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DEFINITION OF SLAM
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What is SLAM?
• Localization: inferring location given a map 
• Mapping: inferring a map given locations 
• SLAM: learning a map and locating the robot simultaneously 
• SLAM has long been regarded as a chicken-and-egg problem: 

- a map is needed for localization and
- a pose estimate is needed for mapping 

?

Material derived from Wolfram Burgard:   
http://ais.informatik.uni-freiburg.de/teaching/ss20/robotics/slides/13-slam.pdf

http://ais.informatik.uni-freiburg.de/teaching/ss20/robotics/slides/13-slam.pdf
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SLAM Applications
• At home: vacuum cleaner, lawn mower
• Air: surveillance with unmanned air vehicles 
• Underwater: reef monitoring
• Underground: exploration of mines
• Space: terrain mapping for localization
• ……
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Why is SLAM a Hard Problem?
• Robot path and map are both unknown 
• Errors in map and pose estimates correlated 
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Why is SLAM a Hard Problem?
• The mapping between observations and landmarks is unknown 
• Picking wrong data associations can have catastrophic 
consequences (divergence) 



Overview of SLAM Methods
• Camera

• Feature-Based Methods
• MonoSLAM
• PTAM
• ORB-SLAM

• Direct Methods
• DTAM
• LSD-SLAM
• DSO

• Semi-Direct Methods
• SVO

• Others
• PoseNet
• CNN-SLAM
• …

• Laser
• Pose Graph

• Cartographer
• Karto-SLAM
• Hector-SLAM
• BLAM
• LIO

• Particle Filter
• FastSLAM
• Gmapping

• Extended Kalman Filter
• EKF-SLAM
• LINS

• Others
• LOAM
• IMLS-SLAM
• …
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SLAM Front-end & Back-end
• Front-end

- calculate relative poses between several frames/ to map
- scan matching
- image registration
- …

- estimate absolute poses
- construct the local map

• Back-end
- optimize the absolute poses

and mapping
- only if a loop was closed
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https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html

https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html


FRONT END - LASER
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Registration methods for Range Data
• ICP
• NDT
• Robust point matching (soft point correspondences)
• Coherent point drift
• Kernel correlation
• Approximations of the squared distance functions to curves 

and surfaces

• Feature extracting methods 
• Corners in point clouds
• Lines
• Planes

• Spectral methods
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ICP: Iterative Closest Points Algorithm
• Align two partially-

overlapping point sets (2D or 3D)

• Given initial guess
for relative transform

• Warning: Using 3D ICP for 2D 
data may mirror the data 
(e.g. 180 degree roll)!
• Use 2D ICP!

• ROS: Point Cloud Library (PCL)
Material derived from Ronen Gvili :   www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt
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Data Types
• Point sets
• Line segment sets (polylines)
• Implicit curves  : f(x,y,z) = 0
• Parametric curves : (x(u),y(u),z(u))
• Triangle sets (meshes)
• Implicit surfaces : s(x,y,z) = 0
• Parametric surfaces (x(u,v),y(u,v),z(u,v)))
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Motivation
• Scan Matching -

Registration
• Shape inspection
• Motion estimation
• Appearance 

analysis
• Texture Mapping
• Tracking
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Aligning 3D Data
• Continuous lines or a set of points…
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Corresponding Point Set Alignment
• Let M be a model point set. (or map or previous scan) 
• Let S be a scene point set. (current scan)

We assume :
1. NM = NS.
2. Each point Si correspond to Mi .

Robotics ShanghaiTech University – Sep 29 2020 16



Corresponding Point Set Alignment

The Mean Squared Error (MSE) objective function :

The alignment is :
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Aligning 3D Data
• If correct correspondences are known, can find correct relative 
rotation/ translation as closed from solution:
• Horn’s quaternion method
• SVD Arun et al.
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• Orthonormal matrices Horn et al.
• Dual quaternions Walker et al.

See:
A. Lorusso, D. Eggert, and R. Fisher.
A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations.
In Proceedings of the 4th British Machine Vision Conference (BMVC '95), pages 237 - 246, Birmingham, England, September 1995.



Horn’s method
• Input

• Two point sets: 𝑋 and 𝑌
• Output

• Rotation matrix 𝑅
• Translation vector 𝒕

X Y

𝑅 and 𝒕

Material by Toru Tamaki, Miho Abe, 
Bisser Raytchev, Kazufumi Kaneda
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Horn’s method: correspondence is known.

𝑋 𝑌

X Y
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Horn’s method: correspondence is known.
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Aligning 3D Data
• How to find correspondences:  User input? Feature detection?  
Signatures?

• Alternative: assume closest points correspond
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Aligning 3D Data
• How to find correspondences:  User input? Feature detection?  
Signatures?

• Alternative: assume closest points correspond
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Aligning 3D Data
• Converges if starting position “close enough“
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Closest Point

• Given 2 points r1 and r2 , the Euclidean 
distance is:

• Given a point r1 and set of points A , the 
Euclidean distance is:
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Finding Matches

• The scene shape S is aligned to be in the best 
alignment with the model shape M.

