
Robotic Arm Control With Human Interactionl
A project of the 2016 Robotics Course of the School of Information Science and Technology

(SIST) of ShanghaiTech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2016

Huangjie Yu
yuhj@shanghaitech.edu.cn

Xin Chen
chenxin2@shanghaitech.edu.cn

Xuhui Liu
liuxh@shanghaitech.edu.cn

Abstract

We proposed a programmable system that control robotic
arm to grasp objects with human interaction. We are able
to detect multiple objects of various types. Our system in-
vloves hand-eye calibration which determines the camera
pose, vision detection which extract representative positions
of objects, preprocessing which sets everything fine for vi-
sion algorithm, underlying control which actually move the
arm and human interaction which allows the robotic arm
to mimic human arm movement. Our program is imple-
mented on ROS, the most popular platform for interacting
with robots.

1. Introduction
We proposed a system made up of a robotic arm, a depth

camera and leap motion, aiming at grasping multiple ob-
jects with human interaction. It’s a fundamental task for
robotic arm to grasp objects for various applications, e.g. ar-
tificial intelligence. Further more, we make use of leap mo-
tion for human interaction, allowing robotic arm to mimic
human arm.

Our system mainly consists of three parts, vision detec-
tion, mechanical control and human interaction. Vision de-
tection was used to detect objects and extract representative
point. Mechanical control is responsible for moving the arm
correctly and precisely. Human interaction is another func-
tionality that let the robotic arm mimic the movement of a
human arm.

2. State of the Art
2.1. Related work

B. Tondu, et al., presented a design of a 7R anthro-
pomorphic robot-arm entirely actuated by antagonistic
McKibben artificial muscle pairs [1]. The validation of
the tobotarm architecture was performed in a teleoperation
mode. Another architecture of a robotic servo system

was proposed by K. Kosuge et al. [2]. The controller
with proposed architecture can automatically modify the
trajectory of a robot arm according to the control strategy
represented by a virtual internal model.

Kok-Meng Lee, et al., presented an alternative design
of a three-degrees-of-freedom manipulator based on the
concept on an in-parallel actuated mechanism [3]. The
manipulator has two degrees of orientation freedom and
one degree of translator freedom. The basic kinematic
equations for use of the manipulator are derived and the in
uences of the physical constraints on the range of motion
in the practical design are discussed. Several possible
applications which include the in-parallel mechanism as
part of the manipulation system are suggested. And in this
paper, the authors present the kinematic equations for use of
a three-degrees-of-freedom in-parallel actuated mechanism
as a robot manipulator. The physical constraints imposed
by the limits of the ball joints and the link lengths have
been discussed. A simulation program has been developed
to predict the range of motion for the purpose of practical
design. Various possible applications of the in- parallel
mechanism as part of the six-degrees-of-freedom manipu-
lator are addressed. Future work should include dynamic
analysis, prototype design, and evaluation in an industrial
environment and computer-control scheme development.

D. Bassily, el al., discussed the applications of the
human-robot interaction [4]. The research of this inter-
action focus on Ambient Assisted Living AAL which
promises to address the needs of elderly people, so the
implementation of a intuitive and adaptive manipulate
scheme is proposed by developing a human- machine com-
munication interface between the Leap Motion Controller
and the 6-DOF Jaco robotic arm. Ashutosh Saxena, et al.,
presented a learning algorithm for grasping novel objects
[5]. It neither requires, nor tries to build, a 3-d model of the
object. Train is supervised using synthetic images for the
training set.

1

https://robotics.shanghaitech.edu.cn/teaching/robotics2016


Sergey Levine, et al., describe a learning-based ap-
proach to hand-eye coordination for robotic grasping from
monocular images using a CNN [6]. The network observes
the spatial relationship between the gripper and objects in
the scene, thus learning hand-eye coordination. They use
this network to servo the gripper in real time to achieve
successful grasps. For the training parts, they collected
over 800,000 grasp attempts over the course of two months,
using between 6 and 14 robotic manipulators at any given
time, with differences in camera placement and hardware.
The evaluation demonstrates that this method achieves
effective real-time control, can successfully grasp novel
objects, and corrects mistakes by continuous servoing.

