
Turtlebots Parade Report
A project of the 2017 Robotics Cource of the School

of Information Science and Technology (SIST) of Shanghaitech University

https://robotics.shanghaitech.edu.cn/teaching/robotics2017

Zhang Yao
Student ID: 46098322

Email: zhangyao1@shanghaitech.edu.cn

Hu Junyu
Student ID: 31983649

Email: hujy@shanghaitech.edu.cn

Min Jie
Student ID:10109867

Email: minjie@shanghaitech.edu.cn

Abstract—This project is mainly about using many turtlebots
to generate a parade. A parade is a prescribed rule of following
between swarm robots. We want to establish many seperate
individual robots which can form a swarm group so that the
main task involved is about recognition and following of the
turtlebots. In the project, we accomplished the goal that make
three turtlebots driving in a sequence.

I. INTRODUCTION

Swarm robotics is an approach to the coordination of
multirobot systems which consist of large numbers of mostly
simple physical robots. It is not only seems interesting to see
a group of robots moving as a team, but also a very important
part of robotics field and has many potential applications. For
example, we may need many robots to go to a certain place to
complete some missons such as searching and rescue, but it is
difficult and also annoying if we need control all the robots’
trajectories together at one time. In the meanwhile, it is also
very challenging to plan for a group of robot because most of
our knowledge about robotics is at individual robot level.

Therefore, our plan of the project basically contains the
fundamental movement of swarm robots like following or
queuing. The basic idea is using a robot as a leader and others
are following its trajectory based on some rules. We may start
with two robots and expand to three robots case.

We now can make three turtlebots driving in a sequence
around a about 3 metres by 3 metres square trajectory rela-
tively smoothly.

II. STATE OF THE ART

A. Related Work

In [12], it presents a new method for coordination of a group
of mobile agents that can be used for unknown area exploration
and monitoring. The idea is inpired by ant colony optimization
and some previous research like virtual bird flocking. The main
idea is to set the unexplored as a 2-D array and divide it into
m×n square cells. If a certain cell is explored, its value will be
set from 0 to one. Also, it maintains two vectors, r⃗l and r⃗p, for

each robot, where r⃗l represents the position of other robots and
r⃗p represents the positon of the nearest unexplored cell. Then
they keep updating the two vectors and the next movement
taken by a single robot is determined by r⃗l + r⃗p. These two
vectors are calculated by some formulation that can ensure
every two robots keep a ’safe’ distance as well as make all
the robots distribute evenly in the whole map. They also made
some optimization to the algorithm. For each robot, it only
cares the r⃗l of the nearest other robot. They also add limitition
to each r⃗l + r⃗p so that the robots won’t move too agressively
in a single step. Besides, they change the value in each square
cell(s[i][j]) from 0-1 value to a probability value. Therefore,
robots are mostly attracted to the space surroundings which
was explored, but the longest time ago. According to their
simulation result based on their algorithm, it works nicely.
This may give us some inspiration of how to maintain a safty
distance between different robots and make them move orderly
during the parade when there are a large amount of robots.

In [5], it provides us with a complete framework presented
for landmark recognition and scene understanding with a
combination of data-driven and medel-driven approaches. In
the data-driven approach, natural scene analysis is performed
using a proposed texture model called intensity interactive
maps(IIM). The model-driven approach contains a multilevel
Markov Random Field based model and an active contour
model that integrates color, texture and shape priors.

In [2], it provides a strategy to find optimal path to an object
through swarm robots. They use wireless communication
among swarm robots and use LED-LDR and ultrasonic sensors
for sensoring. The whole system is based on Master Slave
concept where master robot guides the slave robots to choose
most prominent optimal path to the object.

In [4], it proposes a distributed self-organizing approach
where swarm robots are able to self-organize themselves into
complex shapes driven by the dynamic of a gene regulatory
network based model.The target shape is represented by the
non-uniform rational B-spline (NURBS) and embedded into

the gene regulation model, analogous to the morphogen gra-
dients in morphogenesis.

