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Chapter 1

Introduction

This document gives an overview of the conventions used for representing a mobile robot pose
(rotation and translation), and how these poses along with their uncertainties are compounded
or propagated. When different conventions are prevalent in the literature, the differences are
explained. The document also serves as a standards specification for our software for this topic.

1.1 Notation

Vectors are represented in bold small-letters (m), and unit vectors with an additional carat
(n̂). Matrices are in bold capitals (M). Quaternions are represented as q̌ and the quaternion
product as �. The left subscript/superscript notation is the same as in the popular textbook by
J. J. Craig [1]. The left superscript always shows the frame with respect to which a quantity is
specified/resolved. Other frames-specific notations are summarized later in Table 3.1.

1.2 Coordinate Frames

For a mobile robot, its body-fixed reference frame/coordinate-system/referential at time-instant
k is denoted as FR[k]. The global (world) reference frame will be denoted as FG. This notation
shows that the global/world frame is fixed and time-independent.

1.2.1 Robot-Fixed Map3D Frame

The Map3D coordinate-frame FR[k] is attached to the robot at any time-instant k, and is shown
in Fig. 1.1. If the time is irrelevant in the context, the time-index will be dropped and the frame
denoted as FR.

The origin OR[k] of the frame FR[k] is on the ground in the middle of the robot between the
wheels, x̂-axis is to the front, ẑ-axis to the top, and ŷ-axis to the left, to give a right-handed
coordinate system. For any given sensor, the center is denoted as OS[k], and the sensor axes

are usually parallel to that of the robot-frame. The sensor offset
R[k]
S[k] t is

−−−−−−−→OR[k]OS[k] resolved in
FR[k] and is noted in the configuration file.

2



OR[k]

OS[k]

x̂R[k]

ẑR[k]
PR[k]p

Figure 1.1: The Map3D frame FR[k] shown from the side view of the robot.

1.2.2 Principal Axes of a Frame

Further we define the following principal unit-vectors for any frame FR. Time indices can be
added to the frames, if necessary.

Rx̂R ≡ ê1 ≡

1
0
0

 , RŷR ≡ ê2 ≡

0
1
0

 , RẑR ≡ ê3 ≡

0
0
1

 . (1.1)

If x̂R is resolved in another frame FH, it will be denoted as Hx̂R; in this case, its components
will generally be different from 0 and 1.

1.2.3 X3D/VRML Frame

This coordinate-system view, usually representing FG, is shown in Fig. 1.2– so if you store the
Map3D coordinates as X3D, you see the top view, when you open the scene in a viewer. For
performance reasons, it is better to store distances in meters rather than millimeters in X3D.

x̂

ŷ

Figure 1.2: The default X3D coordinate-frame representing FG on the screen.

3



Chapter 2

Representing Rotation

2.1 Semantics

A rotation is usually used in two different semantics

1. The frame (coordinate system) remains fixed but the scene rotates. This will be referred
to as the fixed-axes FiAx semantics. Since only one frame is involved the rotation-matrix
is denoted simply as R without any additional sub/super-scripts. The coordinates of a
point p are changed to p′, which are related by

p′ = R p. (2.1)

2. The physical scene remains fixed, but the observation frame moves. This will be referred
to as the rotated-axes RoAx semantics. There are always two frames involved: 1) a start
reference frame FS before the rotation, and 2) an end frame FE after the rotation. The
rotation matrix of FE with respect to FS is now denoted as

S
ER ,

(
Sx̂E

SŷE
SẑE

)
, (2.2)

where, Sx̂E represents the column vector comprising of the components of the x-axis of
FE resolved in FS, etc.

