
Underwater Depth Estimation for Spherical Images
A project of the 2019 Robotics Course of the School of Information Science and Technology (SIST) of ShanghaiTech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2019

Instructor: Prof. Sören Schwertfeger

Jiadi Cui1 and Lei Jin2

Abstract— Underwater depth estimation is an open problem
in robotics and computer vision. Currently, there still exists
many challenges in collecting corresponding ground truth data
in the underwater domain. To this end, we propose the leverage
of publicly-available in-air RGB-D image pairs for underwater
depth estimation in the spherical domain with a unsupervised
approach. We are able to recover the depth up-to-scale with no
corresponding ground truth data.

I. INTRODUCTION

Underwater depth estimation is an open problem for many
marine robotics. Currently, there are no available ground
truth depths for underwater spherical images. Still, there
exists many challenges to capture RGB-D image pairs in
the underwater spherical domain, which makes ground truth
depth unavailable. In this report, we propose to leverage
publicly-available in-airs spherical images for depth estima-
tion in the underwater domain. Specifically, our approach
follows a two-stage pipeline. i) Given in-air RGB-D spherical
pairs from Stanford 2D-3D-S dataset [1], we train a style-
transfer network [2] to convert in-air images to the underwa-
ter domain. ii) Given the generated underwater images and
their depth maps, we train a depth estimation network which
is specially designed for spherical images. During testing,
we can generate depth directly from the input image. Our
approach is unsupervised in that only underwater images
(i.e., no ground truth underwater depth) are required for the
whole training process.

II. RELATED WORKS

a) Panoramic Images: One common line of work in
panoramic images tackles the lack of dataset. In [3], the
author proposed to solve depth estimation and color cor-
rection in spherical domains at the same time by solving
left-right consistency under a multi-camera setting. Another
line of work focuses on the distortion problem. [4] deforms
the sampling grid according to the image distortion mode.
[5] reprojects the image onto an icosahedral spherical poly-
hedron.

b) Underwater Color Correction: Color correction can
change the images shot by underwater environment to the
normal images, and the reversion process can make the
normal images into the underwater images. There are many
methods to correct the color of underwater images, like deep

*This work was supported by ShanghaiTech MARS Lab
1 cuijd@shanghaitech.edu.cn
2 jinlei@shanghaitech.edu.cn

Fig. 1. A typical underwater omni-directional image

learning or mathematical methods. In [6], they use Jaffe-
McGlamery model[7], [8], a mathematical method, to handle
the problems. It considers absorption and scattering effects,
which denote α(λ) and β(λ). So the main equations are,

η(λ) = α(λ) + β(λ)

L(d, λ) = Re−η(λ)d

where R is the initial irradiance before propagation through
the water column, d is the range from the camera to the scene
and L is the final irradiance subject to water column effects.
And the coefficients can be optimized by various traditional
methods. An ideal method [6] is implemented by the idea
for bundle adjustment, which means the errors about color
correction could be apportioned into each step.

c) Underwater Learning: WaterGAN [9] is one the
pioneer works in the underwater domain. The author divide
the problem of underwater style transfer into three different
parts: Attenuation, Back-scattering and Camera Model. The
first stage accounts for the attenuation of light. The network
is designed to predict the attenuation factor and reconstruct
a rough underwater images from an in-air image. In the
second stage, to simulate the characteristic haze effect in the
underwater images, depth is combined with a random noise
vector as input to generate the scattering effects. In the final
stage, WaterGAN further models the shading pattern from
the camera models into the network. Given the generated
underwater images, we want it to look as similar as real
underwater images. Another discriminator is appended in the
end to tell real or fake underwater images appart. During
training, the generator aims at producing photo realistic
images so that the discriminator can not tell apart, while
the discriminator aims at distinguish them [10]. Our work is

https://robotics.shanghaitech.edu.cn/teaching/robotics2019


Fig. 2. Full pipeline of our approach. We propose to leverage publicly-available RGB-D datasets for style transfer and depth estimation in an unsupervised
approach.

different from WaterGAN [9] in that i) WaterGAN requires
depth as input to simulate the attenuation and scattering
effect, while we only need underwater and in-air images as
input. ii) We aim at depth estimation, while WaterGAN [9]
targets at image restoration.

