

CS283: Robotics Spring 2023: Perception & Robot Arms

Sören Schwertfeger / 师泽仁

ShanghaiTech University

Outline

- Hough Transform
- Admin
- Arm links & joints
- Kinematics
- Arm Planning
- Movelt & Grasping

RANSAC & HOUGH TRANSFORM

Hough Transform uses a voting scheme

• A line in the image corresponds to a point in Hough space

 What does a point (x₀, y₀) in the image space map to in the Hough space?

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

ρ

Algorithm 4: Hough-Transform

- 1. Initialize accumulator H to all zeros
- 2. For each edge point (x,y) in the image
 - For θ = 0 to 180 (with a step size of e.g. 18)
 - $\rho = x \cos \theta + y \sin \theta$
 - $H(\theta, \rho) = H(\theta, \rho) + 1$
 - end

end

- 3. Find the values of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
- 4. The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Peak gets fuzzy and hard to locate

Application: Lane detection

Inner city traffic

Tunnel exit

Obscured windscreen

Ground signs

Country-side lane

High curvature

Example – Door detection using Hough Transform

Hough Transform: other features

ines:
$$p = (d, \upsilon)$$
$$g(x, y, p) := x \cdot \cos(\upsilon) + y \cdot \sin(\upsilon) - d$$

Circles:

$$p = (x_0, y_0, r)$$

$$g(x, y, p) := (x - x_0)^2 + (y - y_0)^2 - r^2$$

Ellipses:

$$g(x,y,p) := \frac{\left[\left(x - x_0\right) \cdot \cos(\psi) + \left(y - y_0\right) \cdot \sin(\psi)\right]^2}{a^2} + \frac{\left[\left(y - y_0\right) \cdot \cos(\psi) - \left(x - x_0\right) \cdot \sin(\psi)\right]^2}{b^2} - b^2$$

Hough Transform

- Advantages
 - Noise and background clutter do not impair detection of local maxima
 - Partial occlusion and varying contrast are minimized

Negatives

 Requires time and space storage that increases exponentially with the dimensions of the parameter space

Comparison Line Detection

- Deterministic methods perform better with laser scans
 - Split-and-merge, Line-Regression, Hough transform
 - Make use of the sequencing property of scan points.
- Nondeterministic methods can produce high False Positives
 - RANSAC
 - Does not use the sequencing property
 - But it can cope with outliers
- Overall:
 - Split-and-merge is the fastest, best real-time application

ADMIN

Project Meetings

- Make an appointment with your student advisor, Prof. and all members to meet next week!
 - Failure goes directly to "meetings" part of project grade.
- Afterwards meet every week with your advisor
 - There should be some progress every week
 - Notes will be made in a meeting.txt every week by your advisor.

Presentation

- Choose one paper from ICRA or IROS which is <u>relevant to your project</u>!
 - ICRA: <u>https://ieeexplore.ieee.org/xpl/conhome/1000639/all-proceedings</u> (any year!)
 - IROS: <u>https://ieeexplore.ieee.org/xpl/conhome/1000393/all-proceedings</u> (any year!)
 - Only full papers (6 or more pages) are allowed; no workshop papers
- Present the paper as if it were your own work!
- Front page: Name of the Paper; Full citation of the paper; Your name in Pinyin; Your email address
- Last slide: ONE slide about how this paper is relevant to your project.
- Your presentation has to be professional not cute...
- Submit pdf or ppt to the paper repository till Wednesday, March 15 22:00 to repo! Late submissions (or if you come with the ppt/ pdf to the presentation time) will receive a flat 33% loss of points!
- Presentations in 4 slots during lecture slots March 21 & 23.
- 10 minute presentation plus 1 minute project relevance plus 4 minutes questions
 - Do not rush your presentation! Better present less items more slowly!
 - 10 minute presentation => 8 max. 12 slides
 - Maybe have a slide towards the end that you can skip if you run out of time.
 - Give a test presentation to your friends beforehand!
- Finish early for practicing don't learn by heart.