Moran, et al., described a history of robotic arms [7].The
most obvious method in robotic arm evolution was adapted
along the lines of human anatomy and kinesiology. So
recent robotics arm contains 4 parts: shoulder joint, elbow
joint, wrist joint and hand. Karbasi, et al., presented
a distance technique for hand detection with Microsoft
Kinect [8]. First, Kinect sensor was used to obtain depth
image information. Second, background subtraction and
interactive method for shadow removal are applied to
reduce noise from the depth image. Then it uses Microsoft
SDK for extraction process and segmentation.

S. Rosa, et al., implements a system containing a 7-DOF
robotic arm for object detection, learning and grasping
using vocal information [9]. The program was implemented
in ROS and was made up of six nodes: manager node,
Julius node, move node, PCL node, festival node and
compute node. The information stream starts from Julius
node and ends with the move node, managed by manager
node. The Julius node is responsible for interpreting
user vocal commands. The PCL node implements object
recognition. The festival node interacts with the users
with voice. The computer node computes the 3D pose of
the object for grasping. The move node implements path
planning based on the MoveIt package for ROS.

They used Julius for interpreting user commands and
vocal feedback. For detection, they first reconstruct point
clouds using MeshLab and Poisson Surface Reconstruction;
then the scene was segmented and objects are extracted
using Euclidean clustering step. A path planning algorithm
together with an inverse kinematic solver has been used for
the generation of suitable trajectories to move the robotic
arm from its starting pose to the target pose.

2.2. Mean Shift

Mean Shift is a very effective algorithm for classification
and object tracing [10]. Oliver Kroemer et al. use this
algorithm to implement robot grasping in Active Learning
using Mean Shift Optimization for Robot Grasping. They
suppose a new robot learning framework for reproducing
the ability which is learning point of view in robot grasping.
To implement this, at first,they let robot observe a few good
grass by demonstration and learns a value function for these
these grasps using Gaussian process regression. Then,
choose grasps which are optimal with respect to this value
function using a mean-shift optimization approach and tires
them out the real system. Finally, upon every completed
trial, the value function is updated, and in the following
trials it is more likely to choose even better grasping points.
We don’t use mean shift for optimization like the algorithm
of this paper, but we use mean-shift to classify these point
cloud accurately.

Ferran RIGUAL et al. use RANSAC with Mean Shift
clustering to improve the performance of their algorithm in
the case of multiple instance recognition in [11]. In their
work they address the problem of object detection for the
purpose of object manipulation in a service robotics sce-
nario. They implement several state-of-the-art object de-
tection methods, and select the best performance. During
the evaluation, they find three main practical limitations of
current methods which are identified in relation with long-
range object detection, grasping point detection and auto-
matic learning of new objects; and propose practical solu-
tions.

2.3. ROS packages

2.3.1 Schunk canopen driver

schunk canopen driver privides a driver interface for
the Schunk LWA4P robot arm through the CANOPEN
interface [12]. It also provides a simple interface that
accepts position commands and another interface for ros
control. The package offers two different interfaces, which
both differ in the action topics, parameters and the way
commanded waypoints are interpreted by the hardware.

The simpler profile-position-interface accepts series
of waypoints which the robot will drive to with internal
interpolation. It is not guaranteed (and might almost never
happen), that all joints finish moving at the same time. If
multiple waypoints are given, a new waypoint is started for
all joints at the same time as soon as the last joint reached
it’s previous destination. Ramping up and down between
waypoints is done by the robot internally depending on it’s
configuration. The ramping setup will be treated later on.

2



The ros-control-interface provides a position controller
in joint space which will interpolate between waypoints in-
side the controller (on the host PC). You can set joint ve-
locities and time constraints for each waypoint which the
controller will take care of.

2.3.2 Leap motion

leap-motion is a ROS driver for interfacing with the Leap
Motion 3D gesture sensor [13]. The Leap is capable of
tracking the fingers and palm of a user with millimeter
accuracy. The sensor is capable of producing the following
information:3D position for palms of both hands and all 10
fingers, 3D direction vector for all fingers and hands, 3D
normal vector for palm.

Through Leap-ROS, you can find the pose of each hand
which has be recognized about 90HZ. Then I will focus on
the introduction on the way to using this package in detail.
First, Install the driver and SDK from manufacturer’s site.
Then, start the Leap Motion driver.

Thel leap motion driver utilizes the offcial Leap SDK for
Linux in order to talk to the device. Currently it does not
have all the capabilities the SDK provides, but it is easy to
extend. The driver currently provides the following: Single
hand 3D Palm Position, Normal Vector, Pose (pitch, yaw
and roll), Single hand 3D Hand Direction Vector and All
Finger joints [thumb, index, middle, ring, pinky] positions.
This information is encompassed in the custom message
leap motion/leapros.msg.

