Project Report
The Evolutionary Jackal

A project of the 2017 Robotics Course of the School of
Information Science and Technology (SIST) of ShanghaiTech University
https://robotics.shanghaitech.edu.cn/teaching/robotics2017

Zhu Wangshu She Xinghao Chen Jinji Andre Rosendo
{zhuwsh, shexh, chenjj, arosendo}@shanghaitech.edu.cn

January 17, 2018

Abstract

Training Jackal robot to learn how to avoid obstacles in a confined space. This
project will use neuron network and genetic algorithm with selection, crossover,
and mutation to evolve the Jackal robot.

Introduction

We use the distance from three directions and put them into the simple neural
network to output to the Jackal robot. By letting Jackal try different trajectories
and directions, and then find the perfect route, iterative learning with genetic
algorithm, so as to achieve the perfect obstacle avoidance.This project can have
a wide range of applications, such as auto driving, such as sweeping robots,
and we can also see Jackal becoming more and more intelligent in continuous
learning, which is very interesting.

State of the Art
shexh

cite and present

[7] It is about the robot vision learning from nature animals. And the robot
with some sensors uses to simulate the nature to make it complete the works
like navigation.

[5] This paper is about the robot with evolutionary algorithm to set the control
system. With simulation and in real work, the robot will know how to run in

https://robotics.shanghaitech.edu.cn/teaching/robotics2017

different shape space.

[3] Similar to the paper before this, this paper is also about the robot with evo-
lutionary algorithm. While it containing the neurons networks, spiking circuits
and so on.

further

The further is about the third paper.This paper is based from the neurons
communication in nature. The networks of spiking neurons can be implemented.
The main carrier is a micro robot using spiking circuits. With the spiking
circuits, it is easily to simulate the neurons and to control. So the neural circuit
and evolutionary algorithm fit on the same chip in a few bytes of data memory.
With the standard genetic algorithm, the robot can be encoded and evolved.
And it can move forward and avoid the wall with the spiking networks after
evolved. Further fitness gains correspond to faster and smoother trajectories.
Then compare with a less generations robot, with none of the evolutionary runs
could improve the fitness value, it will against the wall. The algorithm is not the
main part here, and it will be talked in the others paper but it still be a main
part to do this work. The authors genetically encode and evolve the signs of
neurons and the connections among the neurons. The result is the robot Robots
with lower fitness values tend to rotate more frequently and thus remain in the
same area of the maze, but always manage to move away from the walls.

package

package:Jackal _desktop

This package is containing two packages which are Jackal msgs and Jackal_viz.
The Jackal_msgs is the messages exclusive to Jackal, especially for representing
low-level motor commands and sensors. To command and monitor the robot,
we need be able to use standard ROS interfaces. And the messages are between
Jackal’s ARM MCU and integrated PC. While Jackal viz is visualization launch-
ers and helpers for Jackal. It provides launchers and rviz configurations to assist
with visualizing real or simulated Jackal from a desktop environment. It can
help to bring up a specific rviz configuration. And some available configurations
are default, navigation, gmapping and localization. The default configuration
includes the RobotModel plugin, and displays Jackal in the odom frame, which
will move the model about in rviz. The navigation displays Jackal in the odom
frame and all the visualization information that local navigation provides in-
cluding global plan, trajectory and local costmap. The gmapping configuration
displays Jackal in the map frame. The local configuration also displays Jackal
in the map frame and includes PoseArray plugin which display the localization
system’s uncertainty about the robot’s pose

chenjj
cite and present

[2] This paper is about the prototype family of Alice miniature mobile robots
and the improvements achieved so far. The research carried out with Alice and
various real-world applications, which exceed the robot’s use as a research pro-
totype.