Our work is in spirit most similar to [11]. The author in
[11] also proposed a two-stage pipeline to solve underwater
omni-directional depth estimation. In the first perspective
image pipeline, the author used the WaterGAN [9] to trans-
fer RGBD images to underwater RGBD images. Then, he
trained a FCRN [12] depth estimation network with under-
water image as input. In the second omni-directional stage,
the author synthesised image from in-air equirectangular
image to underwater equirectangular image by decreasing
the values in red channel (due to its short wavelength nature
in underwater environment) and blurring the image based
on its distance to the camera origin. Finally, following [4],
a distortion-aware convolution module replaced the normal
convolution in FCRN based on the spherical longitude-
latitude mapping.

III. METHODOLOGY

Fig. 2 demonstrates our two-stage pipeline. i) Given in-
air RGB-D spherical pairs from Stanford2D-3D-S dataset
[1], we train CycleGAN [2] to convert in-air images to
the underwater domain. ii) Given the generated underwater
images and their depth maps, we train a depth estimation
network to learn depth. We will introduce the two parts
separately in the following context.

A. Style Transfer

Generative Adversarial Nets (GANs) are designed for data
augmentation and now are widely used about the style trans-
fer tasks. GANs are two-player mini-max games between a

generative model G and a discriminative model D [13]. The
value function about this adversarial process is

min
G

max
D

V (D,G) =Ex∼pdata (x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))],

where pdata denotes the features in the data, and pz is set
by noise variables at first. This value function is also a loss
function about deep neural network.

For underwater style transfer, CycleGAN [2] is imple-
mented. Thus, about the mapping function G : X → Y ,
the loss function is

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)]

+ Ex∼pdata (x) [log (1−DY (G(x))] .

Moreover, CycleGAN apply a new idea about cycle con-
sistency, which is y → F (y)→ G(F (y)) ≈ y. And the loss
function on this step is

Lcyc(G,F ) = Ex∼pdata (x) [‖F (G(x))− x‖1]
+ Ey∼pdata (y) [‖G(F (y))− y‖1] ,

so finally, the full objective for CycleGAN is

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λLcyc (G,F )

G∗, F ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX , DY )

Because the method is pixel-to-pixel, the dataset are pre-
processed by cropping and resizing into a reasonable size
about the images.



B. Depth Estimation

For depth estimation, we adopt FCRN, one of the state-of-
the-art single model on NYUv2 [12]. The network consists
a feature extraction model, then several up-convolutions
layers to increase the resolution. Finally, we calculate the L1
difference between the output depth and ground truth depth
maps.

Ldepth =
∑
d∈x,y

‖Dpred −Dgt‖1

For depth estimation in planar images, smoothness reg-
ularization has been used frequently in previous research,
to encourage estimated depths to be locally similar when
no significant image gradient exists. The term is defined as
follows:

Lsm =
∑
pt

∑
d∈x,y

‖∇2
dDt(pt)‖1

, where Lsm is a spatial smoothness term that penalizes
the L1 norm of second-order depth gradients along both the x
and y directions in 2D space. Here, the number 2 represents
the 2nd order.

Further, we also add a surface norm regularize to the
network. Given the predicted depth and ground truth depth,
we can calculate their surface norm in a local window.
Finally, we calculate the cosine distance.

Lnormal =
∑
d∈x,y

cos(Npred −Ngt)

Our final loss is a weighted combination of the above
factors.

C. Implementation Code

We demonstrate some implementation code in this section.
1

In style transfer, the generative model G and the discrim-
inative model D are designed by these codes.

1 class CycleGANModel(BaseModel):
2 def __init__(self, opt):
3 self.netG_A = networks.define_G(opt.

input_nc, opt.output_nc, opt.ngf, opt.netG, opt
.norm, not opt.no_dropout, opt.init_type, opt.
init_gain, self.gpu_ids)

4 self.netG_B = networks.define_G(opt.
output_nc, opt.input_nc, opt.ngf, opt.netG, opt
.norm, not opt.no_dropout, opt.init_type, opt.
init_gain, self.gpu_ids)

5

6 if self.isTrain: # define discriminators
7 self.netD_A = networks.define_D(opt.

output_nc, opt.ndf, opt.netD, opt.n_layers_D,
opt.norm, opt.init_type, opt.init_gain, self.
gpu_ids)

8 self.netD_B = networks.define_D(opt.
input_nc, opt.ndf, opt.netD, opt.n_layers_D,
opt.norm, opt.init_type, opt.init_gain, self.
gpu_ids)

1All code is put in https://star-center.shanghaitech.edu.cn/gitlab/
robotics2019/robotics2019 project uwdepth/tree/master/code

For the loss function:

1 class CycleGANModel(BaseModel):
2 def __init__(self, opt):
3 if self.isTrain:
4 self.criterionGAN = networks.GANLoss(

opt.gan_mode).to(self.device) # define GAN
loss.

