
Implementation and Evaluation of Odometry for
Rover SLAM

Wang Zhiwei1 and Yan Yihui1

A project of the 2019 Robotics Cource of the School of Information Science and
Technology (SIST) of Shanghaitech University

Abstract. This project is mainly about the implementation and eval-
uation of the odometry of Rover. We compare the trajectory generated
by our odometry with the trajectory published by hector_slam which
shows that our odometry is good enough. To some extent, the error of
our odometry reflects the imperfection of Rover.

1 Introduction

SLAM(simultaneous localization and mapping) is central to a range of indoor,
outdoor, in-air and underwater applications for both manned and autonomous
vehicles. Because Rover is imperfective, our project aims to implement an odom-
etry on Rover, which is a crutial base stone of SLAM. Our endeavor to implement
the good enough odometry will be meaningful to the further job.

2 State of the Art

2.1 Wang Zhiwei

Present and cite [1]This paper is about a SLAM algorithm called tinySLAM
based on IML tech- nique (Incremental maximum likelihood), which allows the
Simultaneous Localization and Mapping using data from a laser sensor and using
parrallel localization loops, which runs SLAM algorithm with several parameters
simultaneously and choose the best position estimation.

[2]This paper is about a SLAM algorithm called vinySLAM method that
extends tinySLAM with a cell model based on the Transferable Belief Model
(TBM) and an updated scan matching function to improve robustness, which
supposed to be run on low-cost platforms.

[3]This paper is about some metrics for evaluation of 2D SLAM, including
Cartographer, tinySLAM, gmapping, hectorSLAM, tinySLAM and vinySLAM,
which presents the approach for comparison of SLAM algorithms that allows to
find the most accurate one.

2 Wang Zhiwei and Yan Yihui

Further The further is about the second paper.
This paper introduces the vinySLAM method that enhances tinySLAM with

the Transferable Belief Model to improve its robustness and accuracy, which
provide information about proximities to nearby obstacles with a laser scanner
and supposed to be used in an indoor environment.

TinySLAMmay fail if a function that determines a correlation between a scan
obtained at a given robot pose and a map doesn’t have a single narrow peak.
To deal with these issues, this paper uses multiple hypotheses tracking and
a graph-based map representation to alter already estimated transformations
which implies a robust solution for the loop closure subproblem.

Beside, there are several alternatives for low-cost hardware.The TBM-based
cell model can be used to handle noisy laser data and to make a scan matcher
more robust. And a cache-friendly way to handle graph-map optimization[4] can
be used to speed up a graph-based SLAM.

The evaluation on publicly available datasets shown that vinySLAM outper-
forms tinySLAM. Although it is less robust than GMapping and Cartographer
due to its single hypothesis tracking nature, it’s able to process sensor data at
the 10 Hz rate on a low-cost hardware unlike GMapping.So considering the ac-
curacy and possible optimizations, it may be reasonable to use vinySLAM on
low-cost platforms including a life-long SLAM case.

ROS Package slam_constructor
The package provides implementation of several 2D laser-based simultaneous

localization and mapping (SLAM) algorithms (tinySLAM, vinySLAM, GMap-
ping) created with the SLAM constructor framewor, which provides common
functionality and classes that may be used to create custom SLAM algorithms.

– The gmapping SLAM provides laser-based SLAM, as a ROS node called
slam_gmapping, which can create a 2-D occupancy grid map (like a building
floorplan) from laser and pose data collected by a mobile robot.

– The tinySLAM is one of the most simplest and lightweight laser-based SLAM
methods.

– The vinySLAM is the enhanced tinySLAM with the Transferable Belief
Model.

Current implementation requires odometry data and laser scans to be provided
by the ROS topics. It also supposes that a laser scanner is fixed in (0, 0) of a
robot and mounted horizontally.

ROS Package hector_slam
The hector_slam metapackage that installs hector_mapping, hector_geotiff

and hector_trajectory_server packages.

– hector_mapping is a SLAM approach that can be used without odometry as
well as on platforms that exhibit roll/pitch motion (of the sensor, the plat-
form or both). It leverages the high update rate of modern LIDAR systems

Implementation and Evaluation of Odometry for Rover SLAM 3

and provides 2D pose estimates at scan rate of the sensors. While the system
does not provide explicit loop closing ability, it is sufficiently accurate for
many real world scenarios.

– hector_geotiff provides a node that permits saving of map and robot trajec-
tory data.

– hector_trajectory_server keeps track of tf trajectories extracted from tf data
and makes this data accessible via a service and topic.

