
Application of Robot Arm in 2D Incision
A project of the 2016 Robotics Course of the School of Information Science and Technology (SIST) of ShanghaiTech University

Instructor: Prof. Sören Schwertfeger · https://robotics.shanghaitech.edu.cn/teaching/robotics2016

Cao Yuchen
SIST

caoych@shanghaitech

Zhang Shuai
SIST

zhangshuai1@shanghaitech

Shan Zeyong
SIST

shanzy@shanghaitech

Abstract

We’d like to apply the 6-axes robot arm in traditional
3-axes or 5-axes CNC machine. Traditional 3-axes or 5-
axes CNC machine has many limits: 1) Most of traditional
CNC machine is in a enclosed box. 2) The milling head just
can move in 3-axes and the milling range is limited. 3) The
robot arm can move around the object thus the object can
be very large, such as a sculpture. The robot arm based
CNC machine we build will be capable of doing these job.

Keywords: Moveit! Path Planning 2D Incision Driller

1. Introduction

The Robotic Arm is a programmable mechanical arm,
which is mimicing the movement of human arms. The robot
arm usually consists of joints and links, the number of dif-
ferent arms may be different. It’s common to see a 5 or 6
joints robotic arm. And the links that connect joints make
it possible to actuate rotation and translation. And the links
are considered as kinematic chain. So we can calculate the
speed and pose through different frames relative to base
frame. For this project, we choose to use Schunk Arm as
showed in Figure 1.

Figure 1. Schunk model

Similar to 3D printer, the idea of 3D incision by robot
arm is aimed to carve on a raw material by following de-
termined path to create a 3D model. This requires the pro-
gram realize avoiding collision, reaching around obstacles
and planning divesity of points to arrive at the goal step by
step. We thought this is interesting and cool to 3D print
something by a robot arm, something that a man’s arm even
cannot do well.

2. State of the Ar

The algorithm to compute motion planning contains two
parts:(a) it utilizes the topology of the arm and obstacles
to factor the search space and reduce the complexity of the
planning problem using dynamic programming; (b) it takes
only polynomial time in the number of joints under some
conditions. For the 2D condition, there is a path between
two homotopic configurations, an embedded local planner
finds a path within a polynomial time. In finding sets of
plans that move the position of end-effector, The algorithm
first finds the set of accessible positions. For each posi-
tion, it marks the possible entrance configurations, any an-
gle which links 1 can approach from joint 1 to joint 2 at that
position (in this case, the location of joint 1 is fixed in the
base, so there is at most one such angle for every position).

1

https://robotics.shanghaitech.edu.cn/teaching/robotics2016

For each position for joint 2, we find the set of accessible
positions.

ROS stack: moveit. MoveIt is state of the art software for
mobile manipulation, incorporating the latest advances in
motion planning, manipulation, 3D perception, kinematics,
control and navigation. It provides an easy-to-use platform
for developing advanced robotics applications, evaluating
new robot designs and building integrated robotics products
for industrial, commercial, R&D and other domains. The
ROS stack moveit contains all essential package of MoveIt!,
include moveit commander, moveit core, moveit planners,
moveit plugins,moveit ros and moveit setup assistant. We
can create our own moveit package by configuration some
essential parameter use move setup assistant, and we can
also load our arm model in it. Moveit integrates OMPL
(Open Motion Planning Library) which contains many mo-
tion planning algorithms such as Rapidly-exploring Ran-
dom Trees (RRT) and Probabilistic Roadmap (PRM).

Reducing prototyping time is a good way to make the
product development cycle shorter. This can be achieved
in two ways: one is to develop new prototyping technolo-
gies like stereolithography apparatus (SLA), selective laser
sintering (SLS) etc.; the other is to improve the principal
existing technique which is CNC based method. In this pa-
per, a robotic system for rapid prototyping which is an en-
hancement of the CNC based method is presented. A robot
arm holding a milling tool is used to machine the prototype
of a solid model drawn in commercial CAD systems. The
rough cut and finish cut NC tool path for the robot arm are
generated automatically from the solid model of an object.
Objects may have different kinds of surfaces like planar sur-
face, general quadratic surface, B-spline surface and com-
pound surface. The proposed method is implemented on
the AutoCAD platform. A number of produced prototypes
have shown satisfactory results.

