p} \\ 1 \end{pmatrix} {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{T} \equiv \begin{cases} {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{t} \\ {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{R} \end{cases}$	
		$ \begin{bmatrix} \cos\theta & -\sin\theta & G_A t_X \\ \sin\theta & \cos\theta & G_A t_y \\ 0 & 0 & 1 \end{bmatrix} $	

Transform: Operations



Inverse of a Transform :

$${}_{A}^{B}\mathbf{T} = {}_{B}^{A}\mathbf{T}^{-1} \equiv \left\{ {}_{B}^{-}{}_{B}^{A}\mathbf{R}^{\mathsf{T}}{}_{B}^{A}\mathbf{t} \\ {}_{B}^{A}\mathbf{R}^{\mathsf{T}} \right\}$$

Relative (Difference) Transform : ${}^{B}_{A}\mathbf{T} = {}^{G}_{B}\mathbf{T}^{-1} {}^{G}_{A}\mathbf{T}$

See: Quick Reference to Geometric Transforms in Robotics by Kaustubh Pathak on the webpage!

Chaining:
$${}_{R[X+1]}^{G}\mathbf{T} = {}_{R[X]}^{G}\mathbf{T} {}_{R[X+1]}^{R[X]}\mathbf{T} \equiv \begin{cases} {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}t + {}_{R[X]}^{G}t \\ {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}\mathbf{R} \end{cases} = \begin{cases} {}_{R[X+1]}^{R[X+1]}t \\ {}_{R[X+1]}^{G}\mathbf{R} \end{pmatrix}$$

In 2D Translation:

In 2D Rotation:

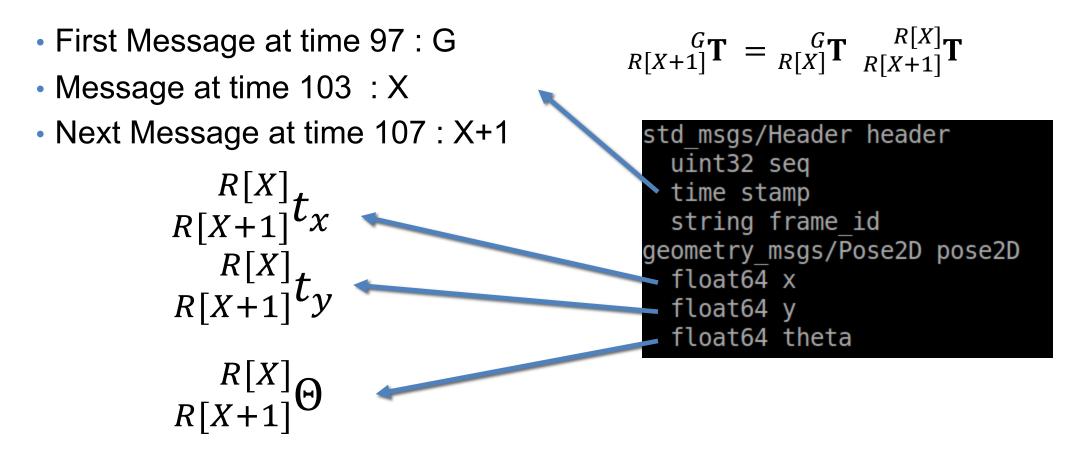
$$\begin{bmatrix} {}_{R[X+1]}{}^{G}t_{x} \\ {}_{G}{}^{G}t_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos {}_{R[X]}{}^{G}\theta & -\sin {}_{R[X]}{}^{G}\theta & {}_{R[X]}{}^{G}t_{x} \\ \sin {}_{R[X]}{}^{G}\theta & \cos {}_{R[X]}{}^{G}\theta & {}_{R[X]}{}^{G}t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}_{R[X]}{}^{R[X]}t_{x} \\ {}_{R[X+1]}{}^{R[X]}t_{y} \\ {}_{R[X+1]}{}^{T}t_{y} \\ 1 \end{bmatrix}$$