Grading of the Presentation

- 10 %: Your basic understanding/ knowledge about the paper you present
- 20 %: Presentation timing (plus or minus one minute is ok) no rushing good speed!
- 10 %: Correct written English in presentation:
 - No complete sentences, no grammatical or spelling mistakes
- 10 %: Good structure of presentation:
 - Depends on the type of paper, how much time you have, how long you need to present the main achievement.
 - For example: outline, introduction/ motivation, problem statement, state of the art, approach, experiments, results, conclusion, outlook
- 20 %: Clarity of written presentation
- 10 %: Good presentation style:
 - Interact with audience: look at the whole room (not just your slides, notes, or the back of the room)
 - Present the paper do not read (or repeat the learned) speech from a prepared text
 - Use the presentation as visual aid not as your tele-prompter to read from
 - Move your body do not stand frozen at one place
- 10 %: Answering the questions
 - Questions have to be asked and answered in English Chinese can be used for clarification
- 10 %: Asking questions to other students!
- Not scored: Your English skill

Project Proposal (1)

- Title: Find a nice, catchy title for your project
- Abstract: A short abstract/ summary what the project is about
- Introduction: general description & Motivation
- State of the Art: Literature & open-source-ROS packages
- <u>Per team member</u>:
 - present and cite three papers with just three or four sentences
 - present in more detail one further paper relevant to your project. Describe it with at least 1/3rd of a page.
 - present in detail one open source ROS package relevant to your project. At least 1/3rd of a page
 - => about one page per team member => 3 pages for 3 person team

Project Proposal (2)

- System Description
- **System Evaluation**: Describe how you want to test your system.
 - Experiments & how to measure their success
- Work Plan: Define some mile stones.
 - Possible phases: Algorithm design, implementation, testing, evaluation, documentation some of those things can also happen in a loop (iteration).
 - Deliverables of Project:
 - Proposal (this document)
 - Mid-term report
 - Final demo
 - Final Report
 - Website
- **Conclusions**: Short summary and conclusions

Project Proposal (3)

- Important dates:
- March 10, 22:00: due date for the proposal
- April 24: due date for mid-term report
- May 25 June 6 (tbd): due date for the final report.
- Parts of proposal go into the final project report.
- Please don't forget to take **pictures and videos** when testing your system!
- In English! Using LaTeX!
- Put sources and PDF in git.
- Additional task: In glit/ gitlab: "Readme.txt" with:
 - Team Name and Members; email addresses
 - Documentation and how to's regarding your project.

ROBOT ARMS

Robot Arm

- Consists of Joints and Links ...
- and a Base and a Tool (or End-Effector or Tip)

Joints

Revolute Joint: 1DOF

Prismatic Joint/ Linear Joint: 1DOF

Spherical Joint: 3DOF

Note on Joints

- Without loss of generality, we will consider only manipulators which have joints with a single degree of freedom.
- A joint having n degrees of freedom can be modeled as n joints of one degree of freedom connected with n-1 links of zero length.
- We could use 6-DoF Transforms to describe their 3D relation but we can do better (fewer variables):

Link

 A link is considered as a rigid body which defines the relationship between two neighboring joint axes of a manipulator.

The Kinematics Function of a Link

- The kinematics function of a link is to maintain a fixed relationship between the two joint axes it supports.
- This relationship can be described with two parameters: the link length a, the link twist a

Link Length

- Is measured along a line which is **mutually perpendicular** to **both** axes.
- The mutually perpendicular always exists and is unique except when both axes are parallel.

Link Twist

- Project both axes i-1 and i onto the plane whose normal is the mutually perpendicular line, and measure the angle between them
- Right-hand coordinate system

Joint Parameters (the Denavit-Hartenberg (DH) Parameters)

A joint axis is established at the connection of two links. This joint will have two normals connected to it - one for each of the links.

