
Autonomous navigation and mapping of RoboCup Rescue Competition
A project of the 2017 Robotics Course of the School of Information Science and Technology

(SIST) of ShanghaiTech University
https://robotics.shanghaitech.edu.cn/teaching/robotics2017

Instructor: Prof. Sören Schwertfeger

Xiting Zhao
ShanghaiTech University

zhaoxt@shanghaitech.edu.cn

Yang Zhou
ShanghaiTech University

zhouyang@shanghaitech.edu.cn

Jiadi Cui
ShanghaiTech University
cuijd@shanghaitech.edu.cn

Abstract— We designed and implemented perception sys-
tem and navigation system of rescue robot of undergraduate
RoboCup Rescue team for 2018 RoboCup Rescue Competition.
We used RGB-D sensor and 2D LIDAR as our sensors of
perception system which are cost-effective. We can provide 2D
and 3D map and navigate in unseen environment for exploration
task in RoboCup Rescue Competition.

I. INTRODUCTION

The RoboCup Rescue Project is intended to promote
research and development in disaster rescue which is a sig-
nificant domain at various levels. The goal of the RoboCup
Rescue competitions requires robots to show abilities of mo-
bility, sensory perception, planning, mapping, and practical
operator interfaces on searching for simulated victims in
unstructured environments.

What we are participating is RoboCup Rescue Robot
League (RRL) competitions, and we are focusing on solving
exploration tasks in this project. The exploration tasks need
teams to create 2D and/or 3D map of a dark Labyrinth
while traversing, recognize objects including QR codes, fire
extinguishers, doors, simulated victims, and other items,
avoid amorphous negative obstacles along a robot’s path,
drive and map while avoiding amorphous terrain obstacles
without enclosing walls. What we focused on is 2D and 3D
mapping, navigation and obstacles avoiding.

As members of 2018 undergraduate RoboCup Rescue
Team, we designed and implemented our perception and nav-
igation system on our robot which was built by mechanical
engineer of our team. We used Kinect 2.0 as our RGB-D
sensor and YDLIDAR X4 as our 2D laser LIDAR. To make
the problem statement clear, we will describe our task in
more details. The problem for 2D/3d mapping is described
as below. The dark labyrinth is constructed by wooden walls
without significant visual features. The labyrinth is narrow
which makes it hard to get some good feature like edge and
corner to match. In many cases, the camera is capturing only
a wall without any edge information since the camera is too
close to the wall. It is quite hard to get decent 3D map only
using visual SLAM algorithm. Since most walls are vertical
with respect to the ground, the 2D SLAM algorithm can
provide a quite good 2D map which is also the 2D projection Fig. 1. Our Rescue Robot

https://robotics.shanghaitech.edu.cn/teaching/robotics2017


of walls using 2D laser LIDAR. We combine 2D SLAM and
3D SLAM together and get good 3D map.

The problems for obstacle avoiding and navigation are
described as below. Since there are some obstacles in the
labyrinth. To avoid complicated control of going over these
obstacles, we need to avoid them. These obstacles cannot be
captured by 2D laser LIDAR since we mount the 2D laser
LIDAR on the top of our robot. We used RGB-D sensor to
get accurate location of these obstacles and projected these
obstacles onto 2D map. The obstacles avoiding problem is
simplified to 2D navigation problem. Since we can have 2D
map of walls and projections of obstacles. We can just use
standard 2D navigation algorithm to navigate.

