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Abstract

Traditional approaches to stereo visual SLAM rely on
point correspondences to estimate camera trajectory and
build a map of the environment, consequently, their perfor-
mance deteriorates in low-textured scenes where it is diffi-
cult to find a large or well-distributed set of point features.

In this paper, we propose a stereo visual SLAM systems
that use line segments to work robustly in a wider variety
of scenarios, and evaluate our approach in common bench-
mark.

1. Introduction

Simultaneous localization and mapping (SLAM) have
become popular topics in recent years due to their wide ap-
plication in robot navigation, 3D reconstruction, and virtual
reality.

The traditional approaches consist of the detection and
matching of point features between frames, and then, the
estimation of the camera motion through least-squares min-
imization of the reprojection errors between the observed
and projected points. It is noticeable that the performance
of such approaches usually deteriorates in low textured en-
vironments, where it is difficult to find a large set of key-
point features. In contrast, line segments are usually abun-
dant in human-made scenarios, which are characterized by
regular structures rich in edges and linear shapes, for in-
stance in city and indoor scenes, or in the so-called Man-
hattan worlds.

Point and line features are complementary in a camera
localization system: point features provide good discrimi-
nation, but are view-dependent, while line features are ro-
bust to viewing changes, but are more fragile.

In this paper, we propose a solution that can simultane-
ously leverage points and lines information. We demon-
strate this through various experiments.

2. Related Work
2.1. SLAM

2.1.1 Stereo SLAM

Monocular SLAM suffers from scale drift and may fail
if performing pure rotations in exploration, while RGBD-
SLAM can hardly deal with large-scale outdoor scene and
glasses reflectance. By using stereo camera, all these issues
are solved and can led to reliable visual SLAM solutions.

A remarkable early stereo SLAM system was the work
in [11]. It was the first stereo SLAM exploiting both close
and far points, using an inverse depth parameterization for
reliable estimation for the latter. Also, based on condi-
tionally independent divide and conquer extended-Kalman-
filter SLAM, it was able to operate in larger environments
than other approaches at that time.

Some works using direct methods emerge in recent
years. These aim at computing geometry and motion di-
rectly from the images thereby skipping the intermediate
keypoint selection step. One of the most recent ones is
stereo-DSO [16]. It jointly optimizes for all the model pa-
rameters within the active window, including the intrinsic
and extrinsic camera parameters of all keyframes and the
depth values of all selected pixels. It also combines tem-
poral multi-view stereo and static stereo and optimize their
integration with marginalization using the Schur comple-
ment, which lead to more precise reconstruction results than
other direct approaches and higher reconstruction density
than feature-based methods.

To achieve higher computational speed and ensure
guarantees for optimality and consistency, semi-direct
VO(SVO) [5] is proposed. It uses direct methods to track
and triangulate pixels that are characterized by high image
gradients, but relies on proven feature-based methods for
joint optimization of structure and motion. Together with a
robust probabilistic depth estimation algorithm, it can pro-
vide efficiently tracking of pixels lying on weak corners and
edges in environments with little or high-frequency texture.

The above papers are more related to visual odometry.
Based on monocular ORB-SLAM [9], ORB-SLAM2 [10]
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was proposed. It was the first open-source SLAM system
for monocular, stereo, and RGBD cameras, including loop
closing, relocalization and map reuse. It has three main
parallel threads: tracking, local mapping, and loop closing,
then creates a fourth thread to perform full BA after a loop
closure. The tracking thread localizes the camera with every
frame by finding feature matches to the local map and mini-
mizing the reprojection error applying motion-only BA; the
local mapping thread manage the local map and optimize
it, perform local BA; the loop closing thread detects large
loops and corrects the accumulated drift by performing a
pose-graph optimization. The full BA thread was then per-
formed to achieve the optimal structure and motion solu-
tion.

2.1.2 Line based SLAM

One of the remarkable approaches that employs line fea-
tures is the one in [14], where the authors propose an algo-
rithm to integrate them into a monocular Extended Kalman
Filter SLAM system (EKF-SLAM). Other works employ
edge landmarks as features in monocular SLAM, as the one
reported in [4], which does not include the information of
the local planar patch as in the case of keypoints, but also
considers local edge segments, hence introducing new valu-
able information as the orientation of the so-called edgelets.
In that work they derive suitable models for those kind of
features and use them within a particle-filter SLAM system,
achieving nearly real-time performance. More recently, au-
thors in [5] also introduced edgelets in combination with
intensity corners in order to improve robustness in environ-
ments with little or high-frequency texture.

