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Abstract—We applied two ROS packages for an autonomous
robot, Jackal, driving itself along a sub-optimal trajectory to a
given terminal with avoiding obstacles. We tried to formulate
the problem via combining simultaneously locating and map-
ping (SLAM) and mixed-integer optimal control programming
(MIOCP) and then applied move base package to make local
plan. The Jackal identifies obstacles, locates itself via laser sensor.
Then, environmental information is passed to move base as a
low-level controller with a given goal to make local plan. These
local goals are computed by the high-level optimal controller that
regards the jackal as a linear system and obstacles as integer
constraints to enforce collision avoidance and sub-optimality.

Currently, we have finished the low-level controller and high-
level controller independently. Moreover, we have made a demo to
show the low-level controller performs well in avoiding obstacles.
It is worth to note that all computation are finished in real-time
and this method also allows Jackel to avoid moving obstacles.
This project will not terminate at present and we will continue to
combing low-level and high-level controller to achieve automatic
driving.

Index Terms—ROS, move base, velodyne, MIOCP.

I. INTRODUCTION

These years are nearly dawn of the era of automatic driv-
ing, since relevant theories (e.g. optimization in real-time),
algorithms (e.g. simultaneously locating and mapping), and
hardware resources, are all mature. Currently how to combine
them and implement is the main challenge of this technique.
In robotics point-of-view, autonomous vehicles are naturally
regarded as autonomous mobile robots, those who is capable
to go to some place with building and refreshing maps via
detecting obstacles in real time. Hence, Jackal, that is such
an autonomous mobile robot, is an ideal platform to verify
automatic driving technique.

In this project, Ful Speed Jackal, we would like to exploit
the algorithm of trajectory planning with collision avoidance
and implement a Jackal controller which are able to drive
Jackal automatically in its full speed (2m/s). Furthermore, the
Jackal should be able to find a sub-optimal trajectory to the
given terminal with avoiding static obstacles at least. In order
to achieve this goal, we would like to propose an approach
combining the state-of-the-art techniques of ROS and Mixed
Integer Optimal Control Programming (MIOCP) and verify it
with several experiments.

The structure of this proposal is as follows. The sate-of-
the-art situation is discussed in Sect.2. Relevant theories, algo-
rithms, open-source-ROS packages, as well as similar research
achievements are introduced. In Sect.3, we describe our idea

and proposed system in detail. Then, system evaluation are
presented in Sect.4. Finally, a brief summary to this project is
in Sect.5.

II. STATE OF THE ART

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra
sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcor-
per, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc,
molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent
in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi
sed elit sit amet ante lobortis sollicitudin. Praesent blandit
blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus
a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum.
Nunc quis urna dictum turpis accumsan semper. There are
considerable works related to autonomous driving. In this
section, these relevant works are introduced in these three
subsections: mapping, locating, and controlling.

A. Obstacles Detection

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra
sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcor-
per, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc,
molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent
in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi
sed elit sit amet ante lobortis sollicitudin. Praesent blandit
blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus
a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc
quis urna dictum turpis accumsan semper. Obstacles Detection
is a very important part in this project, including using
laser sensor to build the cloud points and detecting obstacles
from the cloud points. We use the package (velodyne) to
receive the sensor’s data and publish the environment point
cloud around the Jackal to the topic (\velodyne\points). After
receive the environment data, we detect obstacles (as circles
and segments) in cloud points and estimate their positions and
size. This process achieved by existing open-source package
(obstacle detector[1]).



REPORT OF ROBOTICS, VOL. 6, NO. 1, JANUARY 2017 2

For dynamic obstacle, there is a paper[2] introducing a
method to detect dynamic obstructions, which could be ap-
plied to urban autonomous vehicles. In order to predict the
movement of objects and avoid collisions, researchers estimate
the local trajectory of the oncoming vehicle and evaluate
each trajectory to select collision-free trajectories. In the Full
Speed Jackel project, we would like to employ the approaches
to predict the movement of obstacles, and select feasible
trajectories by solving MIOCP problem.