5 self.criterionCycle = torch.nn.L1Loss()
6 self.criterionIdt = torch.nn.L1Loss()
7

8 self.optimizer_G = torch.optim.Adam(
itertools.chain(self.netG_A.parameters(), self.
netG_B.parameters()), lr=opt.lr, betas=(opt.
beta1, 0.999))

9 self.optimizer_D = torch.optim.Adam(
itertools.chain(self.netD_A.parameters(), self.
netD_B.parameters()), lr=opt.lr, betas=(opt.
beta1, 0.999))

10 self.optimizers.append(self.optimizer_G
)

11 self.optimizers.append(self.optimizer_D
)

And more specifically,

1 class GANLoss(nn.Module):
2 def __init__(self, gan_mode, target_real_label

=1.0, target_fake_label=0.0):
3 super(GANLoss, self).__init__()
4 self.register_buffer(’real_label’, torch.

tensor(target_real_label))
5 self.register_buffer(’fake_label’, torch.

tensor(target_fake_label))
6 self.gan_mode = gan_mode
7 if gan_mode == ’lsgan’:
8 self.loss = nn.MSELoss()
9 elif gan_mode == ’vanilla’:

10 self.loss = nn.BCEWithLogitsLoss()
11 elif gan_mode in [’wgangp’]:
12 self.loss = None
13 else:
14 raise NotImplementedError(’gan mode %s

not implemented’ % gan_mode)

In depth estimation, the L1 loss is implemented as follows. Note
that we need to get rid of the invalid values.

1 class MaskedL1Loss(nn.Module):
2 def __init__(self):
3 super(MaskedL1Loss, self).__init__()
4

5 def forward(self, pred, target):
6 valid_mask = (target > 0).detach()
7 diff = target - pred
8 diff = diff[valid_mask]
9 return diff.abs().mean()

For the smoothness term:

1 def get_smooth_loss(depth, img):
2 grad_disp_x = torch.abs(depth[:, :, :, :-1] -

depth[:, :, :, 1:])
3 grad_disp_y = torch.abs(depth[:, :, :-1, :] -

depth[:, :, 1:, :])
4

5 grad_disp_x *= torch.exp(-grad_disp_x)
6 grad_disp_y *= torch.exp(-grad_disp_X)
7

8 return grad_disp_x.mean() + grad_disp_y.mean()

And for the normal term:

1 depth_normal = torch.cat((-depth_grad_dx, -
depth_grad_dy, ones), 1)

2 output_normal = torch.cat((-output_grad_dx, -
output_grad_dy, ones), 1)



Methods RMS[m] ↓ Rel[m] ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
FCRN [12] 0.556 0.152 0.060 0.812 0.938 0.978

+UNet 0.545 0.146 0.057 0.826 0.946 0.980
+Lgrad 0.530 0.142 0.055 0.830 0.946 0.980
+Lnorm 0.528 0.140 0.055 0.831 0.947 0.980

TABLE I
PERFORMANCE COMPARISON ON THE STANFORD 2D-3D-S DATASET.

3 loss_normal = torch.abs(1 - cos(output_normal,
depth_normal)).mean()

D. Reproduce the Project

In the code/style transfer folder, the dataset should be stored
into a folder, contain four sub-folders (named trainA, trainB, testA,
and testB). To train CycleGAN with the underwater and in-air
images, run

1 python3 train.py --dataroot [your_data_folder] --
name [your_result_folder] --model cycle_gan

In the code/style transfer/checkpoints folder, we can
find the model files. Then choose one to be put into the
code/style transfer/scripts/checkpoints/[your model folder].

For testing and generating the data after processing, run

1 python3 test.py --dataroot [your_data_folder] --
name [your_model_folder] --model test --
no_dropout

In the code/depth folder, to train the depth network with the
generated images and depth, run

1 python3 main.py

This will train the network and report the performance on the
converted underwater Stanford 2D-3D-S dataset.