• The distance of each point s of the scene from the 
model is :
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Finding Matches 
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C – the closest point operator

Y – the set of closest points to S
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Finding Matches 

• Finding each match is performed in O(MN) 
worst case.

• Given Y we can calculate alignment

• S is updated to be :

),(),,( YSdtransrot F=

transSrotSnew += )(
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ICP: correspondence is unknown.

𝑋 𝑌
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ICP: correspondence is unknown.
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ICP: correspondence is unknown.
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The Algorithm

Init the error to ∞

Calculate correspondence

Calculate alignment

Apply alignment

Update error

If error > threshold

Y = CP(M,S),e

(rot,trans,d)

S`= rot(S)+trans

d` = d
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The Algorithm
function ICP(Scene,Model)
begin
E` ß + ∞;
(Rot,Trans) ß In Initialize-Alignment(Scene,Model);
repeat 

E ß E`;
Aligned-Scene ß Apply-Alignment(Scene,Rot,Trans);
Pairs ß Return-Closest-Pairs(Aligned-Scene,Model);
(Rot,Trans,E`) ß Update-Alignment(Scene,Model,Pairs,Rot,Trans);

Until |E`- E|  < Threshold
return (Rot,Trans);
end    
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Convergence Theorem
• The ICP algorithm always converges monotonically to a local minimum with 

respect to the MSE distance objective function.
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Time analysis
Each iteration includes 3 main steps 

A.  Finding the closest points :  
O(NM) per each point
O(NM*NS) total.

B. Calculating the alignment: O(NS)
C. Updating the scene: O(NS)
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Optimizing the Algorithm
• K-D Tree :

Construction time: O(kn log n)
Space: O(n)
Region Query : O(n1-1/k+k ) 
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Time analysis
Each iteration includes 3 main steps

A.  Finding the closest points :  
O(NM) per each point
O(NMlogNS) total.

B. Calculating the alignment: O(NS)

C. Updating the scene: O(NS)
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ICP Variants

• Variants on the following stages of ICP
have been proposed:

1. Selecting sample points (from one or both point clouds)
2. Matching to points to a plane or mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric w.r.t. transformation
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Performance of Variants
• Can analyze various aspects of performance:

• Speed
• Stability (local minima)
• Tolerance of noise and/or outliers
• Maximum initial misalignment
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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ICP Variants
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Rejecting Pairs

• Corresponding points with point to point distance 
higher than a given threshold.

• Rejection of worst n% pairs based on some metric. 
• Pairs containing points on end vertices.
• Rejection of pairs whose point to point distance is 

higher than n*σ.
• Rejection of pairs that are not consistent with their 

neighboring pairs  [Dorai 98] :
(p1,q1) , (p2,q2) are inconsistent iff

thresholdqqDistppDist >- ),(),( 2121
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Rejecting Pairs

Distance thresholding
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Rejecting Pairs

Points on end vertices
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Rejecting Pairs

Inconsistent Pairs

p1 p2

q2

q1
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ICP Variants

1. Selecting sample points (from one or both 
meshes).

2. Matching to points to a plane or mesh.
3. Weighting the correspondences.
4. Rejecting certain (outlier) point pairs.
5. Assigning an error metric to the current 

transform.
6. Minimizing the error metric w.r.t. 

transformation.
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BLAM: ICP in action
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FRONT END - CAMERA
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Methods
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• Feature-based Methods
- SIFT
- ORB (ORB-SLAM)
- BRISK
- AKAZE

• Direct Methods
- Optical Flow
- Inverse Depth (LSD-SLAM)
- Fourier-Mellin Transform

• Semi-DirectMethods
- SVO

more details in the next lectures



Feature-based Methods
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•Feature Extraction
• Feature Detectors & Feature Descriptor; more in vision lectures

- ORB, SIFT, AKAZE, BRISK, etc …
•Feature Matching

- BFM, KNN, etc …
•Relative Pose Calculation

- 5-pt, 7-pt, 8-pt, PnP, etc …



Feature-based Method: ORB-SLAM
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Mur-Artal R, Montiel J M M, Tardos J D. 
ORB-SLAM: a versatile and accurate 
monocular SLAM system[J]. IEEE 
transactions on robotics, 2015, 31(5): 1147-
1163.



Direct Method: LSD-SLAM
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•Construct Photometric Error

•Construct Depth Error
•Minimize Objective Error Function
Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer 
vision. Springer, Cham, 2014: 834-849.