- The relative position of two links is called <u>link offset</u> d_n which is the distance between the links (the displacement, along the joint axes between the links).
- The joint angle θ_n between the normals is measured in a plane normal to the joint axis.

Link and Joint Parameters

Link and Joint Parameters

4 parameters are associated with each link. You can align the two axis using these parameters.

• Link parameters:

- a_n the length of the link.
- α_n the twist angle between the joint axes.

• Joint parameters:

- θ_n the angle between the links.
- d_n the distance between the links

Link Connection Description:

For Revolute Joints: a, α , and d. are all fixed, then " θ_i " is the. Joint Variable.

For Prismatic Joints: a, α , and θ . are all fixed, then "d_i" is the. Joint Variable.

These four parameters: (Link-Length a_{i-1}), (Link-Twist α_{i-1}), (Link-Offset d_i), (Joint-Angle θ_i) are known as the <u>Denavit-Hartenberg Link Parameters</u>.

Links Numbering Convention

 0_{1}

A 3-DOF Manipulator Arm

First and Last Links in the Chain

• $a_0 = \alpha_{n.} = 0$

• $\alpha_0 = \alpha_{n.} = 0$

- If joint 1 is revolute: d_0 is fixed and θ_1 is arbitrary
- If joint 1 is prismatic: d_0 = arbitrary and θ_1 is fixed

Robot Specifications

Number of axes

- Major axes, (1-3) => position the wrist
- Minor axes, (4-6) => orient the tool
- Redundant, (7-n) => reaching around obstacles, avoiding undesirable configuration

INIMATE

Example: Puma 500

θj	dj	aj	αj
q1	0.0000	0.0000	π/2
q2	0.0000	0.4318	0
q3	0.1500	0.0203	-π/2
q4	0.4318	0.0000	$\pi/2$
q5	0.0000	0.0000	-π/2
q6	0.0000	0.0000	0

Unimate Puma 500 Oussama Khatib | Used with permission

Frames

- Choose the base and tool coordinate frame
 - Make your life easy!
- Several conventions
 - Denavit Hartenberg (DH), modified DH, Hayati, etc.

KINEMATICS

Kinematics

Forward Kinematics (angles to pose) (it is straight-forward -> easy)

What you are given:The constant arm parameters (e.g. DH parameters)The angle of each joint

What you can find: The pose of any point (i.e. it's (x, y, z) coordinates & 3D orientation)

Inverse Kinematics (pose to angles) (more difficult)

What you are given:The constant arm parameters (e.g. DH parameters)The pose of some point on the robot

What you can find: The angles of each joint needed to obtain that pose

Kinematics: Velocities

FORWARD KINEMATICS

Forward Kinematics

• DH Parameters to pose:

$$A = R_z(\Theta_j) t_z(d_j) t_x(a_j) R_x(\alpha_j) \implies$$

 ${}_{E}^{B}T = R_{z}(\Theta_{1}) t_{z}(d_{1}) t_{x}(a_{1}) R_{x}(\alpha_{1}) R_{z}(\Theta_{2}) t_{z}(d_{2}) t_{x}(a_{2}) R_{x}(\alpha_{2}) \cdots R_{z}(\Theta_{N}) t_{z}(d_{N}) t_{x}(a_{N}) R_{x}(\alpha_{N})$

- For revolute joints: only Θ varies other three are constant for that robot
- For prismatic joints: only d varies other three are constant for that robot
- For non-holonomic (mobile) robots: Chain the time-varying motion: Odometry (HW2)

INVERSE KINEMATICS (IK)

Inverse Kinematics (IK)

- Given end effector pose, compute required joint angles
- In simple case, analytic solution exists
 - Use trig, geometry, and algebra to solve
- Possible Problems of Inverse Kinematics
 - Multiple solutions
 - Infinitely many solutions
 - No solutions
 - No closed-form (analytical solution)
- Generally (more DOF) difficult
 - Use Newton's method