Assuming no translation, the coordinates of the same physical object in the two frames
are related by

Sp = S
ER Ep (2.3)

Note that in (2.3), the left hand side (LHS) are the “before” coordinates, whereas in (2.1)
the LHS has the “after” coordinates. The backward definition in (2.3), however, now
allows us the following convenience: the rotation matrix which rotates a scene within a
fixed frame is the same rotation matrix which rotates the frame while keeping the scene
fixed. Thus, we do not need to maintain two different definitions of the rotation matrix!
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2.2 Rotation Matrix Properties

2.2.1 Axis Angle to Rotation Matrix

If the rotation given by (2.3) is of angle θ (counter-clockwise positive using right-hand-rule)
about axis Sâ ≡ [ax, ay, az]

T, then the rotation matrix is given by the Rodrigues’ formula

S
ER ≡ R( Sâ, θ) = (cos θ)I3 + (sin θ)[ Sâ×] + (1− cos θ) Sâ Sâ

T
, (2.4)

[ Sâ×] ,

 0 −az ay
az 0 −ax
−ay ax 0

 (2.5)

2.2.2 Chaining or Composition of Rotations

Body-fixed Chaining

Analogous to (2.3) we can write the rotation sequence FS → FE → FF as

Sp = S
ER Ep, Ep = E

FR Fp, Sp = S
FR Fp. (2.6)

Substituting the second in first and comparing with the third, we get the chaining rule

S
FR = S

ER E
FR (2.7)

Space-fixed Chaining

If, in the sequence FS → FE → FF, the rotation FE → FF was given as being about axis Sâ of
angle θ, then

E
FR = S

ERT R( Sâ, θ) S
ER, ∴ S

FR = R( Sâ, θ) S
ER (2.8)

2.2.3 Roll, Pitch, and Yaw Angles

As an example, roll-pitch-yaw angles can be visualized as body-fixed rotations in the order from
the initial frame FG:

1. Yaw θw about GẑG ≡ ê3. After this rotation, we have frame FW.

2. Pitch θp about WŷW ≡ ê2. After this rotation, we have frame FP.

3. Roll θr about Px̂P ≡ ê1. After this rotation, we have frame FR.

The resultant rotation is

R(θr, θp, θw) = R(ê3, θw)R(ê2, θp)R(ê1, θr) (2.9)

Some authors describe the above as a space-fixed axes rotation sequence: roll θr about Gx̂G

resulting in frame FR, followed by pitch θp about GŷG resulting in frame FP, followed by yaw
θw about GẑG. This interpretation is, however, quite a bit less intuitive and although entirely
equivalent due to the results from space-fixed chaining, is impossible to visualize. The reader
may verify the equivalence using Eqs. (2.8).
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2.2.4 Eigenspace

A rotation matrix is orthonormal, belongs to the special orthogonal group SO(3), and thus has
determinant unity. It has one real eigenvalue of unity with the corresponding eigenvector being
the rotation axis. The other two eigenvalues are complex conjugates cos θ ± i sin θ, where θ is
the rotation angle about the axis.

2.3 Quaternions

A quaternion can be considered as a 4-tuple which is a generalization of complex numbers.
p̌ ≡ p0 + pxi + pyj + pzk. The quaternion product is defined as the expansion of p̌ � q̌ =
(p0 + pxi + pyj + pzk)(q0 + qxi + qyj + qzk), using i2 = j2 = k2 = ijk = −1. These can be used
to derive other relations between the imaginary units, like ij = k. A quaternion can also be
considered simply as a 4-vector.

q̌ =
(
q0 qx qy qz

)T ≡
(
q0

q

)
(2.10)

The first component q0 is called the scalar or real part of the quaternion, whereas the vector
q comprising of its last three components is called the vector or imaginary part of the quater-
nion. The quaternion multiplication can also be represented by matrix-vector multiplications
as follows

p̌ � q̌ , Ψ(p̌)q̌ ,

(
p0 −pT

p p0I3 + [p×]

)
q̌, (2.11a)

q̌ � p̌ , Ψ(p̌)q̌ ,

(
p0 −pT

p p0I3 − [p×]

)
q̌. (2.11b)

The matrix Ψ(p̌) is called the quaternion left-product matrix, and Ψ(p̌) is the right-product
matrix.