Direct Method: Fourier Mellin Transform
• Spectral based registration: detection of scaling, rotation and translation in 2 subsequent frames
• Processing spectrum magnitude decouples translation from affine transformations

• Detection of signal shift between 2 signals by phase information
• Resampling to polar coordinates → Rotation turns into signal shift !
• Resampling the radial axis from linear to logarithmic presentation

→ Scaling turns into signal shift !
• Calculate a Phase Only Match Filter (POMF) on the resampled magnitude spectra
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Pose Estimation for Omni-directional Cameras using 
Sinusoid Fitting 
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𝑦 = 𝐵 + 𝐴 sin 𝜔𝑥 + 𝜙 (1a)

Δ𝑣 𝑢* = 𝜆*𝑡% + 𝛾 𝑃#$(𝑅) < sin(𝛾𝑢* +
+!"(-)
+!"(-)

) (1b)

Δ𝑢 𝑢* = 𝛾𝑃% 𝑅 + 𝜆* 𝑃#$ 𝑡 < sin 𝛾𝑢* + �̂�#$ (1c)



BACK END
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Overview of Back-end
• Loop Detection

• Find candidates of scan pairs/ scan with old map
• E.g. based on global pose estimated (chain rule) OR image similarity (bag of words)

• Loop Closure
• E.g. use scan matching to find the transform AND its uncertainty

• Optimization
• Pose Graph optimization (e.g. minimize error of poses, based on uncertainty)
• Bundle Adjustment

• Map Rendering
• E.g. generate grid map based on optimized graph
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Loop Closure
• Before loop closure
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Loop Closure
• After loop closure
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Loop Closure
• Recognizing an already mapped area, typically after a long 
exploration path (the robot “closes a loop”) 

• Structurally identical to data association, but 
- high levels of ambiguity
- possibly useless validation gates 
- environment symmetries 

• Uncertainties collapse after a loop closure (whether the closure 
was correct or not) 
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Loop Closure

•By revisiting already mapped areas, uncertainties in robot 
and landmark estimates can be reduced 
•This can be exploited when exploring an environment for 
the sake of better (e.g. more accurate) maps 
•Exploration: the problem of where to acquire new 
information 
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THREE SLAM PARADIGMS
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The Three SLAM Paradigms
• Most of the SLAM algorithms are based on the following three different 

approaches:
• Extended Kalman Filter SLAM: (called EKF SLAM)
• Particle Filter SLAM: (called FAST SLAM)
• Graph-Based SLAM
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EKF SLAM: overview
• Extended state vector yt : robot pose xt + position of all the features mi in the 

map:

• Example: 2D line-landmarks, size of yt = 3+2n : three variables to represent 
the robot pose + 2n variables for the n line-landmarks having vector 
components 

• As the robot moves and takes measurements, the state vector and covariance 
matrix are updated using the standard equations of the extended Kalman filter

• Drawback: EKF SLAM is computationally very expensive.

),( ii ra
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Robotics
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• FastSLAM approach
• Using particle filters. 
• Particle filters: mathematical models that represent 

probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 
a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 
randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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Graph-Based SLAM (1/3)
• SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
• The nodes of the graph are the robot locations and the features in the map.
• Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative 

position between the robot locations and the features observed from those locations.
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Graph-Based SLAM (2/3)
• Constraints are not rigid but soft constraints!
• Relaxation: compute the solution to the full SLAM problem =>

• Compute best estimate of the robot path and the environment map. 
• Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can 

then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)
• Significant advantage of graph-based SLAM techniques over EKF SLAM: 

• EKF SLAM: computation and memory for to update and store the covariance matrix is 
quadratic with the number of features.

• Graph-based SLAM: update time of the graph is constant and the required memory is linear 
in the number of features.

• However, the final graph optimization can become computationally costly if the 
robot path is long.

• Libraries for graph-based slam: g2o, ceres
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SLAM EXAMPLES
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3D Scan matching using Spectral Method
Flood Gate (sonar) Crashed car park

Disaster City  (3D LRF)
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3D Range
Sensing

Plane 
Extraction
Planar Scan 
Matching

Pose Graph ...

i j

Tj
i CTj

i

Relax Loop-
Closing Errors

Jacobs 3D Mapping – Plane Mapping
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Plane Extraction from 3D Point Clouds
l Plane Fitting

l Assumes 3D sensor has radial Gaussian noise dependent on range
l Uses Approximate Least Squares solution to find  the best fit.
l Estimates covariance matrix of the plane parameters 

l Range Image Segmentation
l Is based on region growing algorithm
l Uses incremental formulas, therefore is fast
l Has linear computational complexity 
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Given a range image, returns a polygonal model i.e. a set 
of planar features and boundaries. 
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Plane Registration (Scan Matching)
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• Determining the correspondence set maximizing the global rigid body motion 
constraint.

• Finding the optimal decoupled rotations (Wahba's problem) and translations 
(closed form least squares) with related uncertainties.

• No motion estimates from any other source are needed.
• Very fast
• MUMC: Finding Minimally Uncertain Maximal Consensus

• Of matched planes
• Idea: select two non-parallel plane matches => fixes rotation and only leaves 

one degree of translation!



Relaxation of Errors (Translation)

l Only translation errors are relaxed
l Good rotation estimates from the plane matching
l Non-linear optimization can be exchanged with linear if rotation is 

assumed to be known precisely. 
l This leads to a fast relaxation method
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Experiment Lab Run: 29  3D point-clouds; size of each: 541 x 361 = 195,301
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