II. STATE OF THE ART

A. Summaries of Some Related Works

3D Capturing Performances of Low-Cost Range Sensors
for Mass-Market Applications [1]

This paper compared performances of different range
sensors, including Kinect1, ASUS Xtion, Kinect2, Realsense
F200, which concluded that the Kinect 2 has a lower random
error with a long detection distance.
Calibration of Kinect-type RGB-D Sensors for Robotic
Applications [2]

This paper described how to use chessboard to calibrate
the Kinect. And principles of calibrating RGB and IR sensor.
Advancing the State of Urban Search and Rescue
Robotics Through the RoboCupRescue Robot League
Competition[3]

This paper described the importance of Robocup Rescue
Competition and introduced Robocup Rescue Competition in
details.
Unsupervised Learning of Depth and Ego-Motion from
Video [4]

It presented an unsupervised learning framework for the
task of monocular depth and camera motion estimation from
unstructured video sequences. It used an end-to-end learning
approach with view synthesis as the supervisory signal,
requiring only monocular video sequences for training.
Parallel Tracking and Mapping for Small AR
Workspaces[5]

This paper presented a method of estimating camera pose
in an unknown scene. The result showed that this system can
produce detailed maps with thousands of landmarks which
can be tracked at frame-rate, with an accuracy and robustness
rivalling that of state-of-the-art model-based systems.
A volumetric method for building complex models from
range images [6]

This volumetric representation consists of a cumulative
weighted signed distance function. It can integrate a large
number of range images (as many as 70) yielding seamless,
high-detail models of up to 2.6 million triangles.
ORB-SLAM: a Versatile and Accurate Monocular SLAM
System[7]

This paper presented ORB-SLAM, a feature-based monoc-
ular SLAM system that operates in real time, in small and
large, indoor and outdoor environments. The system is robust

to severe motion clutter, allows wide baseline loop closing
and re-localization, and includes full automatic initialization.
It also presented a novel system about SLAM tasks in this
paper: tracking, mapping, re-localization, and loop closure.
ORB-SLAM achieves unprecedented performance with re-
spect to other state-of-the-art monocular SLAM approaches.
Dense visual slam for RGB-D cameras[8] In this paper,
a dense visual SLAM (DVO-SLAM) method for RGB-D
cameras was proposed. The DVO-SLAM by Kerl et al. opti-
mizes a pose-graph where keyframe-to-keyframe constraints
are computed from a visual odometry that minimizes both
photometric and depth error. And for keyframe selection
and loop closure detection, the paper presented an entropy-
based similarity measure. The evaluation about the approach
extensively on publicly available benchmark datasets, and
it performs well in scenes with low texture as well as low
structure, which yields a significantly lower trajectory error.

B. Details of Some Related Works

1) Hector Open Source Modules for Autonomous Map-
ping and Navigation with Rescue Robots: [9]

In this paper the author described an autonomous rescue
robot system which actually used in RoboCup Rescue Ger-
man 2014 competition. They determined the situation and
task which need to be done in rescue. And separate them into
different parts, including SLAM, Planning and Exploration,
Simulation, Detection and Manipulation. They have a ROS
package robocup rescue, which including some sub-package
like hector slam, hector exploration planner,hector vision.
These paper and packages can be a good reference for our
RoboCup Rescue competition.

2) ORB-SLAM2: an Open-Source SLAM System for
Monocular, Stereo and RGB-D Cameras: [10]: It presented
a complete SLAM system ORB-SLAM(2), which is a real-
time SLAM library for Monocular, Stereo and RGB-D
cameras that computes the camera trajectory and a sparse
3D reconstruction.It is able to detect loops and re-localize the
camera in real time on standard CPUs. The system works in
a wide variety of environments (indoor and outdoor environ-
ments). The results on the trajectory estimation with metric
scale are accurate. And the system includes a lightweight
localization mode that leverages visual odometry tracks for
unmapped regions and matches to map points that allow for
zero-drift localization.

We tried the RGB-D part of ORB-SLAM2. ORB-SLAM2
processes RGB-D inputs to estimate camera trajectory and
build a local map of the environment.

The ORB-SLAM2 system has 3 main parallel threads

• Tracking: There are 3 methods to track. First one
is tracking with the motion model, which uses the
information of the last frames to get the information
of rotation an translation. Second one is tracking with
the last key frame, similarly, which uses the pose of the
last key frame. Third one is tracking with the local map.
It uses the many map points to constraint the current
frame. Then tracking guides matching of points that

http://wiki.ros.org/robocup_rescue


have been tracked in last frame. Finally, it optimizes
the pose with motion-only bundle adjustment.