The quaternion dot product and norm are defined as those of the corresponding 4-vectors.
The conjugate of a quaternion q̌ is denoted q̌? and is simply defined as

q̌? ,

(
q0

−q

)
(2.12)

Only unit-quaternions with norm unity are used for rotation. To rotate a vector p, we first
“quaternionize” it by creating a purely imaginary quaternion

p̌ ,

(
0
p

)
. (2.13)

Then to rotate it using the unit quaternion q̌, one uses

p̌′ = q̌ � p̌ � q̌?, ‖q̌‖2 ≡ q2
0 + ‖q‖2 = 1. (2.14)

When frames need to be specified, we write, for example,

Sř = S
Eq̌ � Eř � S

Eq̌?. (2.15)

The rotation matrix equivalent to this rotation is given by

R(q̌) ≡ (q2
0 − qTq)I3 + 2qqT + 2q0[q×]. (2.16)
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A unit quaternion q̌(â, θ) which represents a rotation of angle θ (counter-clockwise positive
according to the right hand rule) about the axis â is

q̌(â, θ) ≡
(

cos θ2
sin θ

2 â

)
(2.17)

The reader may verify that the substitution of (2.17) into (2.16) followed by simplification leads
us to the Rodrigues formula (2.4).

Quaternions form a singularity-free parameterization of rotations in 3D, i.e. SO(3). Fur-
thermore, q̌ and −q̌ represent the same rotation, whereas q̌? represents the opposite rotation.

2.3.1 Compositions

we can write the rotation sequence FS → FE → FF as

Sp̌ = S
Eq̌ � Ep̌ � S

Eq̌?, Ep̌ = E
Fq̌ � Fp̌ � E

Fq̌?, Sp̌ = S
Fq̌ � Fp̌ � S

Fq̌?.

Substituting the second in first and comparing with the third, we get the chaining rule

S
Fq̌ = S

Eq̌ � E
Fq̌ (2.18)

Combining this result with (2.17) and (2.9), we can derive the mapping from roll, pitch, yaw to
the resultant quaternion

q̌(θr, θp, θw) = q̌(ê3, θw) � q̌(ê2, θp) � q̌(ê1, θr). (2.19)
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Chapter 3

Transforms and Scan-Matching
Update

3.1 Notation and Coding Conventions

The frames-specific notation is summarized in Table 3.1.

Table 3.1: Notations

Notation Meaning

FR[k] Coordinate frame attached to object ‘R’ (usually the robot) at sample time-
instant k.

OR[k] Origin of FR[k].
R[k]p For any general point P , the position vector

−−−−→OR[k]P resolved in FR[k].
Hx̂R The x-axis direction of FR resolved in FH. Similarly, HŷR, HẑR can be

defined. Obviously, Rx̂R = ê1. Time indices can be added to the frames, if
necessary.

R[k]
S[k′]R The rotation-matrix of FS[k′] with respect to FR[k]. See also (2.2).
R
S t The translation vector

−−−−→OROS resolved in FR. In [1], this is also written as
RpORGS, which is a bit unwieldy. Time indices can be added to the frames,
if necessary.

Coding Convention The rotation matrix
S[k]
S[k+1]R will be denoted as R s kp1 s k,

R[k]
S[j] R as

R s j r k. The translation
R[k]
R[j]t will be denoted as t r j r k. The position vector Bp will be

denoted as p b. These examples show that the reference frame should always come at the end.

3.2 Transforms

As shown in Fig. 3.1, the same point P has different coordinates when observed and resolved
in different frames FA, FB, FG.

We define

G
At ,

−−−−→OGOA resolved in FG.
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OA

OB

OG

Ap

Bp

Gp

FA

FB

FG

P

G
Bt

Figure 3.1: The coordinates of the same physical point P viewed from different frames.