[6] This paper is about neuromorphic hardware model of a selective attention
mechanism implemented on a very large scale integration (VLSI) chip, using
analog circuits. And paper describes the characteristics of the circuits used in
the architecture and present experimental data measured from the system.

further

[10] This paper introduce a framework for a class of algorithms for shortest path
related problems in the presence of obstacles, such as the one-to-one shortest
path problem, the one-to-many shortest paths problem and the minimum span-
ning tree problem, in the presence of obstacles. For these algorithms, the search
space is restricted to a sparse strong connection graph that is implicitly repre-
sented and its searched portion is constructed incrementally on-the-fly during
search. The time and space requirements of these algorithms essentially depend
on actual search behavior. Therefore, additional techniques or heuristics can be
incorporated into search procedure to further improve the performance of the
algorithms. These algorithms are suitable for large VLSI design applications
with many obstacles.

package

package:pointcloud_to_laserscan

This package converts a 3D Point Cloud into a 2D laser scan. This is useful
for making devices like the Kinect appear like a laser scanner for 2D-based al-
gorithms. pointcloud_to_laserscan packages helps to convert 3D sensor depth
image to laser scan data. LaserScan assumes that all points are in a plane,
namely the XY plane of the sensor coordinate system. The coordinates x,y,z
can be computed from the sensor pose (position and orientation, which are de-
fined by the tf frame stored in the header), the angle_min, the angle_increment,
the range from ranges|| and its position in ranges[]. In our project, the package
will subscribe the node date of point cloud, and receive the point cloud date
from 0 to 180 degree, a total of 360 datas is taken at 0.5 degrees. Then record
the minimum value of the same angle in the vlp-16 layer data, and finally pub-
lish the forward laser data to the /scan node. Then we select data->ranges[270]
as sensorleft and data->ranges[180] as sensormid and data->ranges[90] as sen-
sorright.

zhuwsh

cite and present

ALGORITHM 1 (Outline of an Evolutionary Algorithm)

t =10
initialize P(0) := {a@(0),...,d@.(0)} € I*;
evaluate P(0) : {®(ai(0)).....®(d,.(0))};
while (+(P(1)) # true) do
recombine: P'(t) == re, (P(1));
mutate: P"(t) := mea,, (P'(1));
evaluate P*(t) : {®(a(1),..., e(a\())};
select: P(t + 1) :=se, (PY(t) 1 Q);
t =1+ 1;
od

[1]This is the outline of an Evolutionary Algorithm. And I will talk about in
more detail later.

ANALOG INPFUT INPUT QOUTPLUT OUTPUT ANALOG
SENSCRS SPIKES UNITS UNITS SPIKES ouTPUT
i
*y | Y
if
Xz J Y2
- - -
. L] -
- - -
% | ¥
i

] Figure 2. SRM SNN using delay coding architecture
This algorithm uses the many weights and inputs to combine the output linearly
and optimizes the weights after evaluation.

[8] The neural network architecture was fixed and consisted of a single layer of
synaptic weights from eight input units (clamped to the sensors) to two output
units (directly connected to the motors) with mobile thresholds, logistic activa-

tion functions, and recurrent connections. Synaptic connections and thresholds
were coded as floating point numbers on the chromosomes.

further

The first paper talks about three main streams of Evolutionary Algorithms
(EAs), which are Evolution Strategies (ESs), Evolutionary Programming (EP),
and Genetic Algorithms (GAs). They are some probabilistic optimization algo-
rithms based on the model of natural evolution. The paper introduces the three
algorithms to us and compared them in detail. The outline of an Evolutionary
Algorithm has been given above. The three different algorithms use different
probabilistic ways to mutate, recombine and select. But the outline is the same.
The main steps are initialize, evaluate and continually doing the recombine, mu-
tate, evaluate and select. It is very similar to the species evolution. Firstly there
are some genes. Then we combine the best ones to generate the new generation.
The new generations inherit some outstanding characteristic of they parents.
Also they will randomly get some other features, which means the mutate. If
the mutation is good, it will be left to the next generations. In every loop, they
generate the new and better genes. Then after many generations, the genes can
be better to adapt themselves to the environment.

package

package:ROS Navigation Stack package

I think the ROS Navigation Stack package may be very useful. It is about a
2D navigation stack that takes in information from odometry, sensor streams,
and a goal pose and outputs safe velocity commands that are sent to a mobile
base. Use of the Navigation Stack on an arbitrary robot, however, is a bit
more complicated. As a pre-requisite for navigation stack use, the robot must
be running ROS, have a tf transform tree in place, and publish sensor data
using the correct ROS Message types. It is all right because we will use the
Jackal to do our project. Also, the Navigation Stack needs to be configured for
the shape and dynamics of a robot to perform at a high level. It is said that
the package is meant for both differential drive and holonomic wheeled robots
only. It assumes that the mobile base is controlled by sending desired velocity
commands to achieve in the form of: x velocity, y velocity, theta velocity. We
may can use the differential drive of the two groups of Jackals wheels to get the
x,y and theta. There are another two main hardware requirements, which are
the a planar laser and square robot. That can be met by Jackal.

