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LAST LECTURE
Bayes Filter
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State Estimation
§ Estimate the state of a system given  observations and controls

§ Goal:
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Recursive Bayes Filter 1

definition of the belief
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Bayes’ rule

Recursive Bayes Filter 2
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Complete Derivation of the  Recursive Bayes Filter



KALMAN FILTER DETAILS
Following Material: 
• Michael Williams, Australian National University
• Cornelia Fermüller, University of Maryland
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The Problem
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• System state cannot be 
measured directly

• Need to estimate “optimally” 
from measurements
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Theoretical Basis

ŷ-
k = Ayk-1 + Buk

P-
k = APk-1AT + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error covariance ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update estimate with measurement zk

(3) Update Error Covariance

ŷk = ŷ-
k + K(zk - H ŷ-

k )

K = P-
kHT(HP-

kHT + R)-1

Pk = (I - KH)P-
k
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•Prediction

•Correction

Bayes Filter Reminder
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Kalman Filter
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• Bayes filter with Gaussians
• Developed in the late 1950's
• Most relevant Bayes filter variant in practice
• Applications range from economics, wheather forecasting,

satellite navigation to robotics and many more.

• The Kalman filter "algorithm" is a couple of matrix
multiplications!



Gaussians

p(x) ~ N(µ,s 2 ) :

p(x) = 1
2ps

-
e 2

1 ( x-µ )2
s 2

-s s

µ
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µ

Multivariate

Univariate



Gaussians

1D

2D

3D
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Properties of Gaussians

• Multivariate

• Univariate

•We stay in the “Gaussian world” as long as we start with 
Gaussians and perform only linear transformations
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Introduction to Kalman Filter (1)

• Two measurements no dynamics

• Weighted least-square

• Finding minimum error

• After some calculation and rearrangements

• Another way to look at it – weighted mean
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Discrete Kalman Filter
•Estimates the state x of a discrete-time controlled process
that is governed by the linear stochastic difference equation

• with a measurement

Matrix (𝑛x𝑛) that describes how the state evolves from t -
1 to t without controls or noise.
Matrix (𝑛x𝑙) that describes how the control ut changes 
the state from t-1 to t.
Matrix (𝑘x𝑛) that describes how to map the state xt to
an observation zt.
Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance
Rt and Qt respectively.

Process dynamics

Observation model
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Kalman Filter Updates in 1D

prediction measurement

correction

It's a weighted mean!
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Kalman Filter Updates in 1D
gain innovation
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Kalman Filter Updates in 1D
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Kalman Filter Updates
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Kalman Filter Algorithm

1. Algorithm Kalman_filter( µt-1, St-1, ut, zt):

Prediction:
2.
3.

Correction:
4.
5.
6.

7. Return µt, St
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The Prediction-Correction-Cycle
Prediction
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The Prediction-Correction-Cycle

Correction
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The Prediction-Correction-Cycle

Correction

Prediction
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Kalman Filter Summary
•Highly efficient: Polynomial in 

measurement dimensionality k
and state dimensionality n:

O(k2.376 + n2)

•Optimal for linear Gaussian systems!

•Most robotics systems are nonlinear!
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EXTENDED KALMAN FILTER (EKF)
Following Material: 
• Cyrill Stachniss, University of Bonn
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Non-linear Dynamic Systems
• Most realistic problems (in robotics)  

involve nonlinear functions

• Extended Kalman filter relaxes linearity assumption
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Linearity Assumption Revisited

Courtesy: Thrun, Burgard, Fox
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• Second-Order Error Propagation
Rarely used (complex expressions)

• Monte-Carlo
Non-parametric
representation of
uncertainties

1. Sampling from p(X)

2. Propagation of samples

3. Histogramming

4. Normalization

Other Error Prop. Techniques
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• Extended Kalman Filter: EKF



EKF Linearization: First Order Taylor Expansion

§ Prediction:

§ Correction:
Jacobian matrices
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Jacobian Matrix
• It’s a non-square matrix in general

• Suppose you have a vector-valued function

• Let the gradient operator be the vector of (first-order) 
partial derivatives

• Then, the Jacobian matrix is defined as
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• It’s the orientation of the tangent plane to the vector-
valued function at a given point

• Generalizes the gradient of a scalar valued function
• Heavily used for first-order error propagation...

Jacobian Matrix
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Linearity Assumption Revisited

Courtesy: Thrun, Burgard, Fox
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Non-Linear Function

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (1)

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (2)

Courtesy: Thrun, Burgard, Fox
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EKF Linearization (3)

Courtesy: Thrun, Burgard, Fox
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Linearized Motion Model

§ The linearized model leads to

§ describes the noise of the motion
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Linearized Observation Model

§ The linearized model leads to

§ describes the measurement noise
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Extended Kalman Filter  Algorithm

KF vs. EKF
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State Prediction Update