2.2 Yan Yihui

Present and cite The graph-based SLAM is a method introduced by Lu and
Milios[5]. [6] has used this method in urban environments and mapped a number
of urban sites. [7] presented a tutorial on graph-based SLAM with sufficient
details and insights to allow for an easy implementation of the proposed methods.
With the aim to reduce execution time, [4] proposed an efficient implementation
and tried to speed up a graph-based SLAM.

Further [4] presented a practical approach to implement a 3D graph-based
SLAM algorithm on an OMAP embedded architecture, which is a widely used
open multimedia applications platform. provided an optimized data structure
and an efficient memory access management to solve the nonlinear least squares
problem related to the algorithm. The algorithm takes advantage of the Schur
complement to reduce the execution time. It takes advantage of the multi-core
architecture to parallelize the algorithm. This work aims to demonstrate how
optimizing data structure and multi-threading can decrease significantly the ex-
ecution time of the graph-based SLAM on a low-cost architecture dedicated to
embedded applications.

ROS Package move_base
The move_base package provides an implementation of an action that, given

a goal in the world, will attempt to reach it with a mobile base. The move_base
node links together a global and local planner to accomplish its global navigation
task. It supports any global planner adhering to the nav_core::BaseGlobalPlanner
interface specified in the nav_core package and any local planner adhering to
the nav_core::BaseLocalPlanner interface specified in the nav_core package.
The move_base node also maintains two costmaps, one for the global planner,
and one for a local planner that are used to accomplish navigation tasks.

ROS Package pointcloud_to_laserscan
Converts a 3D Point Cloud into a 2D laser scan. This is useful for making

devices like the Kinect appear like a laser scanner for 2D-based algorithms.

4 Wang Zhiwei and Yan Yihui

2.3 Problems

Odometry The odometry has not been implemented in the Rover. Many pack-
ages are unable to do mapping without odometry, thus, we decide to implement
the odometry of Rover firstly.

3 System Description

3.1 Motor Control

The rover has 10 motor, including 6 motors in profile velocity mode, setting
velocity to control rover moving at a constant speed and 4 motors in profile
position mode, setting the position of the wheels to control rover turning to
target degree, as shown in figure 1. We choose Maxon, a Swiss manufacturer and
supplier of high-precision drive systems, as the rover’s motor provider. According
to the Command library of EPOS Positioning Controllers, we can set every
wheel’s velocity and degree based on the Ackerman steering [8].

Fig. 1. Section view of 6-wheels Ackerman steering rover.

Besides, we should get current positions and velocities of ten motors in order
to implement the odometry of rover. From the motor controllers library, we use
the V CS_GetPositionIs function to obtain the current position actual values of
the ten motor. V CS_GetPositionIs returns the position actual value, pPosition
and requires Handle for port access KeyHandle with Node ID of the addressed
device NodeId as the parameters, as shown in the following C++ code.

Implementation and Evaluation of Odometry for Rover SLAM 5

i n t Motor : : g e tPo s i t i on (unsigned shor t usNodeId) {
i n t pPos i t i on ;
i n t lRe su l t = MMC_SUCCESS;

i f (VCS_GetPositionIs (g_subkeyHandle_ , usNodeId , &
pPos it ion ,

&ulErrorCode_) == 0) {
lRe su l t = MMC_FAILED;
LogError (' VCS_GetTargetVelocity ' , lResu l t ,

ulErrorCode_) ;
}

re turn pPos i t i on ;
}

Then, we transform the position value to degree using tick2deg function. Be-
sides, we also get current timestamp from ros system. For the 6 moving motors,
we can calculate the actual moving distances of the six wheels from last sampling
, combing with the wheel radius. For the 4 turning motors, we can calculate the
current degrees of the front and rear wheels from the zero points. Then, we pub-
lic the topic of motor, called ′motor′, including the moving distances, turning
degrees and time stamp for the calculation of rover odometry.

3.2 Odometry Calculations

After obtaining the status of the motors, the directions of corner motors and the
moving distances of drive motors, we can calculate the displacement and rotation
of the rover. The rover moves in two ways, moving straightly and turning. In
this subsection, we will describe them respectively.