For detection of terrain, which also plays a key role, this
paper[3] describes the terrain detection by detecting step and
slope. In order to detect and track static objects, researchers
proposed a robust algorithm[4], where they built a system,
based on laser range finder data[5], [5], [6], to implement
the detection and tracking of moving objects (DATMO).
Furthermore, they used a lot of space on how to fit model
for obstacles to detect which obstacle points belong to the
same obstacle, which is applicable and robust when velodyne
(a laser scanner) is utilized. This laser scanner gives the scan
segments in the 2D plane, i.e. a set of ordered points with a
constant step size. The first step is segment processing, which
adds points to an existing cluster. If the distance from point to
the cluster is less than the threshold, then add the point to the
cluster. Next, it extracts the features from segments that are
stable to view. Fit the model as a corner or a line, in order to let
the fit be robustness to the outliers, a test should be performed
for fitting. Last step is the object tracking. In order to track
the object, first it should associate datas between scans, mainly
by detecting the the overlap area of the prediction of object
area and the current object area. In addition, this algorithm
is applicable not only to the detection of static obstacles, but
also to the detection of dynamic obstacles. This allows us to
detect some fixed objects while also detecting pedestrians or
other obstacles that can not be predicted by advance mapping,
which is more suitable for autonomous vehicles.

In this part, we use velodyne [7] to get the data of the
environment around the Jackal. Velodyne is a sensor can map
360 3D point clouds, which is often used in 3D mapping
and autonomous navigation. First we use the ROS Package
velodyne[8] to get the raw data from velodyne. The package
receives raw velodyne data from the device, then publish the
topic \velodyne points, which includes the information of
the 3d point cloud of the environment. Besides, the package
includes a calibration file, which can be launched easily by us
to calibrate the sensor.

We use obstacle detector to find points on obstacles. It
subscribes the topic \velodyne points, and detects obstacles
as two kinds, circle and segments, according to the threshold
the user set, and publishes to the topic \obstacles.

B. Locating

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra
sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcor-
per, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc,
molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent

in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi
sed elit sit amet ante lobortis sollicitudin. Praesent blandit
blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus
a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc
quis urna dictum turpis accumsan semper. Localization of a
mobile robot is to identify the robot’s current position when
moving or change directions in the environment. There are
several methods has been developed to detect the position
and the velocity of the mobile robot. The result can be
different depending on the environment. A wheel encoder has
been widely used for localization. However, when the wheels
slipping or the plane moving on is uneven, the performance
would be poor[1]. By using GPS and sonar, localization can be
done well in the outside environment. However, it is restricted
by the signal receiving and in the inner environment, GPS
cannot be used to localize the mobile robot[2].

In this project, inertial measurement unit (IMU) is applied in
our system to calculate the position and the orientation of our
mobile robot by the numerical integration of the acceleration
and angular velocity measurements from an IMU. However,
errors may be increased due to noise, bias error of the sensor
outputs. So when IMU is used as a position sensor, simultane-
ously using rotary encoders can improve the position accuracy.
A filter method is introduced to lower the errors generated in
calculating the position and the orientation by using Kalman
Filtering and Particle Filtering. In this paper[3], researchers
investigated the effects on the different orientation errors by
conducting three simulations in 6-DoF. In the simulation, the
position error reduces significantly by using Kalman Filter and
by using the postponed filtering, the error can be even smaller;
As to the orientation error, there is no difference between
the Kalman filtering and the gyro integration method, and
when postponed filtering is applied, the orientation error is
significantly reduced.[3] Another problem is the differential
drive. Our robot is a robot whose wheels are installed on each
side, and the motion control is achieved by changing the speed
of each wheels. When the robots need to change the direction,
the velocity of the wheels on both sides is different. To tackle
the problems discussed above, we introduce an open-source
ROS package: differential drive,xsens driver[9], [10].

The xsens driver provides a driver for the Xsens IMU
devices. It publishes orientation, angular velocity, linear ve-
locity, linear acceleration, altitude, latitude and longitude (co-
variances are not yet supported). As a ROS node, it only
forwards the data streamed onto ROS topics. There is a few
Xsens IMU devices, however, compared to the other MTi
drivers (lse xsens mti and xsens mti), this one can handle
other configurations than the default and the GPS module of
the MTi-G.