Then we have the following relationships,

Gp = G
AR Ap + G

At (3.1a)

, G
AT( Ap). (3.1b)

The transform or mapping G
AT can be realized in many ways, for example by using rotation-

matrices or quaternions. One popular way is the 4× 4 homogenous matrix(
Gp
1

)
≡
(

G
AR G

At
01×3 1

)(
Ap
1

)
(3.2)

In general, we specify a transform as a pair of relative translation and rotation, e.g.

G
AT ≡

{
G
At
G
AR

}
, or, G

AT ≡
{

G
At
G
Aq̌

}
(3.3)

3.2.1 Transform Operations

Chaining or Composition of or Compounding or Adding Transforms

Transforms can be easily chained as follows

G
BT = G

AT A
BT ≡

{
G
AR A

Bt + G
At

G
AR A

BR

}
(3.4)

Inverse Transform

B
AT = A

BT−1 ≡
{
−A

BRT A
Bt

A
BRT

}
(3.5)

Relative or Difference Transform

Given G
AT and G

BT, find B
AT.

B
AT = G

BT−1 G
AT. (3.6)
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3.2.2 Definition of Global Robot Pose

The robot’s global pose at sample-time k is given by the transform

G
RT ≡

{
G
Rt
G
RR

}
(3.7)

3.3 Scan-Matching with Sensor Translational and Rotational
Offset

Problem The robot has a sensor attached on it which observes the scene. The transform of
the sensor with respect to the robot

R[k]
S[k] T is possibly time-varying, perhaps because the sensor

is monted on an arm, which in turn is attached to the robot. Two sensor readings are taken
at times k and j. A scan-matching algorithm runs on the sensor readings and determines the

relative sensor transform
S[k]
S[j]T. What is

R[k]
R[j]T, and how can the global pose of the robot G

R[k]T

be updated to G
R[j]T?

Solution From the compounding relations, we get the following

R[k]
R[j]T =

R[k]
S[k] T

S[k]
S[j]T

R[j]
S[j] T

−1 (3.8a)

G
R[j]T = G

R[k]T
R[k]
R[j]T. (3.8b)

All terms on the right hand side are known.
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Chapter 4

Propagating Transform Uncertainty

If all we needed were transforms without any uncertainty information, rotation-matrix based
transforms would have sufficed. However, most scan-matchers also provide us with an uncer-
tainty estimation in terms of a covariance matrix of the transform. In the following sections, we
will show how to perform elementary transform operations of composition and inverse when the
transforms also contain a covariance matrix of translation and rotation. It is also shown that
the rotation is best parameterized internally as a quaternion for algebraically simpler covariance
updates. On the other hand, covariances for rotation parameterization based on roll, pitch, and
yaw are easier to understand. Fortunately covariances can be converted across parameteriza-
tions using suitable Jacobians.

4.1 Notation

A transform G
AT, when written in terms of roll, pitch, and yaw angles, can be represented as a

6-vector

G
AT ≡

(
G
At

G
AΘ

)
, Θ ,

(
θr θp θw

)T
. (4.1)

In this case, the covariance matrix of G
AT is a 6× 6 matrix denoted as G

AC.
A transform G

AT, when written in terms of a unit quaternion, can be represented as a
7-vector

G
AT ≡

(
G
At
G
Aq̌

)
(4.2)

In this case, the covariance matrix of G
AT is a 7× 7 matrix denoted again as G

AC. Whether one
is using roll, pitch, yaw or quaternions is clear from the context.

4.2 Compounding Covariances

The problem can be stated generally as follows: given the transform G
AT and its covariance

G
AC, and a relative transform A

BT and its covariance A
BC, what are the compounded transform

G
BT and its covariance G

BC? We have already found G
BT in Eq. (3.4). We now seek to find its

covariance G
BC.
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4.2.1 Using Roll, Pitch, and Yaw

We denote the Eq. (2.9), which computes a rotation-matrix from Θ, as a mapping ĝ : R3 7→
SO(3). Therefore, its reverse mapping is ĝ−1 : SO(3) 7→ R3, which computes the angles from
the rotation-matrix.

