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State Estimation

= Estimate the state &' of a system given observations < and controls U

= Goal:

p(xt|21:t7u1:t)
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Recursive Bayes Filter 1

bel(xt) = p(xt ‘ Zl:ta“l:lﬁ)

definition of the belief
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Recursive Bayes Filter 2

bel(xt) = p(xt ‘ Zl:ta“l:lﬁ)

— Up(Zt | xtazlzt—laulzt) p(fCt \ Zl:t—laulzt)

Bayes’ rule
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Complete Derivation of the Recursive Bayes Filter

bel(mt) — (CUt ‘ Zl:taul:t)
xtazlzt—laulzt> P(xt \ Zl:t—laulzt)

ZUt) P\ Tt | Zl:t—lyulzt)

$t) p(%& ’ xt—lazlzt—laul:t)
p(CUt—l ’ zl:t—laulzt) dzs_q

n p(zt | CCt) p(CUt ’ xt—laut) P(il?t—l | Zl:t—laulzt) drs_q

N p(zt | ﬂ?t) p<37t ’ xt—laut) p(xt—l | Zl:t—laul:t—l) dre_q

N p(Zt | ﬂft) p(ﬂft ’ xt—laut) bel(-@t—l) dri_1q
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KALMAN FILTER DETAILS

Following Material:
Michael Williams, Australian National University
Cornelia Fermuller, University of Maryland
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The Problem
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System error . SyStem state cannot be
S"‘;“’e measured directly
—— S - Need to estimate “optimally”

from measurements

System state
(desired but

not known)
Observed Optimal estimate of
Measurmg measurement system state
devices =
Measurement

error sources
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Theoretical Basis

& @ I

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

1) Project th h
(1) Project the state ahead K = P~ HT(HP-HT + R)*

Yk = AYk.1 + Buy
(2) Update estimate with measurement z,
(2) Project the error covariance ahead
Y=Ykt Kzc-Hyy)
P-k = APk_1AT +Q
(3) Update Error Covariance

Pk= (l - KH)P_k

—_— &
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Bayes Filter Reminder

® Prediction

b_el(xt) =fp(xt | u,,x,_;) bel(x,_,) dx,_,

® Correction
bel(xz) = 7717(2; ‘ x,)b_el(xt)
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Kalman Filter

® Bayes filter with Gaussians
® Developed in the late 1950's
® Most relevant Bayes filter variant in practice

® Applications range from economics, wheather forecasting,
satellite navigation to robotics and many more.

® The Kalman filter "algorithm" is a couple of matrix
multiplications!
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Gaussians

p(x) ~N(u,07)

_1 (x—,l,l)2
0= 7= 7
P\X) =
2To

Univariate

P(x)~N(pX):
] Lk =7 (x-p)

(%)= e

P (271’)“”2‘2‘1/2

Multivariate
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Gaussians

34.199 34.1%

0.020 0.013
C=

0.013  0.020
7\,1 = 0.007
A, = 0.033

p = GXY/GXGY = 0.673
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Properties of Gaussians

* Univariate
X ~N(u,o0?
(n.07) = Y ~N(au+b,a’c?)
Y=aX+b
X, ~N(u,0,) o)’ o’
2 =>p(Xl)p(X2)NN 2 21u1+ 2 2M2,
X, ~N(u,,0,7) O, $+0, o, +0,

* Multivariate
X ~N(u,2)

— Y ~N(Au+B,A34")
Y=AX +B

Xl ~ N(lul:zl)
Xz NN(‘“zaZz)

22 21
u, +
2 +2, 2 +2,

}=»p<X1)-p(X2>~N(

*We stay in the “Gaussian world” as long as we start with
Gaussians and perform only linear transformations

o

U

|

DI Y

|
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Introduction to Kalman Filter (1)

Aq) o | [_( B )]
. . fq) = exp b
® Two measurements no dynamlcs 02T

A th . 2
¢, = ¢, with variance o

A . . 2 . E .