Moving Straightly As figure 2(a) showing, calulating the displacement of
Rover is easy, just averaging the movement of six wheels:

∆x =
1

6

6∑
i

si, ∆y = 0, ∆θ = 0

Turning As figure 2(b) showing, Rover it is turning about point P. What we
know is the directions of corner motors (α1, α3, α4, α6), the moving distances of
drive motors (s1, s2, s3, s4, s5, s6) and the horizontal/vertical distance between
the center of Rover and each wheel (d1, d2, d3, d4). The moving_direction (for-
ward: 1, backward: -1, still: 0) and turning_direction (right: -1, left: 1, straight:
0) is set according the sign of the motor status values.

6 Wang Zhiwei and Yan Yihui

Fig. 2. Models of Rover.

Firstly, we need to calculate the rotation radius of the center of Rover (r).

r1 =
d3

tan(α1)
− d1, r3 =

d3
tan(α3)

− d1

r4 =
d2

tan(α4)
+ d1, r6 =

d2
tan(α6)

+ d1

r =
∑

i=1,3,4,6

ri

Then we need to know how much degrees Rover rotates (∆θ).

∆θ1 =
s1 ∗ sin(α1)

d3
, ∆θ3 =

s3 ∗ sin(α3)

d2

∆θ4 =
s4 ∗ sin(α4)

d3
, ∆θ6 =

s6 ∗ sin(α6)

d2

∆θ =
∑

i=1,3,4,6

∆θi

After calculating r and ∆θ, we can get the translation of Rover.

∆x = (moving_direction) ∗ r ∗ sin(∆θ)

∆y = (turning_direction) ∗ r ∗ (1− cos(∆θ))

Now, we have the transform(∆x, ∆y, ∆θ) of Rover in each time slot(∆t). It
is easy to get the odometry.

Implementation and Evaluation of Odometry for Rover SLAM 7

3.3 System Overview
Hardware

The system overview of rover is shown in figure 3, including lidar sensor,
motors and main computer.

Lidar Sensor : We mount a RoboSense LiDAR RS − LiDAR − 16 on the
top of our rover. The compact housing of RS − LiDAR − 16 mounted with 16
laser/detector pairs rapidly spins and sends out high-frequency laser beams to
continuously scan the Surrounding environment. Advanced digital signal process-
ing and ranging algorithms calculate point cloud data and reflectivity of objects
to enable machine to ’see’ the world and providing reliable data for localization,
navigation and obstacle avoidance. We use the LiDAR to run hectorSLAM for
odometry evaluation and mapping.

Motors : We use Brushless DC Motors from Maxon Motors. The electron-
ically commutated maxon EC motors stand out with excellent torque charac-
teristics, high power, an extremely wide speed range, and an outstandingly long
life span. The outstanding controllability of the motors makes high-precision po-
sitioning drives possible. It has been optimized for high speeds (up to 120,000
rpm) and withstands up to 2000 autoclave cycles.

Main Computer and Motor control : We use raspberry pi 3b+ as the robot
brain which is a small single-board computers with a 1.2 GHz 64-bit quad core
processor, on-board 802.11n Wi-Fi, Bluetooth and USB boot capabilities, com-
municating with the motor control via Universal Serial Bus (USB) port and
running SLAM algorithms. We use maxon EPOS as the motor control. EPOS is
a modular, digital positioning controller by maxon. The wide range of operating
modes, as well as various command interfaces, make it versatile for use in many
different drive systems in the fields of automation technology.

ROS-based Software The software of rover is developed based on Robot Op-
eration System(ROS), which is is an open-source, meta-operating system for
your robot. It provides the services you would expect from an operating sys-
tem, including hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between processes, and pack-
age management. We use ROS to connect our rover in minutes and implement
remote control and SLAM.

First, we public the ′motor′ topic about the position information from mo-
tor control. Based on the ′motor′ topic, we calculate and public the odome-
try and transform(tf) of rover from Ackerman steering. Besides, we get rsli-
dar_point from RoboSense LiDAR and use pointcloud_to_laserscan to obtain
scan topic preparing for hectorSLAM. The ROS computation graph visualized
by rqt_graph is shown in figure 4.

4 System Evaluation
Hector slam uses the hector_mapping node for learning a map of the environ-
ment and simultaneously estimating the platform’s 2D pose at laser scanner

8 Wang Zhiwei and Yan Yihui

Fig. 3. The Overview of Our Rover.

frame rate without odometry. We input the laser_scan topic provided by point-
cloud_to_laserscan node in the hector_mapping node and set the the current es-
timate of the robot’s pose within the map frame, called ’pub_map_odom_transform’.
Then, from hectorSLAM, we can get the estimated 2D pose of rover. While the
system does not provide explicit loop closing ability, the hectorSLAM is suffi-
ciently accurate for many real world scenarios. So we consider the estimated 2D
pose as the ground truth.