In [6], it describes visual functions dedicated to the ex-
traction and recognition of planar quadrangles detected from
a single camera. Extraction is based on a relaxation scheme
with constraints between image segments, while the char-
acterization we propose allows recognition to be achieved
from different viewpoints and viewing conditions. We defined
and evaluated several metrics on this representation space: a
correlation-based one and another one based on sets of interest
points.

In [17], it describes the FTP(The Freeze Tag Problem) and
DFP(Dispeerse and Fill Problem).

In [8], it mainly talk about how to increase robustness
and efficiency among decentralized swarm robots, improve
communications but reduce number of broadcast messages in
order to use less power and handle more obstacles scenario.

In [13], it uses probability calculation to optimize detection
ability and classify more events with better rubostness.

In [15], it mainly considered the question about how to
recognize conspecifics, namely other swarm members, for
any one of the swarm member, and it is based on visual
recognition. The paper proposed a method by which members
of a robot swarm could recognize fellow swarm members and
gauge their separation. The method was inspired by the bees,
which should be especially attuned to the striped pattern on
their abdomen. Bees are able to identify black and yellow,
which are the colors of their abdomen, and are also able
to distinguish patterns of linear stripes. For this reason, they
marked robots with strips of black and white which have the
same width. Then they used line-scan vision camera system
to detect lines of stripes, This visual recognition system was
required to provide the range, bearing, and positive identity
of a conspecific robot. Additionally, a moving observer can
calculate its distance to a stationary object r given knowledge
of its own linear velocity v, the bearing of the object and the
object’s apparent angular velocity θ′. At last, it would also
judge the distance of stripes to ensure the charactistic is from
its fellow. Since our goal is to make our swarm robots to form
a parade, it is important for them to recognize their fellows.
This article introduced an approach to realize it. Although its
method just detecting a simple charatistic, where we may want
to recognize fellows with as less as possible additional marks,
it is still a good guide for our starting.

In [7], where they developed a reliable and fast visual
recognition algorithm to detect kin object in a robot swarm,
where every robot was equipped with a zebra pattern. The
key idea is based on Fast Fourier Transform (FFT), which
is sensible for this kind of pattern and has a relatively low
complexity.

In [3], it presents a controller design and hardware spec-

ifications of robot for SWARM application using Arduino
MEGA-2560. Multi Robot Communication is implemented
to achieve Leader-Follower approach of SWARM navigation
where leader robot guides the slave robots.

In [1], it presents an appearance based method for place
recognition. The method is based on a large margin classifier in
combination with a rich global image descriptor. The method
is robust to variations in illumination and minor scene changes
and evaluated across several different cameras, changes in
time-of-day and weather conditions.

In [18], it proposes an advanced PSO with the mutation
operator, which can solve the local minimum problem to
a certain degree. It also presents a novel approach of path
planning. First the MAMINK graph is built to describe +e
working space of the mobile robot then the Dijkstra algorithm
is used to obtain the shortest path from the start point to the
goal point in the graph,finally the particle swarm optimization
algorithm is adopted to get the optimal path.By adding a
mutation operator to the algorithm, it can not only escape
the attraction of the local minimum in the later convergence
phase, hut also maintain the characteristic of fast speed in
the early phase. The results of the simulation demonstrate
the effectiveness of the proposed method, which can meet the
real-time requests of the mobile robots navigation. Aiming at
the shortcoming of the PSO algorithm,that is,easily plunging
into the minimum,this paper pots forward an advanced PSO
algorithm with the mutation operator. Particle swarm optimiza-
tion PSO is an evolutionary computation technique developed
by Dr.Eberhart and Dr. Kennedy in 1995, inspired by social
behavior of bird flocking or fish schooling. PSO is easier
to implement and there are fewer parameters to be adjusted.
After modeling the robots working space, the path-planning
problem translates into a shortest path-finding problem in
the MAKLINK graph, which can be solved by the mature
algorithm in graph theory. But the robot can walk along the
edges of obstacles rather than must dong the network path.
Therefore,the shortest path of the MAKLINK graph is not the
exact optimized path of the whole planning space.