• Local mapping: The system processes new keyframe
with computing ”BoW” representation for efficient
matching, connecting the current keyframe with the map
points in the local map, and updating covisbility graph
and spanning tree. Then, it culls the bad map points ,
creates and merges new map points using epipolar con-
straint. At last, optimize the local map performing local
bundle adjustment, and cull the redundant keyframes.

• Loop closing: There are 2 steps in this thread: loop
detection and loop correction. In loop detection, it
computed similarity between query frame and imme-
diate neighbours in the covisibility graph, retain the
lowest similarity, and find the alternative frames through
the consistency check. In loop correction, it stops the
insertions of key frames, corrects them by preforming
a pose-graph optimization.

We also tried DVO-SLAM in this project. In contrast to
sparse, feature-based methods, this allows us to better exploit
the available information in the image data which leads to
higher pose accuracy.

In the RoboCup Rescue competition, the environment is
easier than real disaster situation, minimize re-projection
error can be faster. And we can get all keyframes after a full
bundle adjustment in time, and get an accurate 3D model of
the whole scene.

3) 3-D Mapping With an RGB-D Camera: [11]
In this paper, it extracts visual keypoints from the color

images and uses the depth images to localize them in 3D,
using RANSAC to estimate the transformations between
associated keypoints and optimizing the pose graph using
non-linear optimization. This paper generates a volumetric
3D map of the environment. The 3D map can be used
for many tasks like robot localization, navigation, and path
planning. It model the environtment using a beam-based
environment measurement model To improve the reliability
of the transformation estimates which can evaluate the qual-
ity of a frame-to-frame estimate. It can robustly deal with
highly challenging scenarios by rejecting highly inaccurate
estimates.This paper released all source code and they are
easy to use.

4) IMU aided RGB D SLAM: [12]
SLAM in complex indoor environment is quite challeng-

ing, but we cannot get very decent 3D map only using visual
information. In this paper, it combines RGB-D information
with inertial information in a loosely-coupled framework for
SLAM which can be run in real-time. Since it utilizes inertial
information, it can handle degenerate cases in RGB-D image
and texture-less/planar environmental ambiguities. This IMU
aided RGB-D navigation system can obtain consistent metric
maps in an on-line probabilistic framework.

The inertial sensor is used as predictor in the EKF and
feature observations from RGB-D camera is used in the EKF
update. The pose estimation is based on RGB-D approach
which used SURF descriptors to observe features. A map
of 3D features is maintained to reduce the effect of drift.

And the paper uses a ring buffer to maintain with constant
memory limit and behave as a short term memory.

For pose estimation part, since RGB-D may fail meeting
featureless or unstructured environment and inertial sensor,
the paper use inertial sensor to help predicting the state.
And it just uses RGB-D innovation constraints for EKF-
update step then pose estimation of RGB-D are available.
To handle measurement delay due to computation cost of
vision processing, the paper maintain a ring buffer of past
states of EKF prediction with time information.

For mapping part, This paper uses a method based on
pose graph optimization. The optimization is carried out on
the pose graph until convergence and the EKF state vector
is updated with the optimized pose vector.

In conclusion, this system has real-time front-end and off-
line back-end for ego-motion and map estimation. The result
produced by this paper has promising results when evaluating
against accurate ground truth. And the approach described in
this paper can be generalized to more cases to combine more
sensors together.

5) Long-term online multi-session graph-based SPLAM
with memory management: [13]

This is the newest paper of RTAB map (Real-Time
Appearance-Based Mapping). The RTAB map is designed
to solve online loop closure detection problem. Since the
limitation of real-time situation, loop closure detection can
only use limited number of locations. And the algorithm
should be able to access to all locations when they are
needed. When the number of point to match has reached
limitation of computation, RTAB map will move unlikely-
loop-closing locations from Working Memory to Long Term
Memory which means that these locations will not participate
in next loop closure detection.

