Solving Non-trivial problems in Autonomous Driving

Using Efficient and Reliable Al Algorithms
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l 3D Detection from Single Image

RGB Image




l 3D Detection from Stereo Cameras

Stereo R-CNN based 3D Object Detection for Autonomous Driving
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3D Detection from Stereo Cameras
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3D Detection from LIDAR Point Cloud
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I 3D Detection from LIDAR Point Cloud
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SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds

ECCV, 2020

* Accurate and robust perception is the foundation for autonomous driving.
* The mainstream 3D detection frameworks focus on the single-category detection.

Point cloud is unstructured, sparse and noisy and lacks texture and appearance.

Car
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How to build shape encoding from sparse and noise point cloud?
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Shape Signature
* Compact (effctive and short as the objective)

* Robust (robust against the sparsity and noise)



Distribution of our shape signature via TSNE
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* Well separate the shape distribution

across different categories.

* Keep the shape distribution consistent

(not same).

We sample 50 instances for each category, where 25 of them are
with distance < 40 meters and others are with distance > 40 meters.



SSN: Shape Signature Networks
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Results

Table 1. Results of multi-class 3D detection on nuScenes dataset. Bold-face and underline
numbers denote the best and second-best respectively.

Methods Modality | Car |Truck|Bus [Traill CV | Ped | MC |Bicy| TC | Bar nAP|NDS
Mono [2Y] RGB 47.8| 22.0 |18.8|17.6| 7.4 |37.0|29.024.5|48.7(51.1|30.4 |38.4
Second [}1] Lidar |73.1]25.2 |30.5|31.5| 8.5 [59.3|21.7| 4.9 |18.0|43.3|31.6 |46.8

&

PP [13] Lidar 68.4| 23.0 (28.2(23.4| 4.1 |59.7|27.4| 1.1 |30.8|38.9|30.5 |45.3
Painting [11)][Lidar&RGB|77.9| 35.8 [36.1(37.3|15.8/73.3(41.5|24.1162.4/60.2|46.4 58.1
SSN Lidar |80.7|37.5(39.9|43.9/14.6/72.3|143.7|20.1|54.2|56.3|46.3 |56.9

Table 2. Results on Lyft dataset.

Methods Modality mAP-3D
Voxelnet [35] | Lidar | 10.1 We got rank-1 on the leaderboard

Po_intPillar [13]| Lidar 13.4 of Lyft for Single model!
Second [44] Lidar 13.0

SSN Lidar | 17.9




Qualitative analysis

These point clouds are sampled from Lyft dataset. Green boxes are the ground truth and
red boxes are the model's predictions.



Image-based Perception for Autonomous Driving

Scene Segmentation Lane Segmentation
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LIDAR-based Perception for Autonomous Driving

Segmentation 3D Detection
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LIDAR Point Cloud
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PolarNet Representation
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(a) Cartesian BEV (b) Polar BEV

Figure 1. Two BEV quantization strategies

Zhang, Y., Zhou, Z., David, P., Yue, X., Xi, Z., & Foroosh, H. (2020). PolarNet: An Improved Grid Representation for Online LiDAR Point
Clouds Semantic Segmentation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9598-9607.

20



PolarNet Representation
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Figure 2. Overview of PolarNet model. Quantize the points into grids using their polar BEV coordinates. Then use a
simplified KNN-free PointNet to transform points in it to a fixed-length representation. The representation is then
assigned to its corresponding location in the ring matrix. Input the matrix to the ring CNN, which is composed of
ring convolution modules and output a quantized prediction and finally decode it to the point domain.
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Cylindrical and Asymmetrical 3D Convolution Networks
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Figure 1: (a) Range Image (2D projection) v.s. Cubic Partition v.s. Cylindrical Partition.

Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., & Lin, D. (2020). Cylindrical and
Asymmetrical 3D Convolution Networks for LIDAR Segmentation. ArXiv, abs/2011.10033.
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Cylindrical and Asymmetrical 3D Convolution Networks
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Figure 2: The overall framework. Here, LiDAR point cloud is fed into MLP to get the point-wise features and then
these features are reassigned based on the cylinderical partition. Asymmetrical 3D convolution networks are
then used to generate the voxel-wise outputs. Finally, a point-wise module is introduced to refine these outputs.




Long-tailed Point Cloud Segmentation
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Long-tailed Point Cloud Segmentation

Input balanced module
QOutput balanced module
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l Long-tailed Point Cloud Segmentation

(a) pedestrian distribution (b) truck distribution
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Long-tailed Point Cloud Segmentation

Table 3. Ablation studies for data agumentation on different
backbone on SemanticKITTI validation set.

method mIOU

Polarnet 56.46

Polarnet + data agumentation | 58.237
Salsanext 57.547

Salsanext + data agumentation | 58.452
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I Prediction for Autonomous Driving

HY

| _Turn Left |

........ Eer oy mE——
s S

g
A yvro oo

. 5 Past Position
Prediction e 1 =
Module O Future Position
A Prediction

~ _ .~ Center Lane Line

Observed trajectory

Predicted behavior and trajectory

29



I Prediction for Autonomous Driving

Social-LSTM

T=2
t

_» S-Pooling — ;= \ST™

M -
AN ' I

h]

zerh s-Pooling _—Hz__,\sm\ '
oo 2 LA A}
I : hy L

LSTMP\ N S-Pooling | n "\‘\SXN\\
== \ 3 I
I = 3 \ bi / \ \'\&

N

S-Pooling .