• Analytic solution of 2-link inverse kinematics

$$\begin{array}{c} x^{2} + y^{2} = a_{1}^{2} + a_{2}^{2} - 2a_{1}a_{2}\cos(\pi - \theta_{2}) \\ \cos \theta_{2} = \frac{x^{2} + y^{2} - a_{1}^{2} - a_{2}^{2}}{2a_{1}a_{2}} \\ \text{for greater accuracy} \\ \tan^{2} \frac{\theta_{2}}{2} = \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{2a_{1}a_{2} - x^{2} - y^{2} + a_{1}^{2} + a_{2}^{2}}{2a_{1}a_{2} + x^{2} + y^{2} - a_{1}^{2} - a_{2}^{2}} \\ = \frac{(a_{1}^{2} + a_{2}^{2})^{2} - (x^{2} + y^{2})}{(x^{2} + y^{2}) - (a_{1}^{2} - a_{2}^{2})^{2}} \\ \theta_{2} = \pm 2 \tan^{-1} \sqrt{\frac{(a_{1}^{2} + a_{2}^{2})^{2} - (x^{2} + y^{2})}{(x^{2} + y^{2}) - (a_{1}^{2} - a_{2}^{2})^{2}}} \\ \text{elbow down} \end{array}$$

Iterative IK Solutions

- Often analytic solution is infeasible
- Use Jacobian
- Derivative of function output relative to each of its inputs
- If y is function of three inputs and one output

$$y = f(x_1, x_2, x_3)$$

$$\delta y = \frac{\delta f}{\partial x_1} \cdot \delta x_1 + \frac{\delta f}{\partial x_2} \cdot \delta x_2 + \frac{\delta f}{\partial x_3} \cdot \delta x_3$$

• Represent Jacobian J(X) as a 1x3 matrix of partial derivatives

Jacobian

 In another situation, end effector has 6 DOFs and robotic arm has 6 DOFs

•
$$f(x_1, ..., x_6) = (x, y, z, r, p, y)$$

• Therefore J(X) = 6x6 matrix

Jacobian Transpose Method

 Relates velocities in parameter space to velocities of outputs

$$\dot{Y} = J(X) \cdot \dot{X}$$

- If we know Y_{current} and Y_{desired} , then we subtract to compute \dot{Y}
- Invert Jacobian and solve for \dot{X} : $\dot{X} = \alpha J^T(X) \cdot \Delta Y$
- Projects difference vector ΔY to those dimensions which can reduce it the most
- Disadvantages:
 - Needs many iterations until convergence in certain configurations (e.g., Jacobian has very small coefficients)
 - Unpredictable joint configurations

56

Iterative Solution to Inverse Kinematics

- Only holds for high sampling rates or low Cartesian velocities
- "a local solution" that may be "globally" inappropriate
- Problems with singular postures
- Can be used in two ways:
 - As an instantaneous solutions of "which way to take "
 - As an "batch" iteration method to find the correct configuration at a target

PLANNING

Kinematic Problems for Manipulation

- Reliably position the tip go from one position to another position
- Don't hit anything, avoid obstacles
- Make <u>smooth motions</u>
 - at <u>reasonable speeds</u> and
 - at <u>reasonable accelerations</u>
- Adjust to changing conditions -
 - i.e. when something is picked up *respond to the change in weight*

Planning Problem

- (Arm) Pose: Set of join values
- (Arm) Trajectory:
 - Given a start pose and an end pose
 - A list of intermediate poses
 - That should be reached one after the other
 - With associated (desired) velocities and accelerations (maxima)
 - Without time (without velocity and acceleration): path! So:
 - Path: poses; Trajectory: poses with speeds (and maybe accelerations)
- Constrains:
 - Don't collide with yourself
 - Don't collide with anything else (except: fingers with the object to manipulate!!!)
 - Additional possible constrains:
 - Maximum joint velocities or accelerations
 - Keep global orientation of a joint (often end-effector) within certain boundaries