More recently, based on ORB-SLAM [9] framework,
PL-SLAM [12] proposes a solution that can simultaneously
leverage points and lines information while keep computa-
tional cost. In order to preserve the real-time characteristics
of ORB-SLAM [9], they have carefully chosen, used and
implemented fast methods for operating with lines in all
stages of the pipeline: detection, triangulation, matching,
culling, re-localization and optimization. Line segments in
an input frame are detected by mean of LSD [15], an O(n)
line segment detector, where n is the number of pixels in
the image. Then, lines are pairwise matched with lines
already present in the map using a relational graph strat-
egy [17]. This approach relies on lines’ local appearance
(Line Band Descriptors) and geometric constraints and is
shown to be quite robust against image artifacts while pre-
serving the computational efficiency.

Another stereo version of PL-SLAM [7] build upon their
previous Visual Odometry approach presented in [6]. The
camera motion is recovered through non-linear minimiza-
tion of the projection errors of both point and line segment
features, with an ad-hoc implementation of the combined

algorithm to solve the bundle adjustment problem for this
particular case. An extension of the bag-of-words approach
takes into account the description of both points and lines
segments to improve the loop-closure process.

2.2. Line Segment Detection

Three key features define a pixel riding on a line seg-
ment: 1) relatively strong gradient; 2) connectivity with
other pixels having strong gradient; 3) linear shape and rea-
sonable length of the connectivity.

According to the means of finding these pixels, the cur-
rently mainstream line segment detectors generally can be
categorized into perceptual grouping and Hough ones. We
mainly introduce the perceptual grouping methods here.

LSD [15] proposes line support region, as line segment
candidates, by applying region growing algorithm on the
pixel-wise gradient, then filters and aligns the candidates
through multiple tools including rectangular approximation,
a contrario model and Helmholtz principle, etc.

As the region growing is susceptible to noises in the im-
age, LSD frequently fragment the line segments or failed
to detect them. EDLines [3] connects local gradient peaks
through ridges between them, and executes least squaring
line fitting trough the paths to break them into line seg-
ments, which are also refined through Helmholtz principle.
The evaluation illustrated that EDLines is more proof to
noise.

The line segment candidates generated by EDLines,
however, have poor smoothness. Liu et al. [8] adopt an edge
chaining strategy to generate more smooth line-support
regions, while improving noise-proof ability. They also
in introduce smaller eigenvalue analysis to accelerate the
straightness criterion, and finally detect the line segments
in a top-down way.

Besides noise, gradient is also vulnerable to image res-
olution, LSD and EDLines, therefore, work anomaly in
high resolution images. To relieve this problem, Salaun et
al. [13] proposed multi-scale LSD(MLSD). It starts from
coarser scale, applying a classical LSD; detects line seg-
ments at finer scales with the aid of detected line segments
at previous scales; and finally merge them together. MLSD
shows a robustness to image scale and well performs over
high-solution images.

2.3. ROS Packages

Camera Calibration [1] allows easy calibration of
monocular or stereo cameras using a checkerboard calibra-
tion target. This package uses OpenCV camera calibration,
and work with any camera driver node satisfying the stan-
dard ROS camera interface.

Navigation [2] is a 2D navigation stack that takes in in-
formation from odometry, sensor streams, and a goal pose
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and outputs safe velocity commands that are sent to a mo-
bile base.

3. System Description
We build a stereo visual SLAM system that use line seg-

ments to work robustly. We’ll derive the relative pose by
trifocal tensor between two consecutive frames in the fol-
lowing part.

3.1. Trifocal Tensor

Trifocal Tensor describes all the projective geometric re-
lations between three views that are independent of scene
structure.

Figure 1. Trifocal Tensor.

Suppose a line L in 3D space is imaged as the corre-
sponding triplet l ←→ l′ ←→ l′′ in three views, which are
indicated by their centers, C, C′, C′′, and image planes, as
shown in Figure 1.

Let the camera matrices for the three views be
P = [I | 0]
P′ = [A | a4]
P′′ = [B | b4]

where A and B are 3 × 3 matrices, and the vectors ai and
bi are the i-th column of the respective camera matrices.

Each image line back-projects to a plane, which can be
parameterized as

π = PT l =

(
l
0

)
π′ = P′T l′ =

(
AT l′

aT4 l
′

)
π′′ = P′′T l′′ =

(
BT l′′

bT
4 l
′′

)
Let M = [π,π′,π′′]. Points on the 3D line L can be

represented as X = αX1 + βX2, with X1 and X2 lin-
early independent. Such points lie on three planes and so
MTX = 0. Consequently M has a 2-dimensional null-
space since MTX1 = 0 and MTX2 = 0, so M has rank
2. Donating

M = [π,π′,π′′] =

[
l AT l′ BT l′′

0 aT4 l
′ bT

4 l
′′

]

since the rank of M is 2, there is a linear dependence be-
tween its columns mi, which may be written as m1 =
αm2 + βm3.