Since locations in Long Term Memory will not participate
in loop closure detection, it is important to choose proper
locations to move from Working Memory to Long Term
Memory. RTAB map will choose low-weight locations that
are less-likely be visited by loop closure detection to move
into Long Term Memory.

Other than Long Term Memory, there is another memory
called Short Term Memory. Short Term Memory is used to
observe temporal similarity between consecutive images to
update weights of their map locations. Working Memory is
used to loop closure detection. When the amount of locations
stored in Short Term Memory reached the limitation, RTAB
map will move locations which stored for longest time in
Short Term Memory to Working Memory.

RTAB map use Bayesian filter method to estimate the
probabilities of loop closure, and compare new locations to
the locations stored in Working Memory. A loop is detected
when there is a high probability that new locations and old
locations can close a loop. The RTAB map has some ways
to keep the amount of locations stored in Working Memory
can be handled by Bayesian filter. Identifies locations that
should remain in a Working Memory for online processing
from locations that should be transferred to a Long Term
Memory. When revisiting previously mapped areas that are



in Long Term Memory, the mechanism can retrieve these
locations and place them back in Working Memory.

C. Related ROS Package

1) ROS package: iai kinect2: The package provides a
driver to receive data from the Kinect 2 sensor. It will provide
point-clouds, depth-clouds and images for us, and we can use
these data to do our 3D SLAM. It basicly contain a bridge
to connect the libfreenect2 driver and ROS. It also includes
a calibration tool to calibrate the IR sensor, RGB sensor and
the depth. It also includes a library for depth registration
which gives an registered depth image.

2) ROS Package:rgbdslam: rgbdslam (v2) is a SLAM
solution for RGB-D cameras. It provides the current pose
of the camera and allows to create a registered point cloud
or an octomap. It features a GUI interface for easy usage,
but can also be controlled by ROS service calls, e.g., when
running on a robot.

RGB-D SLAM has many options to customize its behav-
ior. You can speed it up significantly by

• enabling concurrency on multi-core machines. The three
corresponding parameter names start with ”concurrent
...”

• using SIFTGPU features, if you have a GPU, ORB
otherwise

• decreasing the ”max keypoints” parameters
• setting the kinect driver to QVGA (There’s a bug in the

camera info of the driver. See/use the launchfile qvga-
kinect+rgbdslam.launch for a workaround)

However, the last three options and using ORB will probably
decrease the accuracy

3) ROS Package: orb slam 2 ros: orb slam 2 ros pack-
age integrates ORB SLAM2 into ROS in a more user
friendly way. The package has been tested in Ubuntu 12.04,
14.04 and 16.04, but it should be easy to compile in other
platforms.

With the help of this ROS package(orb slam 2 ros), we
can process the live input of a monocular, stereo or RGB-
D camera using ROS(a version Hydro or newer is needed)
by ORB SLAM2, and in this project, we use the RGB-D
Example to process RGB-D input.

For an RGB-D input from topics /camera/rgb/image raw
and /camera/depth registered/image raw, run node
ORB SLAM2/RGBD. We will need to provide the vocabulary
file and a settings file.

4) ROS Package: rtabmap ros: rtabmap ros package inte-
grates rtabmap into ROS. This package is a ROS wrapper of
RTAB-Map (Real-Time Appearance-Based Mapping) which
is a RGB-D SLAM approach based on a global loop closure
detector with real-time constraints. This package can be used
to generate a 3D point clouds of the environment and/or to
create a 2D occupancy grid map for navigation.

5) ROS Package: hector slam: [14] hector slam package
contains 2D mapping package based on matching method
and exploration package which can make the robot navigate
in 2D space knowing 2D map which can be provided by

Hector SLAM itself or cost mapping produced by other
algorithms.

hector slam provide the building blocks for a system
capable of exploration in USAR environments. In RoboCup
Rescue and other applications, these modules have been
proofed to be efficient and have good performance. These
modules are made both by Team Hector (Heterogeneous Co-
operating Team of Robots) of TU Darmstadt and numerous
other international research groups.