4, = ¢, with variance G5 F o N,

e Weighted least-square A BT N VI
n . s 4

s=Ywl(g-q)

i=1

¢ Finding minimum error

4> 21 41
BS a n A 5 n i

20 " ar 2 ilama)T =23 wilg-q) =0

q;- i=1

e After some calculation and rearrangements

~ (;2

q9=aq,+5——=—q)

o]+ 05

e Another way to look at it — weighted mean
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Discrete Kalman Filter

*Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

X, = Atxt |+ Btut +¢g, < Processdynamics

« with a measurement

zZ, = Ctxt + 51 <—— Observation model

Matrix (nxn) that describes how the state evolves from ¢ -
A \ :
! I to ¢ without controls or noise.
Bt Matrix (nx!l) that describes how the control «, changes

the state from «1 to .

C, Matrix (kxn) that describes how to map the state x, to
an observation z..

E, Random variables representing the process and
measurement noise that are assumed to be
5 independent and normally distributed with covariance

t R, and Q,respectively.
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Robotics
Kalman Filter Updates in 1D
.l prediction measurement |
w/ It's a weighted mean!
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Kalman Filter Updates in 1D
L gaiﬂ/ innovation

= +K(z - o’
bel(xt) — Iut zlut t(Zt _;ut) Wlth Kt — — Gt_z
Gt =(1_Kt)at Ot +Oob.5',t
=u+K (z,-C.u = =
bel(xt) _ u, = U, t(Zt _nut) with Kt _ th,T(C,ZrCIT +Qt)_1
S =(I-K,C)Z

azs

azr

Q15

QoS -
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Kalman Filter Updates in 1D

— (U =a +b.u
bel(xt)=< fé Z‘Mt—l tzt

2 2
o, = d, Ot + Oact,t

r_tl'_lt =Au,_, +Bu,

bel(x,) =4
!
S =A% A +R
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Kalman Filter Updates

oz

azr

ais

LR

Q05 |-

o

Az

azr

Q15

LR

Q05 |
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0z

oz

Qs
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Kalman Filter Algorithm

1. Algorithm Kalman_filter( usi, Zt-1, ut, z¢):

Prediction:
2. u,=Au,_ +Bu,
S =A4%,_ A +R,

1=t-1

W

Correction:

K =xCl(CzC +0)"'
U, =u, +Kt(Zt__ Ctll’tt)
Zt = (I_Ktct)zf

N owu ok

Return Ug 2t
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The Prediction-Correction-Cycle

P AL_t =a, U, btut
bel(x,) =
WG <aol v,
— (u, =Au, ,+Bu,
bel(x,)=1_" -
= = A, A4 +R,
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The Prediction-Correction-Cycle

w=u Kz wu) a,
bel(xt)={ 102;(1 th)OztaKt= 2 . =2

=u +K(z,-Cu = = I '
bel(x,)={ut iRz =G K =3C(CczC+0)" |/ _/\

%, =(1-KC)x S —

e 4
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The Prediction-Correction-Cycle

2 R

| w=u+KI(z-u) o, — =au  +bhu
belx) =4 L K e bel(x) =1 5~
O't _( - t)at (')'I + O'ol)x.f Jl = af Of + O‘;C" !
, / =‘_lr+Kr Z,—C,‘Ll_, N N - 1] u, =4 +8
bel(x,) = s ( - )9Kt = z’crr(sz’C/T +Q/) 1 bel(xt) = 5 ftt M T tut
S, =(1-KC)S) S, =43, AT +R
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Kalman Filter Summary

® Highly efficient: Polynomial in
measurement dimensionality k
and state dimensionality n:

O(k2-376 + n2)
® Optimal for linear Gaussian systems!

