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DEFINITION OF SLAM
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What is SLAM?
• Localization: inferring location given a map 
• Mapping: inferring a map given locations 
• SLAM: learning a map and locating the robot simultaneously 
• SLAM has long been regarded as a chicken-and-egg problem: 

- a map is needed for localization and
- a pose estimate is needed for mapping 

?

Material derived from Wolfram Burgard:   
http://ais.informatik.uni-freiburg.de/teaching/ss20/robotics/slides/13-slam.pdf

http://ais.informatik.uni-freiburg.de/teaching/ss20/robotics/slides/13-slam.pdf


SLAM Front-end & Back-end
• Front-end

- calculate relative poses between several frames/ to map
- scan matching
- image registration
- …

- estimate absolute poses
- construct the local map

• Back-end
- optimize the absolute poses

and mapping
- only if a loop was closed
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https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html

https://ww2.mathworks.cn/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html


BACK END
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Overview of Back-end
• Loop Detection

• Find candidates of scan pairs/ scan with old map
• E.g. based on global pose estimated (chain rule) OR image similarity (bag of words)

• Loop Closure
• E.g. use scan matching to find the transform AND its uncertainty

• Optimization
• Pose Graph optimization (e.g. minimize error of poses, based on uncertainty)
• Bundle Adjustment

• Map Rendering
• E.g. generate grid map based on optimized graph

Robotics ShanghaiTech University - SIST - Mar 07, 2023 6



Loop Closure
• Before loop closure
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Loop Closure
• After loop closure

ShanghaiTech University - SIST - Mar 07, 2023 8Robotics



Loop Closure
• Recognizing an already mapped area, typically after a long 
exploration path (the robot “closes a loop”) 

• Structurally identical to data association, but 
- high levels of ambiguity
- possibly useless validation gates 
- environment symmetries 

• Uncertainties collapse after a loop closure (whether the closure 
was correct or not) 
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Loop Closure

•By revisiting already mapped areas, uncertainties in robot 
and landmark estimates can be reduced 
•This can be exploited when exploring an environment for 
the sake of better (e.g. more accurate) maps 
•Exploration: the problem of where to acquire new 
information 
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OVERVIEW: 
THREE SLAM PARADIGMS
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The Three SLAM Paradigms
• Most of the SLAM algorithms are based on the following three different 

approaches:
• Extended Kalman Filter SLAM: (called EKF SLAM)
• Particle Filter SLAM: (called FAST SLAM)
• Graph-Based SLAM
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EKF SLAM: overview
• Extended state vector yt : robot pose xt + position of all the features mi in the 

map:

• Example: 2D line-landmarks, size of yt = 3+2n : three variables to represent 
the robot pose + 2n variables for the n line-landmarks having vector 
components 

• As the robot moves and takes measurements, the state vector and covariance 
matrix are updated using the standard equations of the extended Kalman filter

• Drawback: EKF SLAM is computationally very expensive.
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• FastSLAM approach
• Using particle filters. 
• Particle filters: mathematical models that represent 

probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 
a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 
randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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Graph-Based SLAM (1/3)
• SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.
• The nodes of the graph are the robot locations and the features in the map.
• Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative 

position between the robot locations and the features observed from those locations.
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Graph-Based SLAM (2/3)
• Constraints are not rigid but soft constraints!
• Relaxation: compute the solution to the full SLAM problem =>

• Compute best estimate of the robot path and the environment map. 
• Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can 

then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)
• Significant advantage of graph-based SLAM techniques over EKF SLAM: 

• EKF SLAM: computation and memory for to update and store the covariance matrix is 
quadratic with the number of features.

• Graph-based SLAM: update time of the graph is constant and the required memory is linear 
in the number of features.

• However, the final graph optimization can become computationally costly if the 
robot path is long.

• Libraries for graph-based slam: g2o, ceres
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SLAM EXAMPLES
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3D Range
Sensing

Plane 
Extraction
Planar Scan 
Matching

Pose Graph ...
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Relax Loop-
Closing Errors

Jacobs 3D Mapping – Plane Mapping
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Pathak, K., A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and J. Poppinga, "Online 3D SLAM by Registration of Large Planar Surface 
Segments and Closed Form Pose-Graph Relaxation", Journal of Field Robotics, Special Issue on 3D Mapping, vol. 27, no. 1, pp. 52-84, 2010.



Plane Extraction from 3D Point Clouds
l Plane Fitting

l Assumes 3D sensor has radial Gaussian noise dependent on range
l Uses Approximate Least Squares solution to find  the best fit.
l Estimates covariance matrix of the plane parameters 

l Range Image Segmentation
l Is based on region growing algorithm
l Uses incremental formulas, therefore is fast
l Has linear computational complexity 
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Given a range image, returns a polygonal model i.e. a set 
of planar features and boundaries. 
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Plane Registration (Scan Matching)
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• Determining the correspondence set maximizing the global rigid body motion 
constraint.