Map

Feature/Landmark 
Extraction

Data 
Association

Odometry 
or IMU

Sensors

Measurement 
Prediction

Landmark-based Localization
EKF Localization: Basic Cycle
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State Prediction

posterior 
state

Update

Map

Data 
Association

Odometry 
or IMU

raw sensory data

Sensors

landmarks

Feature/Landmark 
Extraction

Measurement 
Prediction

Landmark-based Localization
EKF Localization: Basic Cycle

innovation from 
matched landmarks

predicted
measurements in

sensor coordinates

landmarks in global 
coordinates

encoder measurements

predicted
state
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State Prediction (Odometry)

Landmark-based Localization

Control uk: wheel displacements sl , sr

Error model: linear growth

Nonlinear process model f :
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State Prediction (Odometry)

Landmark-based Localization

Control uk: wheel displacements sl , sr

Error model: linear growth

Nonlinear process model f :
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Landmark-based Localization

51

Landmark Extraction (Observation)

Extracted 
lines

Hessian line model

Extracted lines
in model space

Raw laser 
range data
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Landmark-based Localization

52

Measurement Prediction
• ...is a coordinate frame transform world-to-sensor
• Given the predicted state (robot pose),

predicts the location
uncertainty

and location
of expected

observations in sensor coordinates

model space
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Data Association (Matching)
• Associates predicted measurements 

with observations

• Innovation and
innovation
covariance

Landmark-based Localization

model space

Green: observation 
Magenta: measurement prediction
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Landmark-based Localization
Update

• Kalman gain

• State update (robot pose)

• State covariance update

Red: posterior estimate
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PARTICLE FILTER
Following Material: 
• Wolfram Burgard, University of Freiburg
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• FastSLAM approach
• Using particle filters. 
• Particle filters: mathematical models that represent 

probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 
a) For each particle:

1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 
randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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Motivation
• Particle filters are a way to efficiently represent non-Gaussian distribution 
• Basic principle

• Set of state hypotheses (“particles”) 
• Survival-of-the-fittest 
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Mathematical Description 
• Set of weighted samples 

𝑆 = < 𝑠 ! , 𝑤 ! > 𝑖 = 1,… ,𝑁}

• The samples represent the posterior 
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State hypothesis Importance Weight

𝑝 𝑥 = $
!"#

$

𝑤! & 𝛿% ! (𝑥)



Function Approximation 
• Particle sets can be used to approximate functions 

• The more particles fall into an interval, the higher the probability of that interval 
• How to draw samples from a function/distribution?
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Rejection Sampling 
• Let us assume that 𝑓 𝑥 < 𝑎 for all 𝑥
• Sample 𝑥 from a uniform distribution 
• Sample 𝑐 from [0, 𝑎]
• if 𝑓 𝑥 > 𝑐 keep the sample
• otherwise reject the sample 
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Importance Sampling Principle 
• We can even use a different distribution 𝑔 to generate samples from 𝑓
• By introducing an importance weight 𝑤, we can account for the “differences 

between 𝑔 and 𝑓 ” 
• 𝑤 = 𝑓/𝑔
• 𝑓 is called target 
• 𝑔 is called proposal 
• Pre-condition: 

• 𝑓(𝑥) > 0 → 𝑔(𝑥) > 0
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Importance Sampling with Resampling 
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Weighted Samples After Resampling



Particle Filter Algorithm 
• Sample the next generation for particles using the proposal 
distribution 

• Compute the importance weights :
𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 / 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

• Resampling: “Replace unlikely samples by more likely ones” 
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Particle Filter Algorithm 
1. Algorithm particle_filter( 𝑆"#$, 𝑢", 𝑧"): 
2. 𝑆" = ∅, 𝜂 = 0
3. For 𝑖 = 1,… , 𝑛 Generate new samples 
4. Sample index 𝑗(𝑖) from the discrete distribution given by 𝑤"#$
5. Sample 𝑥"! from 𝑝(𝑥"|𝑥"#$ , 𝑢") using 𝑥"#$

%(!) and 𝑢"
6. 𝑤"! = 𝑝(𝑧"|𝑥"!) Compute importance weight 
7. 𝜂 = 𝜂 + 𝑤"! Update normalization factor 
8. 𝑆" = 𝑆" ∪ {< 𝑥"!, 𝑤"! >} Add to new particle set
9. For 𝑖 = 1,… , 𝑛
10. 𝑤"! = 𝑤"!/𝜂 Normalize weights 
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Particle Filter Algorithm 
•𝑏𝑒𝑙 𝑥! = 𝜂𝑝(𝑧!|𝑥!) ∫ 𝑝 𝑥! 𝑥!"#, 𝑢! 𝑏𝑒𝑙 𝑥!"# 𝑑𝑥!"#
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Draw 𝑥"#$! from 𝑏𝑒𝑙(𝑥"#$)

Draw 𝑥"! from 𝑝(𝑥"|𝑥"#$, 𝑢")

Importance factor for 𝑥"!

𝑤"! =
𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
=

()(*!|,!)) 𝑥" 𝑥"#$, 𝑢" -./ ,!"#
) 𝑥" 𝑥"#$, 𝑢" -./ ,!"#

∝ 𝜂𝑝(𝑧"|𝑥")



Resampling

• Given: Set 𝑆 of weighted samples. 
• Wanted : Random sample, where the probability of 
drawing 𝑥$ is given by 𝑤$. 