® Most robotics systems are nonlinear!
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EXTENDED KALMAN FILTER (EKF)

Following Material:
Cyrill Stachniss, University of Bonn



Non-linear Dynamic Systems

« Most realistic problems (in robotics)
involve nonlinear functions

J )

Lt — g(ut,flft—l) T € 2t = h(CUt) + 5t

o Extended Kalman filter relaxes linearity assumption
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Linearity Assumption Revisited

6

piy)= N y; ap +h, a?

K Mean of piy)

02)

P

— =3 X+ h
d= Mean p

0.5 1

i) = N(% p, o7
= Mean of p(x)

Courtesy: Thrun, Burgard, Fox



Robotics ShanghaiTech University - SIST - Mar 16, 2023

6 6
Py — Function g(x)
— Gaussian of p(y) = Meanp
4 x Mean of piy) 4 Q 9w
2
<
0 T 0
-2 21
Y 4 +
0 020406 08 0 0.5 1
i pe)
= Meanp
-4
x
2t
0 s 2
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Other Error Prop. Techniques

e Second-Order Error Propagation

Rarely used (complex expressions)

e Monte-Carlo

Non-parametric

representation of - Extended Kalman Filter: EKF
uncertainties

1. Sampling from p(X)
2. Propagation of samples

3. Histogramming

4. Normalization
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EKF Linearization: First Order Taylor Expansion

= Prediction:
0g(ug, Lhi—
Q(Uuﬂ?t—l) ~ g(utaﬂt—l) + g(at a 1) (CUt—l —,th—l)
_. G,
= Correction: \

Oh(jit) Jacobian matrices

=: H,

h(ze) ~ h(fiy) +




Robotics ShanghaiTech University - SIST - Mar 16, 2023

Jacobian Matrix

e It's a non-square matrix n x m in general

f1(x) ]

* Suppose you have a vector-valued function f(x) = [ Fo(x)
2

* Let the gradient operator be the vector of (first-order)
partial derivatives

T
Vx:[azl 8?:2 %]

* Then, the Jacobian matrix is defined as

gﬁ SL
fl (X) ] 5 5 T1 .. o

FX = - - =
[fQ(X) L D
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Jacobian Matrix

* It’ s the orientation of the tangent plane to the vector-
valued function at a given point

* Generalizes the gradient of a scalar valued function
* Heavily used for first-order error propagation...
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Linearity Assumption Revisited

6| 6
ply)= N(y;ap+b,a%e?) — =g X+ b
K Mean of piy) = Meanp
) )
4
. %
3
2
1 - 1 +
0 05 1 15 0 0.5 1
6| |
pix) = N(x; w, o)
&= Mean of p{x)
=4
X
2t
0
n ne 1

Courtesy: Thrun, Burgard, Fox
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Non-Linear Function

6 6
p(y) — Function gix)
— Gaussian of p{y) = Meanp
41 X Mean of piy) 4 Q o
2 2
0 T 0}
-2 2t
gl 4 + -
0 0204 06 0.8 0 0.5 1
i P
= Meanp
2t
0 2
n ne 1

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (1)

6 6
piy) — Function g{x)
— Gaussian of p{y) — Taylor approx.
4 )| — EFK Gaussian 4 \: Mean p
O s
-
-2t
e — -4 + -
0 0204 06 0.8 0 0.5 1
6 P
= Meanp
x 47
2t
0 +
n nNE 1

Courtesy: Thrun, Burgard, Fox



Robotics ShanghaiTech University - SIST - Mar 16, 2023

EKF Linearization (2)

6 6
piy) — Function gi{x)
— Gaussian of p(y) — Taylor approx.
4 d —— EFK Gaussian 4 4= Meanp
O o
2 -
0 T 0
-2 -2
-4 - - 4 + -
0 0.5 1 0 0.5 1
4 = m?an T
<
0 C
n ne 1

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (3)