B. Ros Packages

1) kobuki node: [10]Since we are using kobuki robots
for this project, this package provides us with a control
loop and ros api for the kobuki driver. We just need to run
roslaunch kobuki node minimal.launch to start the robot.
During the runtime of the robot, it keeps publishing many
topics like the bumper condition or its local position. In the
meanwhilie, it also has lots of subscirbed topics with which
we can easily determine where to drive the robot. Actually we
only use part of these.

First we keep subscribing the odom topic for the robot itself
and its leader. This topic store the pose and twist messages
which represent the position and orientation repectively. It
sets the start point of the robot as the origin point whenever

we run the kobuki node. Thus we should always restart the
kobuki node to reset the position information. What we need
here is actually a 2-D coordinate which we will use for
calculating the transformation between different robots later.

Another topic we are using is command/velocity which
subscribes geometry msgs/Twist message. It has a linear
velocity as well as an angular velocity, so we only need to
publish the speed we want to this topic and the robot will
move in the corresponding speed. We find that the change of
speed is really fast , so we add an ’accelerated speed’ by hand
in case the laptop falls off the robot when a sudden stop occurs.

2) freenect: [9]This package contains launch files for using
a Microsoft Kinect using the libfreenect library. We use this
for starting the camera (Kinect) on the kobuki robot. We just
run roslaunchfreenectlaunchfreenect.launch to launch it.

After we start the kinect by using freenect, it mainly
recevies three different types of image: depth, ir and rgb.
We only need the rgb image here for the recognition of the
apriltag (which will be convered later). The good news is we
don’t really need to subscribe or publish anything when using
this package because the apriltag node will communicate
with the camera automatically as long as we start both of them.

3) tf: [11]tf is a very powerful package that can help us
keep track of mutiple coordinate frames over time. tf maintains
the relationship between coordinate frames in a tree structure
buffered in time, and lets the user transform points, vectors,
etc between any two coordinate frames at any desired point
in time. We need this because we should ensure each robot
knows the position of its leader in its coordinate system so it
can keep following the leader. Appearantly this is all about
transformation between the coordinate frames of different
robots.

This package actually provides us with listeners and broad-
casters for transform so that we can easily exchange infor-
mation between different frames. But actually we handle it in
a simpler way. We just create transform objects for different
objects (including robots and apriltags) given their position
and calculate their transform relationship accordingly.

4) Apriltag ros: [16] [14]AprilTag is a visual fiducial
system, useful for a wide variety of tasks including augmented
reality, robotics, and camera calibration. Targets can be created
from an ordinary printer, and the AprilTag detection software
computes the precise 3D position, orientation, and identity
of the tags relative to the camera. The AprilTag library is
implemented in C with no external dependencies. We attach
these tags at the back of each robot so other robot can easily
identify it.

The apriltag ros package provides us with a useful topic
called tag detections that we can subscribe it as long as it

is launched. This topic contains an array of poses including
the tag id for each pose. From this we can easily get the
orientation of the tag and distance between the camera and
the tag in front of it as long as the tag is in sight. Otherwise,
the array will only contains null pointer. So we can judge if
the camera catches the tag based on this. After we get the
position information of the tag with respect to the camera, we
actually know where the leader robot is. Thus we only need to
calculate the transforms between different robots based on the
data provided by this topic. Note that we actually need another
two transforms that are from the camera to the robot and from
the tag to the robot, but apriltag ros doesn’t provides us with
these. So our solution is measuring it by hand since we assume
that they are only translation transforms.

III. SYSTEM DESCRIPTION

A. System Establishment

For the implenmentation, we choosed the turtlebot 2 of
kobuki which is a low-cost, personal robot kit with open-
source software. The TurtleBot kit consists of a mobile
base, 2D/3D distance sensor, laptop computer or SBC (In
this project, we use our laptops as the controllers), and the
TurtleBot mounting hardware kit. We used this since it is
relatively easy-controlled to implentment our ideas so that we
can put more efforts on algorithms such as planning design.