III. SYSTEM DESCRIPTION

Fig. 2. The overview of our rescue

A. Hardware

1) The Main Computer and Motor control: We use an
mini PC of Intel i7-7500u as the main computer which needs
low power and satisfy the computation demand of using
Kinect 2.0. We use the Arduino Mega and DC motor driver to
drive the motor. The Arduino Mega is connected to the mini
PC and communicate with the ROS by rosserial package,and
use diff drive controller package to control the movement of
robot.

2) Kinect 2.0 Sensor and Calibration: We put Kinect 2.0
Sensor in front of the robot. The RGB camera has 1920x1080
resolution, the depth camera has 640x480 resolution, the
FOV is 70x60, the detection range is 0.5m-5m. We use
the calibration tool to calibrate Kinect 2.0. This tool use
the chessboard patterns to calibrate all the camera including
RGB camera, IR camera and depth. We captured a lot of
pictures to calibrate the camera about 100 pictures for each
camera. After that we get some camera matrices including
rotation, translation, essential and fundamental matrix. The
depth quality changed a lot after calibration which is illus-
trated as below. The Kinect 2.0 is used for 3D mapping
and serves as the main camera for human interaction in
teleoperation control mode.

https://github.com/code-iai/iai_kinect2


Fig. 3. Before the calibration

Fig. 4. After the calibration

3) LIDAR and other sensors: We mount a YDLIDAR X4
on the top of our robot. This LIDAR is really cheap and is
highly competitive comparing with other expensive LIDAR.
The sample rate is 5000 samples per second, the original
spinning frequency is 7Hz which we hacked the electronic
board to raise it up to 12 Hz, the scanning distance is 0.12m-
10m. The LIDAR is used for 2D mapping and improve 3D
mapping by combine 2D SLAM and visual slam together.

4) Multi sensor calibration and tf relation: To calibrate
the relative location between Kinect 2.0 and 2D laser Lidar
. We use the matlab toolbox for kinect calibration.[15] After
calibration, we get the relative position between two sensors,
and use the vertical point as the base link and create the tf
relationship between them.

B. ROS-based Software

Our software is developed based on Robot Operation
System(ROS) which is very popular software architecture.
We use a lot of ROS package to finish the project. The
pipeline is discribed in the figure.
Firstly, we use iai kinect2 and calibrated camera yaml to

get the rgb image and depth image from Kinect 2.0. As
the compressed image and 1920*1080 resolution need huge
amount of computation, which cause the slam is very slow.
As performance limit, we choose 960*540 resolution raw im-
age, which can let us get an process rate at about 20 Hz. We
also collect the laser scan data from YDLidar X4. While get
the sensor data, we also publish tf of the sensors: laser link
and camera link, according to the calibrated relative location.
Then we use hector slam to get the scanmatch odometry. As
we didn’t finish the hardware motor encoder now, we have
to use the scanmatch odometry for the rtabmap ros in the
next step.
In the rtabmap ros, which is the main part of the SLAM,
we use combined 2D and 3D SLAM, so we can get the
pointcloud, the 3D projection map, the 2D map and the
SLAM odometry. We use the rtabmapviz the visualize the
map and the point cloud. After that we transform the 3D pro-
jection map to costmap to avoid obstacle in 3D. And we use
the hector exploration plannar to plan the exploration path.
Use the hector exploration controller the convert the path to
robot velocity command cmd vel. Use the rosserial python
to send the twist to arduino and use PWM signal and Motor
driver to control the motor.

C. 2D/3D SLAM

SLAM (Simultaneous Localization and Mapping) is an
important technique to get location of robots and build a map
of the unknown environment. SLAM algorithms working in
2D place are called 2D SLAM which will build 2D map. We
use 2D laser LIDAR as the sensor for 2D SLAM. We apply
Hector SLAM[9] as our 2D SLAM approach since it is a
method based on robust scan matching. Comparing method
like Gmapping[16] which is based on odometry and scan
matching, Hector SLAM is more suitable since odometry is
unreliable in rescue scene. We have tested Hector SLAM and
it performed very well on flat environment.