$${}_{R[X+1]}^{G}R = \begin{bmatrix} \cos_{R[X+1]}^{G}\theta & -\sin_{R[X+1]}^{G}\theta \\ \sin_{R[X+1]}^{G}\theta & \cos_{R[X+1]}^{G}\theta \end{bmatrix} = \begin{bmatrix} \cos_{R[X]}^{G}\theta & -\sin_{R[X]}^{G}\theta \\ \sin_{R[X]}^{G}\theta & \cos_{R[X]}^{G}\theta \end{bmatrix} \begin{bmatrix} \cos_{R[X+1]}^{R[X]}\theta & -\sin_{R[X]}^{R[X]}\theta \\ \sin_{R[X+1]}^{R[X]}\theta & \cos_{R[X+1]}^{R[X]}\theta \end{bmatrix}$$

In 2D Rotation (simple):
$$R[X+1]^{G}\theta = R[X]^{G}\theta + R[X]^{R[X]}\theta$$

_

In ROS: nav_2d_msgs/Pose2DStamped

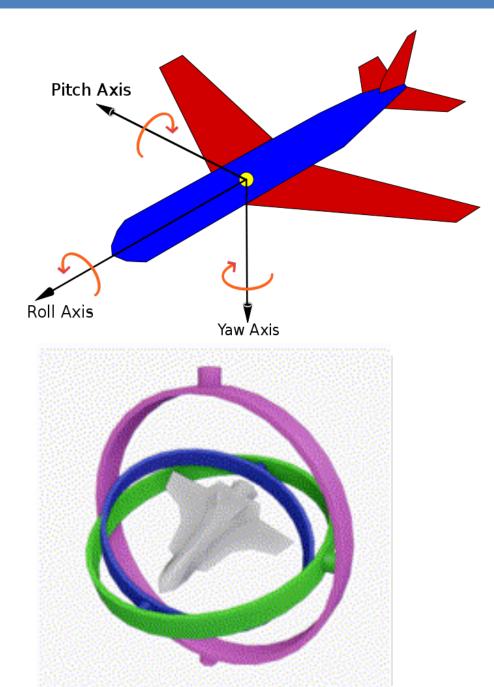


3D Rotation

Many 3D rotation representations:

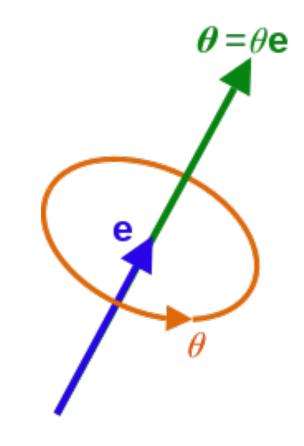
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

- Euler angles:
 - Roll: rotation around x-axis
 - Pitch: rotation around y-axis
 - Yaw: rotation around z-axis
 - Apply rotations one after the other...
 - => Order important! E.g.:
 - X-Z-X; X-Y-Z; Z-Y-X; ...
 - Singularities
 - Gimbal lock in Engineering
 - "a condition caused by the collinear alignment of two or more robot axes resulting in unpredictable robot motion and velocities"



3D Rotation

- Axis Angle
 - Angle θ and
 - Axis unit vector e (3D vector with length 1)
 - Can be represented with 2 numbers (e.g. elevation and azimuth angles)
- Euler Angles: sequence of 3 rotations around coordinate axes equivalent to:
- Axis Angle: pure rotation around a single fixed axis

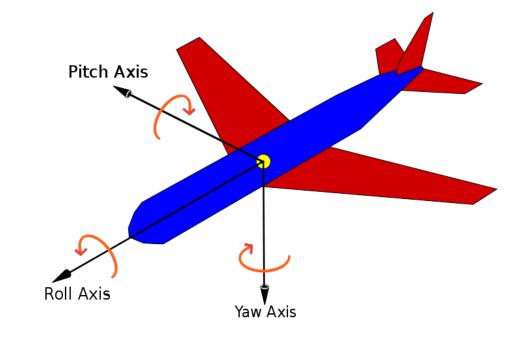


3D Rotation

- Quaternions:
 - Concatenating rotations is computationally faster and numerically more stable
 - Extracting the angle and axis of rotation is simpler
 - Interpolation is more straightforward
 - Unit Quaternion: norm = 1
 - Versor: <u>https://en.wikipedia.org/wiki/Versor</u>