Figure 5, 6 show the trajectory from odometry and 2D pose estimated by
hectorSLAM. The green trajectory is generated by odometry and the yellow one
is generated by hectorSLAM. It can be seen from the two figures that our odome-
try succeeds in determining the position and orientation of rover. However, some
deviations exist between the trajectory from odometry and 2D pose estimated
by hectorSLAM, partly due to the offset from the zero point of turning motor.
Figure 7 shows the comparison of total trajectory and figure 8 shows the 2D
map generated by rover with hector_slam.

Implementation and Evaluation of Odometry for Rover SLAM 9

Fig. 4. Visualizing the ROS computation graph.

5 Conclusion

Our project is mainly about the odometry of Rover, the crutial base stone of
mapping and navigation. We obtain the motor status with maxon’s library, and
then implement the odometry on Rover using the motor status. We compare
the trajectory generated by our odometry with the trajectory published by hec-
tor_slam. The result shows that our odometry is good enough, although there
are some errors caused by the accuracy of motor status and the initial position
of corner wheels. The motor status converting from the encoder is not perfectlly
equal to the real value. The initial position of corner wheels is bias from the
straight forward direction.

6 README

6.1 Relevant Packages

motor_control This package is responsble for Rover controlling with remote
control handle and publish the odometry of Rover.

ros_rslidar This is the lidar’s driver of RoboSense.

pointcloud_to_laserscan This package converts a 3D point cloud into a 2D
laser scan.

hector_slam This package can do mapping without odometry and publish the
trajectory of lidar.

6.2 Usage

– Modify the path of configure file in motor_control/src/listener.cpp:
std::string file_name = ”/home/rov/motor/src/motor_control/config/default.yaml”;

10 Wang Zhiwei and Yan Yihui

– launch file: motor_control/launch/rover_slam.launch

NOTE: If there are errors like ”VCS_***”, you can modify the value of can_baudrate
in ”/motor_control/config/default.yaml” from 125000 to 50000, or from 50000
to 125000.

6.3 Code Instruction

– motor_control/src/listener.cpp: publish motor status, subscribe the moving
order for controlling motors and subscribe the motor staus for updating
odometry.

– motor_control/src/odometry.cpp: the code of odometry.

References

1. O. E. Hamzaoui and B. Steux, “SLAM algorithm with parallel localization loops:
TinySLAM 1.1,” in 2011 IEEE International Conference on Automation and Logis-
tics (ICAL), Aug. 2011, pp. 137–142.

2. A. Huletski, D. Kartashov, and K. Krinkin, “VinySLAM: An indoor SLAM method
for low-cost platforms based on the Transferable Belief Model,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp.
6770–6776.

3. A. Filatov, A. Filatov, K. Krinkin, B. Chen, and D. Molodan, “2D SLAM quality
evaluation methods,” in 2017 21st Conference of Open Innovations Association
(FRUCT), Nov. 2017, pp. 120–126.

4. A. Dine, A. Elouardi, B. Vincke, and S. Bouaziz, “Graph-based SLAM embedded
implementation on low-cost architectures: A practical approach,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May 2015, pp. 4612–
4619.

5. F. Lu and E. Milios, “Globally Consistent Range Scan Alignment for Environment
Mapping,” p. 31.

6. S. Thrun and M. Montemerlo, “The Graph SLAM Algorithm with Applications
to Large-Scale Mapping of Urban Structures,” The International Journal of
Robotics Research, vol. 25, no. 5-6, pp. 403–429, May 2006. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364906065387

7. G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A Tutorial on
Graph-Based SLAM,” IEEE Intell. Transport. Syst. Mag., vol. 2, no. 4, pp. 31–43,
2010. [Online]. Available: http://ieeexplore.ieee.org/document/5681215/

8. Michael Cox, Eric Junkins, Olivia Lofaro, “Open source Rover: Software
controls,” https://github.com/nasa-jpl/open-source-rover/blob/master/Software/
Software%20Controls.pdf, (accessed 2020-1-8).

Implementation and Evaluation of Odometry for Rover SLAM 11

Fig. 5. Comparison of straight trajectory.

12 Wang Zhiwei and Yan Yihui

Fig. 6. Comparison of turning trajectory.

Implementation and Evaluation of Odometry for Rover SLAM 13

Fig. 7. Comparison of total trajectory.

14 Wang Zhiwei and Yan Yihui

Fig. 8. 2D map generated by hector_slam