• Finding the optimal decoupled rotations (Wahba's problem) and translations 
(closed form least squares) with related uncertainties.

• No motion estimates from any other source are needed.
• Very fast
• MUMC: Finding Minimally Uncertain Maximal Consensus

• Of matched planes
• Idea: select two non-parallel plane matches => fixes rotation and only leaves 

one degree of translation!



Relaxation of Errors (Translation)

l Only translation errors are relaxed
l Good rotation estimates from the plane matching
l Non-linear optimization can be exchanged with linear if rotation is 

assumed to be known precisely. 
l This leads to a fast relaxation method
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Experiment Lab Run: 29  3D point-clouds; size of each: 541 x 361 = 195,301

24Robotics



Robotics ShanghaiTech University - SIST - Mar 07, 2023 25



Robotics ShanghaiTech University - SIST - Mar 07, 2023 26



Robotics ShanghaiTech University - SIST - Mar 07, 2023 27



KALMAN FILTER OVERVIEW
Following Material: 
• Michael Williams, Australian National University
• Cornelia Fermüller, University of Maryland

Robotics ShanghaiTech University - SIST - Mar 07, 2023 29



The Problem
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• System state cannot be 
measured directly

• Need to estimate “optimally” 
from measurements
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What is a Kalman Filter?
• Recursive data processing algorithm
• Generates optimal estimate of desired quantities 
given the set of measurements

• Optimal?
• For linear system and white Gaussian errors, Kalman 

filter is “best” estimate based on all previous 
measurements

• For non-linear system optimality is ‘qualified’
• Recursive?

• Doesn’t need to store all previous measurements and 
reprocess all data each time step
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Conceptual Overview

• Lost on the 1-dimensional line
• Position – x(t)
• Assume Gaussian distributed measurements

x
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Conceptual Overview

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

• Sextant Measurement at t1: Mean = z1 and Variance = sz1

• Optimal estimate of position is: x̂(t1) = z1

• Variance of error in estimate: s2
x (t1) = s2

z1

• Boat in same position at time t2 - Predicted position is z1

Sextant



Conceptual Overview
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• So we have the prediction x̂-(t2)
• GPS Measurement at t2: Mean = z2 and Variance = sz2

• Need to correct the prediction due to measurement to get x̂(t2)
• Closer to more trusted measurement – linear interpolation?

prediction ŷ-(t2)
measurement 
z(t2)
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• Corrected mean is the new optimal estimate of position
• New variance is smaller than either of the previous two variances

measurement 
z(t2)

corrected optimal 
estimate x̂(t2)

prediction x̂-(t2)

Conceptual Overview
Robotics ShanghaiTech University - SIST - Mar 07, 2023
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• Lessons so far:

Make prediction based on previous data:  x̂-, s-

Take measurement:  zk, sz

Optimal estimate (x̂) = Prediction + (Kalman Gain) * (Measurement - Prediction)

Variance of estimate = Variance of prediction * (1  – Kalman Gain)

Conceptual Overview
Robotics ShanghaiTech University - SIST - Mar 07, 2023
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• At time t3, boat moves with velocity dx/dt=u
• Naïve approach: Shift probability to the right to predict
• This would work if we knew the velocity exactly (perfect model)

x̂(t2)
Naïve Prediction 
x̂-(t3)

Conceptual Overview
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• Better to assume imperfect model by adding Gaussian noise
• dx/dt = u + w
• Distribution for prediction moves and spreads out

x̂(t2)

Naïve Prediction 
x̂-(t3)

Prediction x̂-(t3)

Conceptual Overview
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• Now we take a measurement at t3
• Need to once again correct the prediction
• Same as before

Prediction x̂-(t3)

Measurement z(t3)

Corrected optimal estimate x̂(t3)

Conceptual Overview
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Conceptual Overview
• Lessons learnt from conceptual overview:

• Initial conditions (x̂k-1 and sk-1)

• Prediction (x̂-
k , s-

k)
• Use initial conditions and model (eg. constant velocity) to make prediction

• Measurement (zk)
• Take measurement

• Correction (x̂k , sk)
• Use measurement to correct prediction by ‘blending’ prediction and residual – always a 

case of merging only two Gaussians
• Optimal estimate with smaller variance
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Theoretical Basis
• Process to be estimated:

x̂k = Ayk-1 + Buk + wk-1

zk = Hyk + vk

Process Noise (w) with covariance Q

Measurement Noise (v) with covariance R

• Kalman Filter
Predicted: ŷ-k is estimate based on measurements at previous time-steps

x̂k = x̂-k + K(zk - H x̂-k )