• Typically done 𝑛 times with replacement to generate new 
sample set 𝑆%. 
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Resampling 
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• Roulette wheel
• Binary search, 𝑛 𝑙𝑜𝑔 𝑛

• Stochastic universal sampling
• Systematic resampling
• Linear time complexity
• Easy to implement, low variance 



Mobile Robot Localization 

• Each particle is a potential pose of the robot 
• Proposal distribution is the motion model of the robot 
(prediction step) 

• The observation model is used to compute the importance 
weight (correction step) 
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Motion Model Reminder 
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Start Pose

End Pose

According to the estimated motion 



Motion Model Reminder 
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Decompose the motion into 
• Traveled distance
• Start rotation
• End rotation 



Motion Model Reminder 
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v

• Uncertainty in the transla.on of the robot: 
Gaussian over the traveled distance 

• Uncertainty in the rota.on of the robot: 
Gaussians over start and end rota.on 

• For each par.cle, draw a new pose by 
sampling from these three individual normal 
distribu.ons 



Mobile Robot Localization Using Particle Filters (1) 

• Each particle is a potential pose of the robot 
• The set of weighted particles approximates the posterior 
belief about the robot’s pose (target distribution) 
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Mobile Robot Localization Using Particle Filters (2) 
• Particles are drawn from the motion model (proposal 
distribution) 

• Particles are weighted according to the observation model 
(sensor model) 

• Particles are resampled according to the particle weights 
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Mobile Robot Localization Using Particle Filters (3) 

•Why is resampling needed? 
•We only have a finite number of particles 
•Without resampling: The filter is likely to loose track of 
the “good” hypotheses 
•Resampling ensures that particles stay in the meaningful 
area of the state space 
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SLAM Using Particle Filters – Grid-based SLAM
•Can we solve the SLAM problem if no pre- defined 
landmarks are available? 
•Can we use the ideas of FastSLAM to build grid maps? 
•As with landmarks, the map depends on the poses of the 
robot during data acquisition 
• If the poses are known, grid-based mapping is easy 
(“mapping with known poses”) 
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Rao-Blackwellization

• 𝑝 𝑥#:4 , 𝑚 𝑧#:4 , 𝑢5:46# = 𝑝 𝑥#:4 , 𝑧#:4 , 𝑢5:46# & 𝑝(𝑚|𝑥#:4 , 𝑧#:4)
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Poses
Map

Observations

Movements

SLAM posterior
Robot path posterior

Mapping with known poses



Rao-Blackwellization

• 𝑝 𝑥#:4 , 𝑚 𝑧#:4 , 𝑢5:46# = 𝑝 𝑥#:4 , 𝑧#:4 , 𝑢5:46# & 𝑝(𝑚|𝑥#:4 , 𝑧#:4)
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This is Localization, use MCL

Use the pose estimate from 
the MCL and apply 
mapping with known poses 



A Graphical Model of Mapping with Rao-Blackwellized PFs 
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Mapping with Rao- Blackwellized Particle Filters 
•Each particle represents a possible trajectory of the robot 
•Each particle 

• maintains its own map and 
• updates it upon “mapping with known poses” 

•Each particle survives with a probability proportional to the 
likelihood of the observations relative to its own map 
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Particle Filter Example 
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Problem 
•Each map is quite big in case of grid maps 
•Each particle maintains its own map, therefore, one needs 
to keep the number of particles small 
•Solution:
Compute better proposal distributions! 
• Idea:
Improve the pose estimate before applying the particle 
filter 
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Pose Correction Using Scan Matching 
• Maximize the likelihood of the 𝑖-th pose and map relative to the (𝑖 − 1)-th pose 

and map 
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D𝑥4 = 𝑎𝑟𝑔𝑚𝑎𝑥7"{𝑝(𝑧4|𝑥4 , F𝑚46#) & 𝑝(𝑥4|𝑢46#, D𝑥46#)}

current measurement

map constructed so far

robot motion



FastSLAM with Improved Odometry 
•Scan-matching provides a locally consistent pose 
correction 
•Pre-correct short odometry sequences using scan-
matching and use them as input to FastSLAM
•Fewer particles are needed, since the error in the input is 
smaller 
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Graphical Model for Mapping with Improved Odometry 
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Raw Odometry

Courtesy of S. Thrun
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http://robots.stanford.edu/videos.html

• Famous Intel Research
Lab dataset (Seattle)
by Dirk Hähnel

http://robots.stanford.edu/videos.html


Scan Matching:
compare to 
sensor
data from 
previous scan

Courtesy of S. Thrun
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FastSLAM:
Particle-Filter
SLAM
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Courtesy of S. Thrun



Conclusion (thus far ...) 
•The presented approach is a highly efficient algorithm for 
SLAM combining ideas of scan matching and FastSLAM
•Scan matching is used to transform sequences of laser 
measurements into odometry measurements 
•This version of grid-based FastSLAM can handle larger 
environments than before in “real time” 
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What’s Next? 
•Further reduce the number of particles 
• Improved proposals will lead to more accurate maps 
•Use the properties of our sensor when drawing the next 
generation of particles 
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