2.3.3 Openni2 launch

openni2 launch contains launch files for using openni-
compliant devices in ROS [14]. It supports Asus Xtion,
which is the device we are using, Xtion Pro, and multiple
versions of the Primesense 1.08 and 1.09 cameras.

Openni2 provides a simple access to its rgb and depth
information simply by subscribing a certain topic. In our
project, we have used point cloud information which is also
provided by default.

3. System Description
Our system consists of three separating parts: vision

detection, mechanical control and human arm interaction.
The vision detection part was used for finding objects
and extracting representative points of the objects. The
mechanical control part do the underlying moving. And
human interaction function uses human arm gesture to
control the robotic arm.

I will introduce the pipeline of out system. First, our
program will, at some point, yields a point under the world
coordinate system. This point is assumed to be close to
the object, but not on it. It is recognized by the low-level
controlling program who will give moving commands to
the arm. Then the arm will move to that point. Now that
the palm of the robotic arm is close to the object, we start
controlling the arm with our own arm. The movements of
our hands are calculated using leap motion, and are given
to the controlling program who will again publish control
commands to the robotic arm. Thus, it can mimic the
gesture of human hands and grasp objects.

Before further processing, we first calibrate the depth
camera and the palm of the robotic arm. This gives
the transformation from camera to the palm. Since the
transformation from palm to base, which determines the
world coordinate system, is known in ROS, we are now
able to transform points in camera frame to world frame.

Our working space is constrained on a table, the robotic
arm is put near one edge of it and objects can be put
anywhere on the table. The depth camera was fixed on
the arm palm. To start with, we will set the robotic arm
to a ’comfortable’ position from which it is able to have a
complete overview of the whole table and try not to include
other objects.

The core vision algorithm in our system is Mean Shift,
used for localize multiple objects. It is explained in detail
in the next section.

Once we are able know the rough center for each object,
we can tell Moveit! to plan a path. If no collision is
detected, the robotic arm should know how to move there.
To perform grasping, however, we need to place the finger
exactly at the position of the object. To achieve this, we
put a leap motion at the corner of the table. Leap motion
can tell the movements of our hands. These movements are
then used for calculating goal positions which are sent to
the arm. The results look as if the robotic arm is mimicking
the human arm.

There are difficulties though. We are unable to control
the finger of the robotic arm which makes it impossible to
actually grasp objects.

3.1. Program description

3.1.1 Hand-eye calibration

We wrote Matlab codes for calibrating camera and arm
palm. The above code snippet gives an overall looking of
our algorithm. camerapose represents camera pose under
the coordinate system determined by check board. hand

3



Figure 1. Calibration Code

represents hand pose under the coordinate system deter-
mined by arm base. The inverse operation gives the trans-
formation from one pose to another. In the end, we will
solve AX = XB, which in out program is daniilidis call.
The final result X represents the transformation from cam-
era to palm.

3.1.2 Moveit!

Figure 2. Plan and Move

The above code snippet shows the framework of mov-
ing the arm. First, gGraspPoints stores centres for all ob-
ject. We fetch the first center and check its validation, i.e.,
whether it is empty or is lying outside or below the table
plane. Second, we set position target of the end effector to
that point by calling setPositionTarget() and plan() . Finally,
if we are confident to go, OnlyPlan is set to false and the
trajectory controller will move the arm by calling move().

3.1.3 Mean Shift

The mean shift algorithm for getting each cluster contains
three main parts:

Firstly, we should build Class MeanShift by input the
basis-function or use the default function. Secondly, Func-
tion meanshift is to calculate the shift vector between the

current center and each point based on a basis-function
which measures this vector. In our experiment, we take
Gaussian as the basis-function. We keep shifting each cen-
ter until the shift vector below the threshold which depends
on the accurate we want. The more accurate we want, the
longer time this algorithm will take. Finally, Function clus-
ter is to judge the cluster that each point belong to. These
decision base on the clusters flags which are taken by these
points from the Function meanshift.

Figure 3. Functions of Mean Shift Algorithm

3.2. Human Interaction

Human interaction is a interesting tool to play with. The
robotic arm is able to mimic human hands, i.e., move the
same as human hands move.