Besides 2D map, we also provide 3D map of the unseen
environment. SLAM algorithms working in 3D space are
called 3D SLAM. We use Kinect 2.0 as the sensor for our 3D
SLAM. We have tried several 3D SLAM algorithm including
RGB-D SLAM 10, ORB SLAM 9 and RTAB SLAM 8. And
at last we choose RTAB SLAM as our 3D SLAM algorithm.
After testing for several times, we realized that the 3D map
built only by 3D SLAM is not accurate enough, the angle
between walls will have some errors caused by drift and
miss matching which often happens in rescue scene which
is lack of feature.In the figure, the RGB-D SLAM get lost
after some times. The ORBSLAM2 didn’t matches well and
drift a lot. The rtabmap use only rgbd camera is a bit better
than last two but also drift near the exit.

At last, we decide to hybrid 2D SLAM and 3D SLAM
together since we found that the 2D map built by Hector
SLAM is good enough to guide 3D SLAM algorithm. We
mounted 2D laser LIDAR on the top of our robot to avoid
the influence of obstacles which will get a 2D map that is
exactly the 2D projection of walls in 3D map. Hector SLAM
estimate the odometry by ICP, and 3D SLAM estimate the



Fig. 5. ROS pipeline

odometry by visual approach. We use the odometry which
is estimated by combining the information of 2D odometry
and 3D odometry to guide 3D SLAM which gives us really
good mapping result. 12 13

We overcame four problems when we were working on
2D/3D SLAM. Firstly, the difficulties to understand the
details of different SLAM algorithms is pretty big. We spent
a lot of time to study these SLAM algorithms. Secondly, the
dataset is quite hard to collect. We can only collect one ROS
bag each time due to limitation of disk storage and limitation
of battery. Collecting dataset of LIDAR and RGBD running
in the labyrinth is time consuming. Thirdly, the electronics
parts of our robot is complex and cost us a lot of time to
fix it after experiments. At last, the parameters of SLAM
algorithm need to be fine-tuned to get good performance. In
the figure, you can find that the wall aligned well and nearly
no drift

D. Navigation

We achieved navigation using ROS Package hec-
tor navigation. Using the 2D projection map of 3D map-
ping produced by SLAM algorithm, the navigation algo-
rithm first build cost map for the exploration task, then
hector exploration planner which is based on exploration
transform approach presented in [17] will start navigation.
14

To prevent a lot of frequent turning of robot, the explo-
ration planner prefers to weight frontiers that are towards the
front of the robot. The planner using follow wall strategy to
generate trajectory. In case the situation that the environment
has been explored totally, the planner has a inner exploration
mode. The hector trajectory server node will store traversed
path of the robot, which will be retrieved. A list of position
which are sampled based on distance will pass to exploration
transform algorithm as a list of goal. The point which has the
highest value of exploration transform cell is safe to reach
for the robot.

IV. SYSTEM EVALUATION

For the evaluation, we want to use the method in this
paper[18], which fit the situation of Robocup Rescue. How-
ever, since we didn’t have the ground truth, for evaluation,
we compare it with the origin rtabmap. 8 We can find that if
just using the rtabmap, the map will be very bad, the same
wall overlap many times and is very thick. And at the last

the map is mismatch. However, in combined slam, the map
is far more better. Most walls are straight and no mismatch.
12 So we can find that for both 2D map and 3D map, the
combined slam far more better than origin.

Fig. 6. rtabmap only projection map

Fig. 7. lidar rtabmap combine projection map



V. CONCLUSIONS

We designed and implemented the perception system and
navigation system of our RoboCup Rescue Robot. The rescue
robot can provide high quality 2D and 3D map and finish
simple navigation task. Furthermore, we will implement
object recognition, increase the speed of robot to build the
map without lost of tracking and try to avoid the influence
of pure rotation which can cause drift.