Just looking at the bottom row of M, we can get αaT4 l
′+

βbT
4 l
′′ = 0, which follows{

α = k(bT
4 l
′′)

β = −k(aT4 l′)
for some scalar k

Applying this to the top 3-vectors of each column shows
that (up to a homogeneous scale factor), we get

l = (bT
4 l
′′)AT l′ − (aT4 l

′)BT l′′

= (l′′Tb4)A
T l′ − (l′Ta4)B

T l′′

The i-th coordinate li of l may therefore be written as

li = l′′T (b4a
T
i )l
′ − l′T (a4b

T
i )l
′′

= l′T (aib
T
4 )l
′′ − l′T (a4b

T
i )l
′′

and introducing the notation

Ti = aib
T
4 − a4b

T
i

the incidence relation can be written as

li = l′TTil
′′

The set of three matrices {T1,T2,T3} constitute the tri-
focal tensor in matrix notation. The full relation can be writ-
ten as lT = l′T [T1,T2,T3]l

′′.

3.2. Trifocal Tensor in Stereo

At stereo situation, we use trifocal tensor to calculate the
relative pose between two adjacent frames. We choose 2
views in one stereo frame, and one of other view in its adja-
cent frame.

Let the origin of stereo camera set is O, the camera cen-
ters in this coordinate frame is c and c′, as shown in Fig-
ure 3.2. Then we can get

A = I

a4 = c− c′

B = R = [r1, r2, r3]

b4 = t− c′′ +Rc

Substitute this to the equations of trifocal tensor, we have

T1 = a1b
T
4 − a4b

T
1

=

bT
4

0
0

− (c− c′)rT1
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Figure 2. Trifocal tensor in stereo.

T2 = a2b
T
4 − a4b

T
2

=

 0
bT
4

0

− (c− c′)rT2

T3 = a3b
T
4 − a4b

T
3

=

 0
0
bT
4

− (c− c′)rT3

Each Ti is a function of ri and t, from lTproj =

l′T [T1,T2,T3]l
′′. Ignore the details of derivation, we can

derive and rearrange them to the following equation

lproj =

a11t+ a12~r+ a13
a21t+ a22~r+ a23
a31t+ a32~r+ a33


where

a11 = l′xl
′′T

a12 = l′x
[
cxl
′′T cyl

′′T czl
′′T ]+ [l′T (c− c′)l′′T 0 0

]
a13 = −l′xl′′T c′′

a21 = l′yl
′′T

a22 = l′y
[
cxl
′′T cyl

′′T czl
′′T ]+ [0 l′T (c− c′)l′′T 0

]
a23 = −l′yl′′T c′′

a31 = l′zl
′′T

a32 = l′z
[
cxl
′′T cyl

′′T czl
′′T ]+ [0 0 l′T (c− c′)l′′T

]
a33 = −l′zl′′T

~r =
[
r1 r2 r3

]T
The lproj is solved with its two correspondences and the

trifocal tensor constrain, we also have its real expression,
which will leads to the following constrains.

l× lproj =

lya31 − lza21
lza11 − lxa31
lxa11 − lya11

 t+
lya32 − lza22
lza12 − lxa32
lxa22 − lya12

~r
+

lya33 − lza23
lza13 − lxa33
lxa23 − lya13

 = 0

In the minimal case, the solver just needs two lines, but it
will get more robust solution when take more lines as input.

The solver leads to many solutions, from which we can use
energy function to get the optimal solutions.

4. System Evaluation

We evaluate our algorithms in different scenarios.

4.1. Simulation test of Solver

We compare our solver with another one which takes 3D
lines as input. In the simulation, we first generate 2 ran-
dom lines in 3D with known rotation and translation as our
ground truth. For each line, we project them to the each
views, and add noise to their end points. The triangulated
3D lines by projected 2D lines will be given to the 3D-3D
solver as input, and the 2D lines will be given to our solver
as input.

We test our solver under different noise level from 0.1
pixel to 1 pixel. For each noise level, we run 1,000 experi-
ments independently.

The subscript angular, absolute, relative in Table 4.1 de-
note the angular, absolute, and relative error respectively.
The percent means the acceptable solution rate, whose er-
ror angular of rotation is under 1◦.

4.2. Visualization

The visual result will be shown in demo part.

5. Conclusion

In this paper, we propose a stereo visual SLAM systems
based on combination of both keypoints and line segments
features. We evaluate our solver in simulation test and real
world scenario.
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Figure 3. The angular error of rotation versus noise level.
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Figure 4. The acceptable solution percent versus noise level.
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