relevant to problem

present

[9)This paper is talking about the navigation system for mobile service robots
working in urban environments. The system combines a 3D laser sensor with

2D algorithms for path planning and simultaneous localization and mapping,
which is related to our project, 3D date is the huge amount of date that needs
to be processed, which leads to new problems, to simplify the problem, in our
project, we change 3D date into 2D date.

As regular 2D maps are not able to differ between obstacles and landmarks, the
Colored 2D Map that is able to carry both types of information in a consistent
way.

To reduce the computational costs of 3D algorithms, the paper use virtual 2D
scans which allows an efficient combination of 3D perception and 2D localization,
mapping and path planning, contributing the ability to use 3D data in form of
virtual 2D scans not only for SLAM but also for path planning and navigation.
To achieve the Colored 2D map was introduced. The benefit of this Colored
2D map is the ability to bold different information for localization and path
planning in a consistent way.

System Description

Firstly we have the pointcloud2 data from velodyne vlp-16 equipped on Jackal
Robot. By the pointcloud to laserscan node (cloned from github) we convert
the pointcloud2 data to the laserscan data so we can easily get the sensor data
of three different directions:in front of Jackal, left ahead and right ahead (figure
1).

Then we follow the outline of the Evolutionary Algorithm. We define each

sensor right -

Jackal

Figure 1

generation is a set of six individuals. For each individual we first randomly get
fifteen weights. Use these fifteen weights and three values from laser scanner
(after code 7 as follow)to linearly combine(figure 2) and output to the linear
speed and turn speed.

W02 i wo: wia

sensorleft

velodyne vlp-16 pointcloud_to_laserscan

linear speed

turn speed

sensorright

sensortojackal talker node

Figure 2

For each individual let the Jackal run until 20 seconds or it is too close
to the obstacle. And record how far it can run as the fitness point. After six
individuals have run the trial and they all get the fitness point. We will generate
the next generation as following rules. The first two individuals are the best
two in the former generation (which have two biggest fitness points). The next
two individuals are generated by crossover which means each one has half of
the weights from the best one and half from the second best one. The next
two individuals are generated by mutation which means each one most of the
weights from the best one and some random values. Repeat to run the new
generation as the first generation continually. At last we may get a good gene
(weights) adopting to the environment we made. There can be three main

rqt_graph_RosGraph - rqt
&

only B|1 / (8 (8] (=

Group: @ Namespaces @ Actions | Hide: 8 Deadsinks Leaf topics @ Debug & Unreachable | & Highlight & Fit

Figure 3:ROS System Structure

problems during the project. The first one is the combination algorithm (Use
these fifteen weights and two values from laser scanner to combine and output to
the linear speed and turn speed). The second one is the generation algorithm (
We can choose some weights from the better two trials and combine to generate
the new generation also with some random values). The last one is how to reset
the Jackal after one trial. Ideally every trial should start at the same starting
point. But reset by hand can be troublesome. Up to now we have written a
series of problems codes to overcome most of the problems. We will describe
how we solve them in detail by following codes.

c+-+cdoes

1.
typedef struct pop_weights{

double weights[15];

double fit;
}pop_weights;
void init(pop_weights *popu){

for (int i=0;i<8;i++)

{

for (int j=0;j<15;j++)
populi] .weights[j]l=rand() / double(RAND_MAX)-0.5;

3

The first struct is defined to represent each individual trial which has fifteen
weights and fitness point (fit). And the second part is the function to initialize
the weights of the first generation which contains eight individuals.