The differential drive can receive wheel rotary encoder
messages from the hardware and generate the tf transform
messages, then transmit them to the navigation stacks. It can
also transfer the twist into target velocity of each wheels,
then controls the velocity of the wheels by basic PID velocity
controllers for each wheels. This package consists of the
following nodes we might use:
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diff tf;.
pid velocity
twist to motors

Finally, it it worth to note that even through there are several
publications related to sensor fusion (e.g. [11], [12]), sensor
fusion is still a challenge and we do not find a practical ROS
package to combine location data from multi-sensors such
as GPS, IMU, encoder, as well as scanner. We will try the
strategy discussed above firstly, and write our own program to
implement that if necessary.

C. Controlling

1) High-level Controller: The considered high-level con-
troller is similar as [13], where the authors applied mixed-
integer quadratic programming to generate optimal trajectory
with collision avoidance. Here combined with the model
predictive control scheme (MPC), MIOCP is introduced with
its formulation.

The main idea of MIOCP is formulating conditions of
collision avoidance as constrains with binary variables. The
optimal trajectory is generated via solving the MIOCP. This
method is able to deal with complex environment, e.g. over
two moving or static obstacles with appropriate speed is
closing to the Jackel. However, the limitation of this kind of
approaches is hard to compute sometimes even NP-hard[14].
Now, thanks to the developments of computational ability,
the MIOCP is able to be solver in real-time as long as the
binary variables are not too much (e.g. over 1,000) which
is enough for Jackel. Actually, around 2005, Richards and
coworkers wrote a series of paper about combining MIP
with MPC summarized in[15] to generate trajectory for their
vehicles. Later, Sager investigated Mixed Integer Optimal
Control Problems(MIOCP) systematically, e.g. [16], [17], [18].
Recently, Kumar et.al. applied the MIQP in quadrocopters[13].
They generated the map firstly, then apply A* algorithm to find
a pre-defind trajectory. Next, the formulated their system as a
MIQP and solved MIQP in real time to generate the optimal
trajectory with its control sequence. In this project, we also
formulate our system as MIOCP, and combine the solution
of MIOCP with MPC sheme, which means the Jackal need
to solve refreshed MIOCP in each step to obtain the newest
first one of the control sequence to execute , which will lead to
optimal trajectory, until the Jackal arrive at the given terminal.

There exist a few of MIP solvers such as Gurobi, CPLEX,
and MUSCOD-II which is specialized for MIOCP. In this
project, we would like to apply Gurobi.

Gurobi is a commercial solver to deal with MIOCP prob-
lem. The academical version is free for us and can be installed
in Linux environment. It also provides Python, C++, Julia
interface for simulation and utilization. The latest version is
7.0, which solve MIOCP by branch-and-cut with heuristic
algorithms. Basic branch-and-cut algorithm can be described
as follows.

Firstly, remove all of the integrality restrictions. The result-
ing OCP is called the OCP relaxation of the original MIOCP.
We can then solve this OCP by common solver e.g. qpOASES.
If the result happens to satisfy all of the integrality restrictions,

Fig. 1. Framework of move base

Fig. 2. Topics in move base

even though these were not explicitly imposed, then we have
been quite lucky. This solution is an optimal solution of the
original MIOCP, and we can stop. If not, as is usually the
case, then the normal procedure is to pick some variable
that is restricted to be integer, but whose value in the OCP
relaxation is fractional. Next divide this OCP to two or more
parallel subproblems, and iterate this process until the solution
is found.

Here, we need to write our own ROS package to utilize
Gurobi to achieve our goal.

2) Low-level Controller: We apply the move base package
as the low-level controller. The move base package provides
an implementation of an action that, given a goal in the
world, will attempt to reach it with a mobile base. The
move base node links together a global and local planner
to accomplish its global navigation task. It supports any
global planner adhering to the nav core::BaseGlobalPlanner
interface specified in the nav core package and any local
planner adhering to the nav core::BaseLocalPlanner interface
specified in the nav core package. The move base node also
maintains two costmaps, one for the global planner, and one
for a local planner (see the costmap 2d package) that are used
to accomplish navigation tasks.