6 6
p(y) — Function gix)
— Gaussian of p(y) — Taylor approx.
4 {| — EFK Gaussian 4 ‘ g Mean p
O sw
2 ? 2
0 T 0}
-2 -2t
4l -4 + -
0 05 1 15 0 0.5 1
20 o Ej:)an e
10|
0
n nE 1

Courtesy: Thrun, Burgard, Fox
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Linearized Motion Model

= The linearized model leads to

1
2

pxy | ug, x4_1) =~ det (2w Ry)

1

exp ( — 5 (xt — g(ut,,ut_l) — Gy (xt—l — Mt—l))T

Rt_l (xr — glug, pp—1) — Gy (w41 — ,UJt—ll))

\ .

linearized model

» R; describes the noise of the motion
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Linearized Observation Model

» The linearized model leads to

p(z | 2;) = det (27Q;) 2

1

exp ( 5 (ze — h(ae) — Hy (z — )"

Q7' (2 (Mt) Hy (x4 — ﬂtp)

linearized model

= (); describes the measurement noise
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Extended Kalman Filter Algorithm

1: Extended_Kalman_filter(u:_1,>¢ 1, us, 2¢):

2: it = g(ug, phg_1

3: Zt — Gt Zt—l G,ir -+ Rt
4: Kt = Z_]t H;(Ht St Hg —+ Qt)_l Cy < Hy
5: e = iy + Kz — h(iy))

0: Zt — (I — Kt Ht) Et

7 return [, 2

KF vs. EKF
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Landmark-based Localization

EKF Localization: Basic Cycle

Odometry State Prediction
or IMU
- Measurement Data
Prediction Association

Feature/Landmark
Extraction

: Sensors /
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Landmark-based Localization

EKF Localization: Basic Cycle

posterior
encoder measurements state

: Og?melgry ’L_> State Prediction

predicted
state

Update

innovation from
matched landmarks
landmarks in global

coordinates
> Measurement >
Prediction
predicted
measurements in
sensor coordinates
landmarks

Feature/Landmark
Extraction

Data
Association

raw sensory data

Sensors

Uy



ShanghaiTech University - SIST - Mar 16, 2023

Robotics

Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cv=F,Cr, FT + F, Uy FT

Control u,: wheel displacements s, s,

2
u, = (s; s,)7 Uk:[%l 002]

Error model: linear growth

(o)) = kl |Sl|

e WL T ek—]

or = ky|s;|

Nonlinear process model f:
Tk—1 St (—sin gy + sin(fp_1 + =5))
Xp= | ypo1 | + SLESe ( cos Ok—1 — cos(fk—1 + 2252L))
0’9—1 Srgsl

N[N | o

Sr—38;
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Robotics

Landmark-based Localization

State Prediction (Odometry)
Xt = f(Xk—1,uk)
Cv=F,Cr, FT + F, Uy FT

Control u,: wheel displacements s, s,

2
ur = (87 8,)7 — | Y% 0
k= (81 8r) Us 0 o
Error model: linear growth O L
(o)) = kl |Sl| 2
or = ky|s;|

Nonlinear process model f:
Tk—1 St (—sin gy + sin(fp_1 + =5))
Xp= | ypo1 | + SLESe ( cos Ok—1 — cos(fk—1 + 2252L))
0’9—1 S'rgsl

N[N | o

Sr—38;
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Landmark-based Localization

y [m]

) | ) 1 1
o » w N — o - N w o o

Landmark Extraction (Observation)

Raw laser Extracted

range data

y [m]

lines

-5 -4 -3 -2 -1 0 1 2 3 4
x[m]

Hessian line model
x cos(a) +y sin(a) — 7

Extracted lines
in model space

I'A

line j

<3

o @

v
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Landmark-based Localization

Measurement Prediction

® ...is a coordinate frame transform world-to-sensor

e Given the predicted state (robot pose),
predicts the location Zx and location . model space
uncertainty H Cj, H' of expected r
observations in sensor coordinates %