2.
void corssover(pop_weights *popu){
for (int i=0;i<7;i++)

{
popul2] .weights[i]=popul0] .weights[i];
popul2] .weights[i+7]=popull] .weights[i+7];
popul3] .weights [i+7]=popul0] .weights[i+7];
popul3] .weights[i]=popull] .weights[i];

}

popul2] .weights[14]=popull] .weights[14];
popul3] .weights[14]=popul1] .weights[14];

3.

void mutation(pop_weights *popu){
popu[4]=popu[0] ;
popu[5]=populi];

int j,k,1;
l=rand () %15;
for (int i=0;i<1;i++)
{
j=rand ()%15;
popul4] .weights[jl=rand() / double(RAND_MAX)-0.5;
}
l=rand () %15;
for (int i=0;i<1;i++)
{
k=rand () %15;
popul5] .weights[k]=rand() / double(RAND_MAX)-0.5;
}

These two are the crossover and mutation codes. The crossover can get the
forth and fifth individuals in the next generation. And mutation code can get
the sixth and seventh individuals.The mutation code has changed to choose
some of them by randomly choosing.

4.

output.linear.x=w4* (sl*wl+sm*w2+sr*w3) +w8* (sl*wb+sm*wb+sr*w7)+

w12k (s1*w9+sm*wl0+sr*xwll) ;

output.linear.y=0;output.linear.z=0;
output.angular.x=0;output.angular.y=0;
output.angular.z=wl3*((sl)*wl+sm*w2+(sr)*w3) +wld* ((sl)*wb+(sm) *wb+sr*w7)+
w15* ((s1) *w9+(sm) *w10+(sr)*wil) ;

This is the combination algorithm. Use these fifteen weights and two values
from laser scanner to combine and output to the linear speed and turn speed.

5.
if (countstep>=0){

backarray[0] [countstep+tosetback]=-output.linear.x;
backarray[1] [countstep+tosetback]=-output.angular.z;

if (countstep==timeofindividual){ //end each individual
countstep=-counthitinterval;

3

countstep++;

}
else {

output.linear.x=backarray[0] [-countstep] ;
output.angular.z=backarray[1] [-countstep];
backarray [0] [-countstep]=0;

backarray[1] [-countstep]=0;
pub.publish(output);

countstep++;

To run the Jackal back to the origin automatically we wrote these codes. The
backarray is the array to record the linear speed and the turn speed of the Jackal
in each step. Then after the end of each individual it will read the array data
one by one. Then the Jackal will run back to the point near the origin (which
is not the origin exactly because of the error caused by the method limitation).

6.
void readweight (){ //read our weights
ifstream in("/home/administrator/zsc_ws/weights.txt"); //need to change when on jackal
string filename;
string line;
int i=0;
int j=0;
if(in) // there is the file
{
while (getline (in, line)) // get line
{
istringstream is(line);
for(j=0;j<15;j++) is>>populi].weights[j];

it++;
}
}
else // no file
{
cout <<"no such file" << endl;
}

cout<<"weights'"<<endl;
for(i=0;i<6;i++) {
cout<<i<k<’ 7’;
for(j=0;j<15;j++) cout<<populi] .weights[jI<<’ ’;
cout<<endl;
}
¥
void file(){ //save our weights
FILE *p;
if ((p=fopen("weights.txt","wt")) !=NULL){
for(int j=0;j<6;j++){
for(int i=0;i<15;i++){

10

if (i==14){
fprintf (p,"%1f %s\n",populj].weights[i],"");}
elseq{
fprintf (p,"%1f %s",populj].weights[i],"");}
3}
fclose(p);
}

The readweight code is to read weights from the weights.txt. And the file code
is to store weights in the weights.txt. With the two functions we can easily have
a look at the weights and save them for the deeper reseach.

7.

if (s1>2) sl=2; //only get the distance <=2
if (sm>2) sm=2;

if (sr>2) sr=2;

sl=2-sl;sm=2-sm;sr=2-sr;

We only get the distance <=2 and then change it to make it reasonable before
put into the neural network.

8.

if ((output.linear.x-formerlinearspeed)>speedmax/4)
output.linear.x=formerlinearspeed+0.05;

else if ((output.linear.x-formerlinearspeed)<-speedmax/4)
output.linear.x=formerlinearspeed-0.05;

if ((output.angular.z-formerangularspeed) >turnmax/4)
output.angular.z=formerangularspeed+0.05;

else if ((output.angular.z-formerangularspeed)<-turnmax/4)
output.angular.z=formerangularspeed-0.05;

Also we have written the smoothly start and stop code to protect Jackal. We
record the speed of the last step. If the speed increases or decreases too much,
the code will limit the change. And the linear and angular speed limitation are
also set globally.