In this project, we use three laptops to handle the three-robot
problem: each laptop control on robot. Three robots will walk
in a line: one as the leader, the other two will follow one by
one.

Furthermore, we also need to put Apriltags on our robots
to indicate its identification, as is mentioned in above section,
the Apriltags will also give us the relative position between
each pair of leader and follower. We put the Apriltags at the
back of the robots so that the follower robots can see the leader
robots. Figure 1 shows the example of a pair of leader-follower
system.

Fig. 1. Here is the overview of the leader-follower system: the follower robot
and the leader robot with the Apriltag used to help the follower recognizes it.

B. Algorithm and Code

To make the follower robot follows the leader robot
smoothly, our algorithm can be divided to two parts.

The first part is when the follower robot can see the Apriltag
of the leader robot. In this certain scene, we do the control of
the follower robot just based on the position of the Apriltag in
its view: we always try to keep the position of the Apiltag in
the middle of its view with a certain distance. Therefore, the
linear speed of the follower depends on the distance between
Apriltag and itself while the angular speed of the follower
depends on the deviation of the Apriltag from the middle.
The Algorithm 1 below will show the idea of the above.

Algorithm 1 FollowTheTag
1: if pose tag leftTo center pose then
2: speed angular ← pa × pose tag
3: speed linear ← pl × distance
4: else if pose tag rightTo center pose then
5: speed angular ← −pa × pose tag
6: speed linear ← pl × distance
7: else
8: speed angular ← 0
9: speed linear ← pl × distance

10: end if

The other part is when the follower robot can not see the
Apriltag of the leader robot. This may happens when there are
some obstacles or the leader makes a sudden, large turn. We
want to keep the follower follows the leader in such a scene
happens. To do this, we need always compute and record the
transformation between the global reference of the follower
and the global reference of the leader when the follower can
still see the position of the leader. In the ideal scene, we only
need compute the transforamtion one time since it is a fixed
value, however, considering the errors caused when the robots
moving, we need always fresh our transformation. When the
follower can not see the Apriltag of the leader, we will use
the latest transformation we computed.

To compute the transformation and the position the follower
should go when it can not see the Apriltag of the leader, we
also need transfer the message the position of the leader in
its own global reference to the follower, which means we
need make communication between the robots. The method
we use to make communication between the robots is using
a common ROS MASTER, and for each robot, they need a
individual namespace to avoid namespace conflicts. We assign
the namespace just based on the robot ID we pre-determined.

1 <group ns=” $(env MY ROBOT ID) ”>
2 . . .
3 < / g roup>

The algorithm 2 below shows that how we compute the
transformation in a easy way. Now for the follower, it can
trace the trajectory of the leader and keep following the leader
by some controls.

Algorithm 2 ComputeTransformation

1: T follower
follower global ← pose follower

2:
3: T leader

follower ← pose tag
4:
5: T leader

leader global ← pose leader
6:
7: T leader

follower global ← T leader
follower × T follower

follower global

8:
9: T leader global

follower global ← INV(T leader
leader global) ×T leader

follower global

IV. SYSTEM EVALUATION

A. Main Idea

The propose we want to make is to make our swarm
robots form the parade and maintain it with a sufficiently long
distance and a stable speed. Therefore, the performance testing
we want to make is mainly pointing at the distance and the
speed, as well as the duration time and it’s stability under
artificial random destructive tests (Such as suddenly change
the moving direction, block tags, etc).

B. Test Indicator

1) Distance between each robots in the parade: This indi-
cator is meaningful since it indicates the stability of the system
to some extent. This indicator is tested under the circumstance
that the leader of the parade walks a 3 meters by 3 meters
square with the speed of 0.1 m/s and 0.2 m/s respectively, and
we have two followers one by one. Figure 2 shows the system
when we test this indicator.

Fig. 2. This figure shows the scene that the leader is running a 3 meters by
meters square, and it has two followers one by one.