IV. EVALUATION AND RESULT

a) Dataset: Stanford 2D-3D-S [1] is one of the standard
benchmarks for in-air dataset. The dataset provides omni-directional
RGB images and corresponding depth information, which are
necessary data for underwater depth estimation tasks. Furthermore,
it also provides semantics in 2D and 3D, 3D mesh and surface
normal.

b) Hyper-parameters: We implement our solutions under
the PyTorch framework and train our network with the following
hyper-parameters settings during pretraining: mini-batch size (8),
learning rate (1e-2), momentum (0.9), weight decay (0.0005), and
number of epochs (50). We gradually reduce the learning rate by 0.1
every 10 epochs. Finally, we tune the whole network with learning
rate (1e-4) for another 20 epochs.

c) Metrics: Following [12], we use the following metrics
for the comparisons on the datasets mentioned above: Root mean
square error (RMS)

√
1
T

∑
p(gp − zp)2, Mean relative error (Rel)

1
T

∑
p

‖gp−zp‖
gp

, Mean log 10 error (log 10 ) 1
T

∑
p ‖ log10 gp −

log10 zp‖ and pixel accuracy as the percentage of pixels with
max(zi/z

gt
i , z

gt
i /zi) < δ for δ ∈ [1.25, 1.252, 1.253]. gp and

zp represent the ground truths and the depth map predictions,
respectively.

d) Results: Since no ground truth depth is available for
in the underwater domain, we report the results on the converted
Stanford 2D-3D-S dataset. Numbers are reported in I. Some quality
results of our generated underwater dataset are demonstrated in Fig.
3. In Fig. 4, we show some results of our depth estimation network.
Although we are able to generate realistic images in the underwater
domain, and achieve a good results on the underwater Stanford 2D-
3D-S dataset, the result of the depth from the underwater images
still have room for improvement.

Fig. 3. Generated images with our CycleGAN. On the left are examples
from Domain I, inair. On the right are our generated images. We are able to
produce the lightening the color effects from the original underwater dataset.

Fig. 4. Generated depth from two datasets. On the left are the input
images from the underwater Stanford 2D-3D-S dataset and their predicted
depth maps. On the right are images and depth from our underwater datasets.

V. CONCLUSION

In this project, we aim at unsupervised depth learning for
the underwater spherical images. However, this is still specially
designed for a certain underwater situation. In the future, we are
planning working on a unified approach that can work in all kinds
of different underwater situations. Collecting a in-air dataset that
looks closer to the underwater images might also further improve
our performance.

REFERENCES

[1] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2d-
3d-semantic data for indoor scene understanding,” arXiv preprint
arXiv:1702.01105, 2017.

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.



[3] K. A. Skinner, J. Zhang, E. A. Olson, and M. Johnson-Roberson,
“Uwstereonet: Unsupervised learning for depth estimation and color
correction of underwater stereo imagery,” in 2019 International Con-
ference on Robotics and Automation (ICRA), May 2019, pp. 7947–
7954.

[4] K. Tateno, N. Navab, and F. Tombari, “Distortion-aware convolutional
filters for dense prediction in panoramic images,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 707–
722.

[5] Y. Lee, J. Jeong, J. Yun, W. Cho, and K.-J. Yoon, “Spherephd:
Applying cnns on a spherical polyhedron representation of 360deg
images,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9181–9189.

[6] K. A. Skinner, E. Iscar, and M. Johnson-Roberson, “Automatic color
correction for 3d reconstruction of underwater scenes,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 5140–5147.

[7] J. S. Jaffe, “Computer modeling and the design of optimal underwater
imaging systems,” IEEE Journal of Oceanic Engineering, vol. 15,
no. 2, pp. 101–111, 1990.

[8] B. McGlamery, “Computer analysis and simulation of underwater
camera system performance,” SIO ref, vol. 75, p. 2, 1975.

[9] J. Li, K. A. Skinner, R. Eustice, and M. Johnson-Roberson, “Watergan:
Unsupervised generative network to enable real-time color correction
of monocular underwater images,” IEEE Robotics and Automation
Letters (RA-L), 2017, accepted.

[10] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[11] H. Kuang, Q. Xu, and S. Schwertfeger, “Depth estimation on under-
water omni-directional images using a deep neural network,” 2019.

[12] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.


	Introduction
	Related Works
	Methodology
	Style Transfer
	Depth Estimation
	Implementation Code
	Reproduce the Project

	Evaluation and Result
	Conclusion
	References