REFERENCES

[1] G. Guidi, S. Gonizzi, and L. Micoli, “3d capturing performances of
low-cost range sensors for mass-market applications.” International
Archives of the Photogrammetry, Remote Sensing & Spatial Informa-
tion Sciences, vol. 41, 2016.

[2] B. Karan, “Calibration of kinect-type rgb-d sensors for robotic appli-
cations,” Fme Transactions, vol. 43, no. 1, pp. 47–54, 2015.

[3] R. Sheh, A. Jacoff, A.-M. Virts, T. Kimura, J. Pellenz, S. Schwertfeger,
and J. Suthakorn, “Advancing the state of urban search and rescue
robotics through the robocuprescue robot league competition,” in Field
and service robotics. Springer, 2014, pp. 127–142.

[4] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” CoRR, vol.
abs/1704.07813, 2017. [Online]. Available: http://arxiv.org/abs/1704.
07813

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in IEEE and ACM International Symposium on Mixed
and Augmented Reality, 2007, pp. 1–10.

[6] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Conference on Computer Graphics and
Interactive Techniques, 1996, pp. 303–312.

[7] M. J. M. M. Mur-Artal, Raúl and J. D. Tardós, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[8] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nov 2013, pp. 2100–2106.

[9] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and
O. V. Stryk, “Hector open source modules for autonomous mapping
and navigation with rescue robots,” Lecture Notes in Computer Sci-
ence, vol. 8371, pp. 624–631, 2013.

[10] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[11] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 177–187, 2017.

[12] U. Qayyum, Q. Ahsan, and Z. Mahmood, “Imu aided rgb-d slam,” in
Applied Sciences and Technology (IBCAST), 2017 14th International
Bhurban Conference on. IEEE, 2017, pp. 337–341.

[13] M. Labbé and F. Michaud, “Long-term online multi-session graph-
based splam with memory management,” Autonomous Robots, pp. 1–
18, 2017.

[14] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011.

[15] J.-C. Devaux, H. Hadj-Abdelkader, and E. Colle, “A multi-sensor
calibration toolbox for Kinect : Application to Kinect and laser range
finder fusion.” in 16th International Conference on Advanced Robotics
(ICAR 2013), Montevideo, Uruguay, Nov. 2013, p. (to appear).
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00913178

[16] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[17] S. Wirth and J. Pellenz, “Exploration transform: A stable exploring
algorithm for robots in rescue environments,” in Safety, Security and
Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on.
IEEE, 2007, pp. 1–5.

[18] S. Schwertfeger and A. Birk, “Map evaluation using matched topology
graphs,” Autonomous Robots, vol. 40, no. 5, pp. 761–787, 2016.

http://arxiv.org/abs/1704.07813
http://arxiv.org/abs/1704.07813
https://hal.archives-ouvertes.fr/hal-00913178


Fig. 8. Failure case of 3D SLAM



Fig. 9. Result of ORB SLAM



Fig. 10. Result of RGBD SLAM



Fig. 11. Result of 2D SLAM



Fig. 12. Result of 2D/3D SLAM



Fig. 13. Result of 2D/3D SLAM



Fig. 14. Result of Navigation


	Introduction
	State of the Art
	Summaries of Some Related Works
	Details of Some Related Works
	Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots
	ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras
	3-D Mapping With an RGB-D Camera
	IMU aided RGB_D SLAM
	Long-term online multi-session graph-based SPLAM with memory management

	Related ROS Package
	ROS package: iai_kinect2
	ROS Package:rgbdslam
	ROS Package: orb_slam_2_ros
	ROS Package: rtabmap_ros
	ROS Package: hector_slam


	System Description
	Hardware
	The Main Computer and Motor control
	Kinect 2.0 Sensor and Calibration
	LIDAR and other sensors
	Multi sensor calibration and tf relation

	ROS-based Software
	2D/3D SLAM
	Navigation

	System Evaluation
	Conclusions
	References