’
‘
’

?bé»iails on our Social p&iéﬁ&f&k person 3
(nblack)

: S

30



Current test scenarios for autonomous vehicles

clear lanes

clear traffic lights

monotonous scenes with
few pedestrians, bicycles, etc.

B not too much interaction
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l Dense Heterogeneous Urban Traffic

Captured in India

32



TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents
AAAl Oral, 2019

Captured in Beijing
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l Dense Heterogeneous Urban Traffic

B Different kinds of traffic-agents
(cars, bicycles, buses, pedestrians, etc.. )

B Different shapes, dynamics, motion
patterns

B Different interactions with others
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Motivation

Challenges arise in dense urban environments!

Better prediction = Better navigation =) More safety

35



l Problem Definition
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Instance Layer Category Layer

Pedestrian | Bicycle [ Car
Instance node | @ ® © . . .
Super node . ' ' frame n frame n+1 frame n frame n+1
[ For a traffic sequence } [ Each node is a traffic-agent. } [ Each super node is a category. ]
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I Model Architecture for Instance Layer

Instance Layer

Three main components:
* Temporal edges pass temporal info.

e Spatial edges pass interaction info.
* Instance nodes combine info from edges
and themselves to do prediction.

frame n frame n+1

Capture the movement pattern of instances and their interactions in traffic

scenarios.
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I Model Architecture for Category Layer

Usually traffic-agents of the same
category have similar dynamic
properties, including the speed,

acceleration, steering, etc., and
similar reactions to other kinds of
traffic-agents or the whole
environment.
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I Model Architecture for Category Layer

Category Layer Four main components:
the super node for a specified category
the directed edge from a group of instances to
g : the super node
® the directed edge from the super node to
iInstances
— the temporal edge for super node

frame n frame n+1

Capture similarities of the movement pattern of instances belonging to the same

category and then refine the prediction for instances.
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Instance Layer Category Layer

Pedestrian | Bicycle [ Car
Instance node | @ ® © . . .
Super node . ' ' frame n frame n+1 frame n frame n+1
[ For a traffic sequence } [ Each node is a traffic-agent. } [ Each super node is a category. ]
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New Trajectory Dataset

We use an Apollo acquisition car to collect traffic data in rush hours in Beijing.
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Samples in New Trajectory Dataset
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New Trajectory Dataset

* A large-scale trajectories dataset
for urban streets

* Useful for planning, prediction
and simulation tasks

Table 1: The acquisition time, total frames, total instances
(count ID), average instances per frame, acquisition devices
of NGSIM, KITTI (with tracklets) and our dataset.

Count NGSIM KITTI Our
Dataset
duration (min) 45 22 155
frames (x103) 12 151 93.0
pedestrian 0 0.09 16.2
total (x10%) bicycle 0 0.04 55
vehicle 291 0.93 60.1
pedestrian 0 1.3 1.6
average (1/f) bicycle 0 0.24 1.9
vehicle 845 34 12.9
camera  yes yes yes
device lidar no yes yes

GPS no yes yes
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Results

Table 2: The average displacement error and the final displacement error of the prior methods (ED, SL, SA) and variants of our
method (TP) on our new dataset. For each evaluation metric, we show the values on pedestrians, bicycles, vehicles, and all the
traffic-agents. We set the observation time as 2 seconds and the prediction time as 3 seconds for these measurements.

Metric Methods ED SL SA TP-NoCL | TP-NoSA | TrafficPredict
pedestrian 0.121 0.135 0.112 0125 0.118 0.091
Ao i an bicycle 0.112 0.142 0.111 0.115 0.110 0.083
’ ’ vehicle .122 0.147 0.108 0.101 0.096 0.080
total 0.120 0.145 0.110 0.113 0.108 0.085
pedestrian 0.255 0.173 0.160 0.188 0.178 0.150
Final disp, etror bicycle 0.190 0.184 0.170 0.193 0.169 0.139
i vehicle 0.195 0.202 0.189 0.172 0.150 0.131

total 0.214 0.198 0.178 0.187 0.165 0.141




lllustration of comparison results on camera-based images.
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AutoTrajectory: Label-free Trajectory Extraction and Prediction from Videos using Dynamic Points
ECCV, 2020

€ Current prediction methods are supervised, which rely heavily on labeled trajectory data.

€ For supervised trackers, performance depends largely on the supervised detector, which also

needs large-scale labeled data and is always trained with fixed categories and domains.

€ For unsupervised trackers, they could not handle common bird's-eye view videos.
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raw videos trajectory extractor trajectory predictor

Our approach is label-free.

Our approach focuses on exploring the nature of video, i.e., the dynamic information,
which is naturally category-free and works well on all domains.