In the case of 0.1 m/s speed, the initial distance of three
robots is 0.4m (from the front of the follower to the back of
the leader). We run the system 5 times, each time we let the
leader run 5 rounds of the square (about 10 minutes each time).
During one times running, the maximum distance between the

leader and follower is about one meter (from the front of the
follower to the back of the leader).

In the case of 0.2 m/s speed, the initial distance of three
robots is 0.6m (from the front of the follower to the back
of the leader). We run the system 5 times, each time we let
the leader run 10 rounds of the square (still about 10 minutes
each time). During one times running, the maximum distance
between the leader and follower is about 1.5 meters (from the
front of the follower to the back of the leader).

2) The rotation angular of the leader: This indicator is to
test the largest rotation angular the leader takes turn when
the follower can still follows the leader. This indicator is
meaningful since the most tricky part of the following is when
the leader has a big or sudden turns. The shape of a turn can be
described by the rotation angular and the rotation radius. Since
the rotation radius is hard to estimated and it is determined
by the linear speed of the robot, we consider the two kinds
of linear speeds’ case in the experiment. Figure 3 shows the
case when the leader is taking a turn.

Fig. 3. This figure shows the scene that the leader is taking a turn.

In this test, we fixed our leader’s angular speed at 0.3 rad/s.
To control the rotation angular, we control how much time
does a turn take. We started with 3 seconds as the first trying
(that is about 51.6 degrees), and each time we add one more
seconds (that is, add about 17.2 degrees each time). Besides,
to control the rotation radius, we let the linear speed of the
leader be 0.1 m/s and 0.2 m/s respectively.

In the case of 0.1 m/s speed, the largest angle it can follows
will between 7 and 8 seconds cases. When the rotation time
is 7 seconds (about 120.3 degrees), we tried 5 times and at 2
times it fails to follow while if the rotation time is 8 seconds
(about 137.5 degrees), we tried 5 times which all fails.

In the case of 0.2 m/s speed (the rotaion radius will be
larger), the largest angle it can follows will between 8 and
9 seconds cases. When the rotation time is 8 seconds (about
137.5 degrees), we tried 4 times and at 3 times it fails to follow
while if the rotation time is 9 seconds (about 154.7 degrees),
we tried 3 times which all fails.

3) Random walk of the leader: We designed this part since
the 3 meters by 3 meters square trajectory maybe seems
relatively regular. Therefore, we tried to use some different,
more complicated trajectories. We use joy node provided by
ROS to control the leader by joystick. We control the the
trajectory of the leader as randomly as we can: sometimes
fast and sometimes slow, sometimes left turn and sometimes
right turn. We record each time how long can the follower
can keep following. We tried this 2 times, at the first time
the parade kept about 20 minutes and for the second time the
parade kept about 17 minutes. In the first time, the second
robot lose its leader when the leader took a fast left turn and
in the second time, the last robot’s distance to its leader (the
second robot) became longer and longer after a sequence of
continuously turns.

4) Small artificial disturbance: To test the stability of the
system further more, we tried to add some small artificial
disturbance to the system to how it performs, this part of
testing is under the circumstance that the leader of the parade
walks a 3 meters by 3 meters square with the speed of 0.2 m/s,
and we have two followers one by one. The two following
small disturbances we tested have better perfomance than
others:

1) Suddenly change the moving direction of a random robot
(including the leader and the followers)
As shown in the Figure 4, we changed the direction of
the robot to see whether it can still follows. The system
can fix the disturbance if the forced change is not too
large.

Fig. 4. This figure shows the scene we add a samll disturbance to the
directions of the robot.

2) Block tags of a random robot (for followers)
As shown in the Figure 5, we go through between the
robots to and for again and again. The system can fix
the disturbance if the disturbance not too frequently.

In the above test, our system can endure some small
disturbance. Although it cannot handle too much disturbance,
the performance is relatively accepted.

Fig. 5. This figure shows the scene that we go through between the robots
parade.

C. Elementary Result

For result, our parade robots could form the troop in short
time, and it’s quiet stable for reasonable range of speeds.
The system is quiet robust under some small artificial random
disturbance tests, although it may not be ensurable to some
more destructive circumstances.