Corrected: ŷk has additional information – the measurement at time k

K = P-kHT(HP-kHT + R)-1

x̂-k = Ayk-1 + Buk

P-k = APk-1AT + Q

Pk = (I - KH)P-k
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Blending Factor

• If we are sure about measurements:
– Measurement error covariance (R) decreases to zero
– K decreases and weights residual more heavily than prediction

• If we are sure about prediction
– Prediction error covariance P-

k decreases to zero
– K increases and weights prediction more heavily than residual
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Theoretical Basis

x̂-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

x̂k = x̂-
k + K(zk - H x̂-

k )

K = P-
kHT(HP-

kHT + R)-1

Pk = (I - KH)P-
k
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RECURSIVE STATE ESTIMATION
Following Material: 
• Cyrill Stachniss, University of Bonn
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State Estimation
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§ Estimate the state of a system given  observations and
controls

§ Goal:



State Estimation
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§ Estimate the state of a system given  observations and
controls

§ Goal:



Tiny Reminder  
(Probability Theory)

(reminder)
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Bayes’ Rule
(reminder)
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Bayes’ Rule with Background Knowledge z
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Law of Total Probability and Marginalization

Law of Total Probability

Marginalization

(reminder)
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Markov Property/Assumption

§ “The future is independent from the  
past given the current state.”

§ Markov property = the conditional  
probability distribution of future states  
depends only upon the present state,  
not on the sequence of events that  
preceded it.

§ Such a process has no memory
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State Estimation
§ Estimate the state of a system given  observations and controls

§ Goal:
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Recursive Bayes Filter 1

definition of the belief
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Bayes’ rule

Recursive Bayes Filter 2
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Markov assumption

Recursive Bayes Filter 3
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Law of total probability

Recursive Bayes Filter 4
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Markov assumption

Recursive Bayes Filter 5
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independence assumption

Recursive Bayes Filter 6
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recursive term

Recursive Bayes Filter 7
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Complete Derivation of the  Recursive Bayes Filter
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Prediction and Correction Step
§ Bayes filter can be written as a two  

step process

§ Prediction step

§ Correction step

62



Motion and Observation Model
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§ Prediction step

motion model

§ Correction step

observation model
(also: measurement or sensor model)
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Different Realizations
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§ The Bayes filter is a framework for  
recursive state estimation

§ There are different realizations
§ Different properties

§ Linear vs. non-linear models for motion  and 
observation models

§ Gaussian distributions only?
§ Parametric vs. non-parametric filters
§ …



Popular Filters
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§ Kalman filter & EKF
§ Gaussians
§ Linear or linearized models

§ Particle filter
§ Non-parametric
§ Arbitrary models (sampling required)



KALMAN FILTER DETAILS
Following Material: 
• Michael Williams, Australian National University
• Cornelia Fermüller, University of Maryland
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Recursive Bayes Filter

For all x do

Else if d is an action data item u then 
For all x do

Return Bel’(x)
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1. Algorithm Bayes_filter( Bel(x),d ):
2. h=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7.
8.
9.
10.
11.
12.



Kalman Filter
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• Bayes filter with Gaussians
• Developed in the late 1950's
• Most relevant Bayes filter variant in practice
• Applications range from economics, wheather forecasting,

satellite navigation to robotics and many more.

• The Kalman filter "algorithm" is a couple of matrix
multiplications!



p(x) ~ N(µ,s 2 ) :

p(x) = 1
2ps

-
e 2

1 ( x-µ )2
s 2

-s s

µ

Gaussians
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µ

Multivariate

Univariate



1D

2D

3D

Gaussians
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Properties of Gaussians

• Multivariate

• Univariate

•We stay in the “Gaussian world” as long as we start with 
Gaussians and perform only linear transformations
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Introduction to Kalman Filter (1)
• Two measurements no dynamics

• Weighted least-square

• Finding minimum error

• After some calculation and rearrangements

• Another way to look at it – weighted mean
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Discrete Kalman Filter
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• Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

• with a measurement

Matrix (𝑛x𝑛) that describes how the state evolves from t -
1 to t without controls or noise.
Matrix (𝑛x𝑙) that describes how the control ut changes 
the state from t-1 to t.
Matrix (𝑘x𝑛) that describes how to map the state xt to
an observation zt.
Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance
Rt and Qt respectively.

Process dynamics

Observation model



prediction measurement

correction

It's a weighted mean!

Kalman Filter Updates in 1D
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