We need to now estimate the updated covariance G
BC. Eq. (3.4) can be written together as

a mapping f : R6 × R6 7→ R6 as

G
BT = f( G

AT, A
BT) =

(
G
At + ĝ( G

AΘ) A
Bt

ĝ−1
(
ĝ( G

AΘ) ĝ( A
BΘ)

)) (4.3)

Its 6× 12 Jacobian is given by

J =
(
∂f/∂ G

AT ∂f/∂ A
BT
)

(4.4)

Needless to say, this will be a highly involved nonlinear expression, which can be computed
only numerically at each step. Assuming that the random-vectors G

AT and A
BT are mutually

independent, the covariance update is given by

G
BC = J

(
G
AC 06×6

06×6
A
BC

)
JT. (4.5)

4.2.2 Using Quaternions

In this case, the transform is given by a 7-vector as in (4.2). We denote the computation of a
rotation matrix from a quaternion using Eq. (2.16) as a mapping R(q̌) : R4 7→ SO(3). If this
mapping is used to rotate a vector t′ = R(q̌)t, then we can derive the following two Jacobians:

∂{R(q̌)t}/∂q̌ = 2
[
q0t + q× t | −tqT + (qTt)I3 + qtT − q0[t×]

]
(4.6)

∂{R(q̌?)t}/∂q̌ = 2
[
q0t− q× t | −tqT + (qTt)I3 + qtT + q0[t×]

]
(4.7)

These expressions will be quite useful in subsequent computations.
The transform update equations (3.4) can be written as

G
BT = f( G

AT, A
BT) =

(
G
At + R( G

Aq̌) A
Bt

G
Aq̌ � A

Bq̌

)
(4.8)

The Jacobian of G
BT with respect to its arguments is given by

J7×14 ,
(
∂ G

BT

∂ G
AT

∂ G
BT

∂ A
BT

)
(4.9)

Its individual submatrices are given by

∂ G
BT

∂ G
AT

=

 ∂ G
Bt

∂ G
At

∂ G
Bt

∂ G
Aq̌

∂ G
B q̌

∂ G
At

∂ G
B q̌

∂ G
Aq̌

 =

(
I3 ∂R( G

Aq̌) A
Bt/∂ G

Aq̌

04×3 Ψ( A
Bq̌)

)
, (4.10a)

where, definitions in (2.11) and (4.6) should be recalled. Similarly, one can obtain

∂ G
BT

∂ A
BT

=

 ∂ G
Bt

∂ A
Bt

∂ G
Bt

∂ A
Bq̌

∂ G
B q̌

∂ A
Bt

∂ G
B q̌

∂ A
Bq̌

 =

(
R( G

Aq̌) 03×4

04×3 Ψ( G
Aq̌)

)
, (4.10b)
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Substitution of Eqs. (4.10) in (4.9) gives the required Jacobian. Assuming that the random-
vectors G

AT and A
BT are mutually independent, the covariance update is given by

G
BC7×7 = J7×14

(
G
AC7×7 07×7

07×7
A
BC7×7

)
JT. (4.11)

Algebra-wise, the quaternion-based update is much easier than the roll-pitch-yaw based update
because closed form expressions can be obtained.

4.3 Inverse Transform Covariance Update Using Quaternions

The transform A
BT is related to its inverse B

AT by (3.5), which can be written using quaternions
as

B
AT =

(
−R( A

Bq̌?) A
Bt

A
Bq̌?

)
(4.12)

The conjugate can be computed from a matrix multiplication as

q̌? = J q̌, J , diag
(
1 −1 −1 −1

)
(4.13)

We thus get the Jacobian

J ≡ ∂ B
AT

∂ A
BT

=

(
− B

AR −∂R( A
Bq̌?) A

Bt/∂ A
Bq̌

04×3 J

)
(4.14)

This can be computed using (4.7). Finally,

B
AC = J A

BC JT. (4.15)
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