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

- Scalar (real) part: q_0 , sometimes q_w
- Vector (imaginary) part: q
- Over determined: 4 variables for 3 DoF (but: unit!)
- Check out: <u>https://eater.net/quaternions</u> !



$$\check{\mathbf{p}} \equiv p_0 + p_x \mathbf{i} + p_y \mathbf{j} + p_z \mathbf{k}$$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$\check{\mathbf{q}} = \begin{pmatrix} q_0 & q_x & q_y & q_z \end{pmatrix}^\mathsf{T} \equiv \begin{pmatrix} q_0 \\ \mathbf{q} \end{pmatrix}$$

Transform in 3D

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
$$R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$
$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$R = R_{z}(\alpha) R_{y}(\beta) R_{x}(\gamma)$$
$$yaw = \alpha, pitch = \beta, roll = \gamma$$

Matrix Euler Quaternion

$${}^{G}_{A}\mathbf{T} = \begin{bmatrix} {}^{G}_{A}R & {}^{G}_{A}t \\ {}^{O}_{1x3} & 1 \end{bmatrix} = \begin{pmatrix} {}^{G}_{A}t \\ {}^{G}_{G}\Theta \end{pmatrix} = \begin{pmatrix} {}^{G}_{A}t \\ {}^{G}_{A}\check{Q} \end{pmatrix}$$

$${}^{G}_{A}\Theta \triangleq \left(\theta_{r}, \theta_{p}, \theta_{y}\right)^{T}$$

In ROS: Quaternions! (w, x, y, z) Uses Eigen library for Transforms

ShanghaiT class

An axis aligned box. More...

Eigen::AlignedBox

class	Eigen::AngleAxis Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More
class	Eigen::Homogeneous Expression of one (or a set of) homogeneous vector(s) More
class	Eigen::Hyperplane A hyperplane. More
class	Eigen::Map< const Quaternion< _Scalar >, _Options > Quaternion expression mapping a constant memory buffer. More
class	Eigen::Map< Quaternion< _Scalar >, _Options > Expression of a quaternion from a memory buffer. More
class	Eigen::ParametrizedLine A parametrized line. More
class	Eigen::Quaternion The quaternion class used to represent 3D orientations and rotations. More
class	Eigen::QuaternionBase Base class for quaternion expressions. More
class	Eigen::Rotation2D Represents a rotation/orientation in a 2 dimensional space. More
class	Scaling Represents a generic uniform scaling transformation. More
class	Eigen::Transform Represents an homogeneous transformation in a N dimensional space. More
class	Eigen::Translation Represents a translation transformation. More

Eigen

- Don't have to deal with the details of transforms too much ^(C)
- Conversions between ROS and Eigen: <u>http://docs.ros.org/noetic/api/eigen_conversions/</u> <u>html/namespacetf.html</u>

Matrix3f m;

- m = AngleAxisf(angle1, Vector3f::UnitZ())
 - * AngleAxisf(angle2, Vector3f::UnitY())
 - * AngleAxisf(angle3, Vector3f::UnitZ());

https://eigen.tuxfamily.org/dox/group Geometry Module.html

Examples of Transforms

- Transform between global coordinate frame and robot frame at time X
- Transform between robot frame at time X and robot frame at time X+1
- Transform between robot camera frame and robot base frame (mounted fixed – not dependend on time! => static transform)
- Transform between map origin and door pose in map (not time dependend)
- Transform between robot camera frame and fingers (end-effector) of a robot arm at time X
- Transform between robot camera frame and map frame at time X
- Transform between robot 1 camera at time X and robot 2 camera at time X+n

ROS Standards:

- Standard Units of Measure and Coordinate Conventions
 - http://www.ros.org/reps/rep-0103.html
- Coordinate Frames for Mobile Platforms:
 - http://www.ros.org/reps/rep-0105.html