The move base node provides a ROS interface for config-
uring, running, and interacting with the navigation stack on
a robot. A high-level view of the move base node and its
interaction with other components is shown. The blue vary
based on the robot platform, the gray are optional but are
provided for all systems, and the white nodes are required but
also provided for all systems.

The move base node basically consists of 5 parts:
global costmap, global planner, recovery behaviors,
local costmap and local planner. In the real robot, topic /tf



REPORT OF ROBOTICS, VOL. 6, NO. 1, JANUARY 2017 4

Fig. 3. Path planning

and /odom would be published by the robot, and the sensor(in
our project, we use Velodyne VLP-16) would publish the
information of environment around the robot, the move base
node will subscribe all the topics and according to the topic
move base simple/goal to plan both the global path and the
local path, which is formed by the global planner and the
local planner. In this experiment, numbers of parameters
need to be set to make the real robot move smoothly and
accuracy. These parameters are set in the .yaml file, which
was listed below:

• base local planner params.yaml
• costmap common params.yaml
• global costmap params.yaml
• local costmap params.yaml

In base local planner params.yaml, which concludes pa-
rameters about velocity of both dx and dy, dtheta velocities,
the path length local planner will make, and the mark system
for pathplanning. The local planner will set this parameters
and plan the local path to avoid obstacles and choose the best
one. In costmap common params.ymal, some parameters on
sensor such as message type, topic, obstacle height ranges are
set. Global planner will form a global path from the start to
the terminal by using Obstacle::Layer to form obstacle models
and Inflation Layer to inflate the obstacles.

The demo graph is shown in the Figure 3, the blue part is
the obstacles inflation, and the yellow part are the obstacles.
The green line is the global path from the robot to the end,
and the deep green is the path local planner makes.

By the time all the parameters are set, and all the infor-
mation or the topics are published, the robot will do obstacle
detection and path planning, and moving in a full speed.

III. SYSTEM DESCRIPTION:

As it stated above, our ideas are summarized here. We would
like to apply Velodyne, Gurobi, move base and the Jackal
Odometry in our system. The overall system is consisted by
three parts: detecting, locating, and controlling.

For detecting, we would like to utilize the ROS package
velodyne, to obtain the environment information and build
as well as refresh point cloud in real time. For location, we
subscribe the topic (\odometry\filtered) published by Jackal
itself to estimating the Jackal’s location in map in real time.

As to controlling, we would like to apply move base as low-
level controller and write our own package to utilize Gurobi
to find a optimal trajectory with enforcing collision avoidance.

IV. SYSTEM EVALUATION:
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra
sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcor-
per, felis non sodales commodo, lectus velit ultrices augue,
a dignissim nibh lectus placerat pede. Vivamus nunc nunc,
molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent
in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi
sed elit sit amet ante lobortis sollicitudin. Praesent blandit
blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a,
egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc
quis urna dictum turpis accumsan semper. We use the Rviz
to make sure that the obstacles we detect from the velodyne
points cloud are good enough (the position and size of the
obstacles are reasonable). First, move\base plan a global
path to the goal. We can see the velodyne points cloud and
move\base inflated the points with setting radius as obstacles
on the Rviz. After getting detected obstacles, move\base
plans a local path to avoid the obstacles.

Moreover, we also timed the speed of Jackal, which is
1.45m/s. In addition the Jackal runs at a speed of 0.7 meter
per second stably and smoothly. It doesn’t crash any obstacle
and can arrive at the setting goal exactly.

V. CONCLUSION

The proposed project is about automatic driving. We would
like to propose an algorithm which can lead Jackal drive
itself. The overall system is divided into three parts: mapping,
locating, and controlling. We plan to combine the state-of-
art works to accomplish obstacles detection, simultaneously
locating and mapping with sensor fusion, as well as model
predictive control via mix-integer programming. In addition
we would also keep implementing the combination of low-
level controller and high-level controller.
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