11

System Evaluation

We put some boxes or some other obstacles in STAR Lab. Then let Jackal run
and learn in this arena. A successful system can be go out of the arena with full
speed and without crashing. Up to now the Jackal can turn left when meeting

Figure 4:Jackal in arena

the corner and avoid some big obstacles. And go out in average 2.5 generation
in our 12 trials. And with the genetic algorithm we could see the improvement
of Jackal.

one trial.ods - LibreOffice Calc
E-O-B-O5R XDO 4 O

Q

& - = --none- :/0.00" i & None :| HlEmE -
B27 < f T = [138 I
TT A SR ¢ [o [& [f [6 [w [o [3 [&K [L %=
4_|individualz 15 15.70672033 | | =
5 findividuals 16.926156 - .
6 |individuala 13 70 el
7_|individuals 148 @
8
9 |individualo 184 60 "
individuall 16.926156 7
individual2 146 1595435933
12 |individual3 146 50 |
individuala 17 7
14 individuals 142
16 _|individualo 184 |
47 individuall 17 . —m—finess
8 individual2 14 15 2 —o— average
19_individual3 156
20_individual4 14
21 findividuals 11
22 20
23 individualo 146
24 individuall 134
25_|individual2 13.6 2171666667 10
26_|individual3 15
[EMlindividual4 13.]
28 individuals 599 0
o 5 10 15 20 25 30 35 40 _
individualo 599
31 |individuall 154
individual2 509 439512345
733 individual3 509
individuald 8.707407
35 individuals 599 ;
> M+ sheett
o [Find o] O Search Formatted Display String ~ Match Case &
Default L= ©484/080 731x4.43 o+ 100%

Figure 5:A typical trial

12

Conclusion

In this project our group use the Jackal robot equipped the velodyne vlp-16.
We apply the genetic algorithm and neural network to the Jackal robot. Use
the converted laser data from pointcloud(the velodyne vlp-16) and evolutionary
weights to combine and out put to Jackals wheels. let Jackal continue to try and
learn to optimize the gene of himself. At last Jackal can finally avoid obstacles
and drive perfectly in a built space.

References

1]

2]

Thomas Béck and Hans-Paul Schwefel. An overview of evolutionary algo-
rithms for parameter optimization. Evol. Comput., 1(1):1-23, March 1993.

Gilles Caprari, Kai Arras, and Roland Siegwart. The autonomous miniature
robot alice: from prototypes to applications. 09 2001.

D. Floreano, N. Schoeni, G. Caprari, and J. Blynel. Evolutionary
Bits'n’Spikes. In R. K. Standish, M. A. Beadau, and H. A. Abbass, editors,
Artificial Life 8. MIT Press, 2002. In R. K. Standish, M. A. Beadau and
H. A. Abbass (eds).

H. Hagras, A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke.
Evolving spiking neural network controllers for autonomous robots. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEFE Inter-
national Conference on, volume 5, pages 4620-4626 Vol.5, April 2004.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolu-
tionary robotics: the sussex approach. Robotics and Autonomous Systems,
20(2):205 — 224, 1997. Practice and Future of Autonomous Agents.

G. Indiveri. A neuromorphic VLSI device for implementing 2-D selective
attention systems. IEEE Transactions on Neural Networks, 12(6):1455-
1463, November 2001.

Giacomo Indiveri and Rodney Douglas. Neuromorphic vision sensors. Sci-
ence, 288(5469):1189-1190, 2000.

Stefano Nolfi, Dario Floreano, Orazio Miglino, Francesco Mondada, Rodney
Brooks, and Pattie Maes. How to evolve autonomous robots: Different
approaches in evolutionary robotics. 01 1994.

O. Wulf, C. Brenneke, and B. Wagner. Colored 2d maps for robot navi-
gation with 3d sensor data. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
volume 3, pages 2991-2996 vol.3, Sept 2004.

13

[10] S.Q. Zheng, Joon Shink Lim, and Sundararaj Iyengar. Finding obstacle-
avoiding shortest paths using implicit connection graphs. 15:103 — 110, 02
1996.

14