V. CONCLUSIONS

A. Summary and Conclusion

Our Project is mainly about using many turtlebots to gen-
erate a parade and maintain it through a map. The parade is
basically formed by a group of robots that one followed by
another one by one. Also, the routes we set include both clock-
wise circle and counterclockwise circle. The measurements we
use to test our stability and performance is mainly time of
duration, which means how long the robots can maintain the
parade nicely at most. We only use three robots for testing.
Since the path is not very complicated, a parade with three
robots should be convinced enough.

Our recognition method uses the Apriltags, and the follow-
ing algorithm is divided into two parts. Different method is
called for control depends on whether the follower can see
the Apriltag of the leader. Additionally, we can also get the id
of the Aprialtags, so we can ensure that each robot follows its
own leader correctly and won’t be misled by the other ones.

We test the robustness of our algorithm under the speed of
0.1m/s and 0.2m/s respectively. The algorithm can also handle
some unexpected condition like a sudden change of direction
by human but it may fail when being disturbed too hard or
too frequently.

B. Future Work

In the following part, the things we need to do are:
1) SBCs: We may establish the environment of ROS on the

Tinker Board to control more robots without laptops.

2) Improve Algorithms: Although our algorithm works out
well when the disturbing factors are limited, it need to be
improved when it comes to a bigger disturbing. What’s more,
we give up only tracking the leader’s trajectory because of a
significant accumulation of error. If we can find out a better
way to handle this error, the algorithm may have a better result
and work on a more complicated route of the parade.

3) More Robots: We may add more robots into our parade.
All we need are more laptops with a copy of codes. We may
also add different robots in rather than only turtlebots but the
parameters for the algorithm need to be modified.

REFERENCES

[1] P. Jensfelt A. Pronobis, B. Caputo and H.I. Christensen. A discriminative
approach to robust visual place recognition, 2006.

[2] Dr. C.S. Satsangi Ankita Saxena and Abhinav Saxena. Collective
collaboration for optimal path formation and goal hunting through
swarm robot, 2014.

[3] F. S. Kazi Dhiraj Arun Patil, Manish Y. Upadhye and N. M. Singh.
Multi robot communication and target tracking system with controller
design and implementation of swarm robot using arduino, 2015.

[4] Yan Meng Hongliang Guo and Yaochu Jin. Swarm robot pattern
formation using a morphogenetic multi-cellular based self-organizing
algorithm, 2011.

[5] Fritz J. and Dolores H. Russ. Generalized landmark recognition in robot
navigation, 2004.

[6] F. Lerasle J.B. Hayet and M. Devy. Visual landmarks detection and
recognition for mobile robot navigation, 2003.

[7] T. Kovacs K. Bolla and G. Fazekas. A fast image processing based kin
recognition method in a robot swarm, 2014.

[8] Anamika Lal. Efficient robot swarm movement and shape recognition
algorithms in environments with obstacles, 2009.

[9] Rospackage List. freenect launch, http://wiki.ros.org/freenect launch.
[10] Rospackage List. kobuki node, http://wiki.ros.org/kobuki node.
[11] Rospackage List. tf, http://wiki.ros.org/tf.
[12] M. Masar. A biologically inspired swarm robot coordination algorithm

for exploration and surveillance, 2013.
[13] Matthew R. Proffitt. Optimization of swarm robotic constellation

cmmunication for object detection and event recognition, 2011.
[14] RIVeR-Lam. https://github.com/river-lab/apriltags ros, 2017.
[15] R. Andrew Russell. Visual recognition of conspecifics by swarm robots,

2012.
[16] AprilTags Visual Fiducial System. https://april.eecs.umich.edu/software/apriltag.html,

2016.
[17] Marcelo Oscar Sztainberg. Algorithms for swarm robotics, 2003.
[18] Ning Li Yuanqing Qin, Debao Sun and Yigang Cen. Path planning

for mobile robot using the particle swarm optimization with mutation
operator, 2004.