This function is implemented using a leap motion. Leap
motion is a device used for tracking finger and palm trans-
lation. First, we align the coordinate system of leap motion
with that of the robotics arm base joint. Then, human arm
translation under the frame of leap motion is transformed to
that under the frame of base joint. Finally, this translation is
interpreted by Moveit! and, afterwards, sent to the robotic
arm. Due to the alignment of both coordinate systems, the
movements of robotic is the same as that of human arm.

4. System Evaluation
One of our goals is to grasp multiple objects as quickly

and correctly as possible. To define ”quickly”, we come up
with a measure: ”touch 2 objects in 5 minutes, 3 objects
in 10 minutes”. The reason why we want to ’touching’
instead of ’picking up’ is that we have difficulties control-
ling fingers of the robotic arm. In experiments, we have
implemented two vision algorithms: mean shift and blob.
When using mean shift, time will increase exponentially as
objects increases. While using blob, the detection can be
done in several seconds.

Another goal of our project is that, as human arm moves,

4



the robotic arm should perform the same movement. This
imitation should be done almost in real time. In our
experiments, time interval differs. When a short path is
planed, the movement can be done in one or two seconds.
but when a complex path is planed, the behaviour of the
robotic arm will be strange.

5. Conclusion

In this project, we proposed a programmable system that
can control robotic arm to grasp objects. Till now, we are
able to detect multiple objects and calculating their posi-
tions. Further more, we are able to move the arm to those
positions. Human interaction is involved in our project, al-
lowing the robotic arm to mimic the movements of a human
hands.

References

[1] B. Tondu, S. Ippolito, J. Guiochet, and A. Daidie, “A
seven-degrees-of-freedom robot-arm driven by pneu-
matic artificial muscles for humanoid robots,” The
International Journal of Robotics Research, vol. 24,
no. 4, pp. 257–274, 2005.

[2] K. Kosuge, K. Furuta, and T. Yokoyama, “Virtual
internal model following control of robot arms,” in
Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, vol. 4, pp. 1549–1554,
IEEE, 1987.

[3] K.-M. Lee and D. K. Shah, “Kinematic analysis of a
three-degrees-of-freedom in-parallel actuated manip-
ulator,” IEEE Journal on Robotics and Automation,
vol. 4, no. 3, pp. 354–360, 1988.

[4] D. Bassily, C. Georgoulas, J. Guettler, T. Linner, and
T. Bock, “Intuitive and adaptive robotic arm manipula-
tion using the leap motion controller,” in ISR/Robotik
2014; 41st International Symposium on Robotics;
Proceedings of, pp. 1–7, VDE, 2014.

[5] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng,
“Robotic grasping of novel objects,” in Advances
in neural information processing systems, pp. 1209–
1216, 2006.

[6] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen,
“Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection,”
arXiv preprint arXiv:1603.02199, 2016.

[7] M. E. Moran, “Evolution of robotic arms,” Journal of
robotic surgery, vol. 1, no. 2, pp. 103–111, 2007.

[8] M. Karbasi, Z. Bhatti, P. Nooralishahi, A. Shah, and
S. M. R. Mazloomnezhad, “Real-time hands detection
in depth image by using distance with kinect camera,”
International Journal of Internet of Things, vol. 4,
no. 1A, pp. 1–6, 2015.

[9] S. Rosa, A. Russo, A. Saglimbeni, and G. Toscana,
“Vocal interaction with a 7-dof robotic arm for
object detection, learning and grasping,” in The
Eleventh ACM/IEEE International Conference on Hu-
man Robot Interation, pp. 505–506, IEEE Press, 2016.

[10] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Ac-
tive learning using mean shift optimization for robot
grasping,” in 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 2610–
2615, IEEE, 2009.

[11] F. Rigual Aparici, “Object recognition applied to mo-
bile robotics,” 2012.

[12] “schunk canopen driver ros package.” http://
wiki.ros.org/schunk_canopen_driver.

[13] “leap motion ros package.” http://wiki.ros.
org/leapmotion.

[14] “openni2 launch ros package.” http://wiki.
ros.org/openni2_launch.

5

http://wiki.ros.org/schunk_canopen_driver
http://wiki.ros.org/schunk_canopen_driver
http://wiki.ros.org/leap motion
http://wiki.ros.org/leap motion
http://wiki.ros.org/openni2_launch
http://wiki.ros.org/openni2_launch