Zk = h(f(k, m)
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Robotics

Landmark-based Localization

Data Association (Matching)

 Associates predicted measurements 2%

with observations z~l7€
. = i . model space
I/’C — Zk - Zk r . %
ij j i A iT
e Innovation and No match!!
innovation  ;; Wall was not
observed.

covariance Yk @

match j,i
I
e q

|
- ;0L 0 T

~

v

Green: observation
Magenta: measurement prediction
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Landmark-based Localization

Update

e Kalman gain

Ky =Cy HTS.! \
e State update (robot pose)

X = X + K vy
e State covariance update

Cr = (I — Ky, H) Cj,

Red: posterior estimate
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PARTICLE FILTER

55

Following Material:
Wolfram Burgard, University of Freiburg
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Particle Filter SLAM: FastSLAM

- FastSLAM approach

- Using particle filters.

- Particle filters: mathematical models that represent
probability distribution as a set of discrete
particles that occupy the state space.

- Particle filter update probability distribution (ellipse) as particle set (red dots)
- Generate new particle distribution using motion
model and controls

a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight
b) Filter resample:

- Resample particles based on weight

- Filter resample

+ Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and
randomly draw particles from previous distribution based on weights creating a new distribution.
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Motivation

- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle

- Set of state hypotheses (“particles”)

- Survival-of-the-fittest
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Mathematical Description

- Set of weighted samples
s={<slthwll>|i=1,.., N}

/

State hypothesis | | Importance Weight

- The samples represent the posterior

PG = ) Wi+ 8,0 (x)
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Robotics

Function Approximation

- Particle sets can be used to approximate functions

f(x)
samples

f(x)
samples

probability / weight
probability / weight

/\

[ LA L AR RERRT MR

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?
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Rejection Sampling
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- Let us assume that f(x) < a for all x
- Sample x from a uniform distribution
- Sample ¢ from [0, a]

-if f(x) >c
- otherwise

keep the sample
reject the sample

probability / weight

f(x)

samples

(x7)

Ce o
OK
7(x)

0
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Importance Sampling Principle

- We can even use a different distribution g to generate samples from f

- By introducing an importance weight w, we can account for the “differences

between g and f ”
w=1/g
- f is called target
- g Is called proposal

- Pre-condition:
cf(x)>0 - g(x)>0

probability / weight

proposal(x) ——
target(x)
samples

.mnmlJIIIJJIIunLquHw e

X
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Importance Sampling with Resampling

Weighted Samples After Resampling
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Particle Filter Algorithm

- Sample the next generation for particles using the proposal
distribution

- Compute the importance weights :
weight = target distribution / proposal distribution

- Resampling: “Replace unlikely samples by more likely ones”
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Particle Filter Algorithm

1. Algorithm particle_filter( S;_1, us, z¢):

2. S=0,n=

3. Fori=1,..,n Generate new samples

4. Sample index j(i) from the discrete distribution given by w;_;

5. Sample x; from p(x|xe—1 , ur) using x/) and u,

6. wi = p(z¢|x}) Compute importance weight
7 n=n+w Update normalization factor
8. Sy = S, U {< xt,wi >) Add to new particle set

9. Fori=1,..,n

10. wt = wi/n Normalize weights
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Particle Filter Algorithm

-bel(xe) = np(z¢|xe) | p(xelxe—1, u)bel(xp_q)dx,_4
“ “ 1

Draw x}_, from bel(x;_1)

Draw x} from p(x;|x,—q, Us)

Importance factor for x}
target distribution

we = ——
Y proposal distribution

np(ztlxt)p(xt|xt_1, ut)bel(xt—1)
p(X¢|X¢—1, Ut )bel(x;—q)
< Np(Z¢|xt)
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Resampling

- Given: Set S of weighted samples.

- Wanted : Random sample, where the probability of
drawing x; Is given by w;.