We achieved SOTA performance for unsupervised tracking
Our approach can further improve prediction methods by providing more trajectory data.
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Reconstruction results

i

rec b

The input image vs. the reconstructed image from the decoder. a and b are the input images,
and rec_a and rec_b are the reconstructed images.
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Instance matching results

< : Matching Trajectory O : Outliers

An example of instance matching. Green dashed line denotes the instance points
matching across timesteps. Blue circles denote the outliers of the instance points
(also mean missmatching points).
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j Trajectory extraction results

Table 1. Evaluation results of detected instance points. We compare the proposed
method with the unsupervised tracking [! |] method and unsupervised keypoint mod-

eling method [21].

-’ indicates the model cannot converge in the dataset

Metric Ins-Precision Ins-Recall
Dataset ETH | Hotel | Univ |Zaral | Zara2| ETH | Hotel | Univ | Zaral | Zara2
Un-Tracking [1 1]| 8.3% | - - |19.6%(21.4%|12.7%| - - |10.1%(14.8%
Un-Keypoint [21]|16.8%(11.2%| - |33.1%|36.7%|14.1%|14.6%| - |39.4%|41.0%
Ours 47.9%|37.1%|36.4%|58.77/60.3%|58.3%(42.0%/31.4%|63.1%67.9%
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l Trajectory extraction and prediction results

We display three examples with the ground truth trajectory (GT in green line), the extracted trajectory
by our method (ET in blue line), and the predicted trajectory by our method (PT in red dashed line).
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| Semi-supervised prediction results

Dataset Zaral +Univ(Gen) +Univ(Gen)+Zara2(Gen)
Method | LSTM | S-LSTM | LSTM | S-LSTM | LSTM S-LSTM
ADE 0.598 0.347 0.578 0.341 0.521 0.320
FDE 1.25 0.69 1.157 0.687 1.094 0.659

Adding more our extracted trajectories in the training process will make the
prediction results more accurate.
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Efficient Reciprocal Collision Avoidance with Heterogeneous Agents Using CTMAT
AAMAS, 2018

57



Comparison of Different Representations

h

Exact 2D projections " Circular representation ' Elliptical representation 'CTMAT representation

'
I I
I L}
I I
I I
I I
I I
I I
/1 !
I I
I ]
I I
I I
i I
I I
I L}

58



J Medial Axis Transformation (MAT)

(a) (b) () (d) (e)

In 2D, the medial axis of a shape which is bounded by planar curve C is the locus
of the centers of circles that are tangent to curve C in two or more points.
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Minkowski Sum of Two Tuples
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Velocity Obstacle for Heterogeneous Agents

VH
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Theorem. If MATRVO algorithm is able to compute a feasible
velocity, the resulting motion for agent is collision-free.
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Scalibility for Anti-podal Circle Scalibility for Anti-podal Circle by MATRVO

= ORCA ] = One tuple
= ERVO with precomputation 1 == Two tuples
w— MATRVO 1 == Three tuples
- - MATRVO with precomputation = 103
£ £
@ 107 1 o
£ £
§ § 102
10!
161 162 1;}3 164 1;)1 162
Number of Agents Number of Agents
Test | Agent | ORCA [48] | ERVO [10] [ MATRVO
1 O | 0 | @
54.5% 37.9% ( 85% )
2
60.4% 31.4% L 9.8% |
3
47.3% 46.2% L9.2% |

Comparison of ratios of false positives.
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AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous Traffic
CSCS, 2018

Kinematics

Dynamics

To make the simulation more real.
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I Representation and Kinematic Models

Car tricycle bicycle  pedestrian

tan(¢)

p= (v cos(B),vsin(h)), 0 — 5

V.
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AADS: Augmented Autonomous Driving Simulation using Data-driven Algorithms
Science Robotics, 2019

Simulation systems have become an essential component in the development and
validation of autonomous driving technologies.

Current simulation approaches use game engines or high-fidelity computer graphics
(CG) models to create driving scenarios.

- Remains a manual task that can be costly and time-consuming.
- Lacks the richness and authenticity of real-world.
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AADS: Augmented Autonomous Driving Simulation using Data-driven Algorithms
Science Robotics, 2019

B A new data-driven approach for autonomous driving simulation. This direct
scan-to-simulation pipeline, enables large-scale testing of autonomous cars
virtually anywhere and anytime within a closed-loop simulation.

B A novel view synthesis method to enable view interpolation and extrapolation with
only a few images.

B A new set of datasets, including the largest set of traffic trajectories and the largest
3D street-view dataset with pixel/point level annotation.
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Annotations LiDAR Trajectories

Moving Objects
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Enhancing

Center Lane
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Augmcntcd Autonomous I)i'i\'ing Simulation
(AADS)
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3D Scene Understanding

sematic segmentation

» iInstance segmentation )
egmentation .
panorama segmentation o

surounding cameras D

— (camera, Lidar)+Radar ) (

D

Trajectory { long-term prediction K¢ ) O(C )
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Applications for 3D scene understanding

— Virtual campus
(static+dynamic)

: Service robots
Intelllgent Campus (intelligent courier)

Autonomous vehicles
I (low speed, campus tour)
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