- Typically done n times with replacement to generate new
sample set S’.
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Resampling

Stochastic universal sampling
Systematic resampling

Linear time complexity

Easy to implement, low variance

* Roulette wheel
* Binary search, n logn
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Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot
(prediction step)

- The observation model is used to compute the importance
weight (correction step)
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Motion Model Reminder

End Pose

Start Pose @

According to the estimated motion
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Motion Model Reminder

translation

_rotation

—
\\

Decompose the motion into
e Traveled distance

e Start rotation

* End rotation

/
/
/

‘rotation

-
—
— -
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Motion Model Reminder

Uncertainty in the translation of the robot:
Gaussian over the traveled distance

* Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

* For each particle, draw a new pose by
sampling from these three individual normal
distributions
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Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot

- The set of weighted particles approximates the posterior
belief about the robot’'s pose (target distribution)
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Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal
distribution)

- Particles are weighted according to the observation model
(sensor model)

- Particles are resampled according to the particle weights
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Mobile Robot Localization Using Particle Filters (3)

-Why is resampling needed?
- We only have a finite number of particles

- Without resampling: The filter is likely to loose track of
the “good” hypotheses

- Resampling ensures that particles stay in the meaningful
area of the state space
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SLAM Using Particle Filters — Grid-based SLAM

- Can we solve the SLAM problem if no pre- defined
landmarks are available?

- Can we use the ideas of FastSLAM to build grid maps®?

- As with landmarks, the map depends on the poses of the
robot during data acquisition

- If the poses are known, grid-based mapping is easy
(“mapping with known poses”)
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Rao-Blackwellization

Poses Observations

\ Map Movements

| /

‘ p(x1;t;m|21;t; uO:t—l) — p(xl:t' |Zl:t1 uO:t—l) ) p(mlxl;t; Zl:t)

I

SLAM posterior

Robot path posterior

Mapping with known poses
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Rao-Blackwellization

‘ p(xl:bm Z1:t» uO:t—l) — p(xl:t! |Zl:t1 uO:t—l) ) p(mlxl:t) Zl:t)




A Graphical Model of Mapping with Rao-Blackwellized PFs

O—O—0.—0

okl

& @ O
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Mapping with Rao- Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot

- Each particle
- maintains its own map and
- updates it upon “mapping with known poses”

- Each particle survives with a probabillity proportional to the
likelihood of the observations relative to its own map
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Particle Filter Example

b a4 3 particles

map of particle 2 ¥y Al &
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Problem

- Each map is quite big in case of grid maps
- Each particle maintains its own map, therefore, one needs
to keep the number of particles small

- Solution:
Compute better proposal distributions!

-ldea:
Improve the pose estimate before applying the particle
filter
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Pose Correction Using Scan Matching

- Maximize the likelihood of the i-th pose and map relative to the (i — 1)-th pose
and map

Xe = argmaxxt{p(zt|xt,ﬁ1t_1) P U1, Xe—1)}

/ \

current measurement robot motion

map constructed so far



ShanghaiTech University - SIST - Mar 16, 2023

FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose
correction

- Pre-correct short odometry sequences using scan-
matching and use them as input to FastSLAM

- Fewer particles are needed, since the error in the input is
smaller
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Robotics

Raw Odometry

« Famous Intel Research
Lab dataset (Seattle)
by Dirk Hahnel

Courtesy of S. Thrun

http://robots.stanford.edu/videos.html
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Robotics

Scan Matching:
compare to
sensor

data from
previous scan

Courtesy of S. Thrun
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FastSLAM:
Particle-Filter
SLAM

Courtesy of S. Thrun
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Conclusion (thus far ...)

- The presented approach is a highly efficient algorithm for
SLAM combining ideas of scan matching and FastSLAM

- Scan matching is used to transform sequences of laser
measurements into odometry measurements

- This version of grid-based FastSLAM can handle larger
environments than before in “real time”
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What's Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps

- Use the properties of our sensor when drawing the next
generation of particles