ROS Package: TF. TF is a package that let the user keep
track of multiple coordinate frames over time. tf maintains
the relationship between coordinate frames in a tree struc-
ture buffered in time, and lets the user transform points, vec-
tors, etc between any two coordinate frames at any desired
point in time. TF can operate in a distributed system. This
means all the information about the coordinate frames of a
robot is available to all ROS components on any computer
in the system. There is no central server of transform infor-
mation.

In our robot arm projects. We can use TF package to
build every joints of the robot arm. And with TF package
we can know the robot arm’s transform and control the robot
arm better. By listening and broadcasting the transforms,
we can make the robot arm interact with other device and
process. With transform information, we can optimize the
motion of the robot arm.

ROS package: schunk canopen driver. This package

provides a driver interface for the Schunk LWA4P robot
arm through the CANOPEN interface. It provides a sim-
ple interface that accepts position commands and another
interface for ros control. The package offers two different
interfaces, which both differ in the action topics, parameters
and the way commanded waypoints are interpreted by the
hardware. The simpler profile position-interface accepts se-
ries of waypoints which the robot will drive to with internal
interpolation. It is not guaranteed (and might never hap-
pen), that all joints finish moving at the same time. The
ros control-interface provides a position controller in joint
space which will interpolate between waypoints inside the
controller (on the host PC). You can set joint velocities and
time constraints for each waypoint, and the controller will
take care. So we are using the ros control-interface mode.

3. Approach

3.1. Driller and Model Calibration

To simulate the real condition for Schunk arm, first step
is to calibrate the model and set the collision attribute. We
fisrt describe the urdf and xacro file to build the model for
schunk arm in RVIZ and Moveit!. The main work is to
write the size, collision area and geometry. Below is a part
of prgram of the urdf, each position of link is based on the
frame of its parent joint, and one joint may have multiple
links, the joint and link both contains the information about
their rotation and position. For links, there are shape and
collision to describe, to make sure the link can be visualized
in model and have collision avoidance attributes. Part of
the urdf is listed as below:

<!-- joint between arm_6_link and tcp_link-->
<joint name="\${name}_tcp_driller_joint"
type="fixed">
<origin xyz="-0.092 0 0.04" rpy="0 0 0" />
<parent link="\${name}_tcp_link"/>
<child link="\${name}_tcp_driller"/>
</joint>

<!-- link for driller -->
<link name="\${name}_tcp_driller">
<visual>
<origin xyz="0 0 0" rpy="0 1.5708 0" />
<geometry>
<cylinder length="0.08" radius="0.01"/>
</geometry>
<material name="Schunk/DarkGrey" />
</visual>
<collision>
<origin xyz="0 0 0" rpy="0 1.5708 0" />
<geometry>
<cylinder length="0.08" radius="0.01"/>

2

</geometry>
</collision>
</link>

After many times recorrect data, we finally get a rela-
tive similar model with the real one. And then, we use 3D
printer to design the model to fix driller on Schunk arm. The
desgin model is drawn in Solidworks, shown as below:

Figure 2. Fixing Model.

3.2. Generate the Coordinates for Carving

We choose the PyCAM software to generate the path of
2D/3D incision. The software goes like below:

Figure 3. PyCAM.

In this window, we can generate any shape of model as
we want, it provides the reserved shape and also allow us to
draw it by ourselves. Here we choose a simple pentaon as
the goal path points. And we can get the raw datas like this:

Figure 4. Path points

Then, we write a reading data program by C++. During
compiling, the data type convertion and the loop time is
important factor to consider. First time, we choose to
generate a bag and let main program to listen to this topic,
but it takes extra time, so we finally combine the reading
program with main program together to save effort. The
main program goes like:
ifstream in(”/home/ubuntu/schunk/src/schunk read/src
/pycam-text.ngc”,ios::binary);
while (!in.eof())
{ in >> s1;
if (s1[0] == ’X’)
{ if (s2[0] == s1[0])
{if (first)
{ xp = x, yp = y, zp = z;
first = false;}
target pose3.position.x += (x-xp)/100.0;
target pose3.position.y += (y-yp)/100.0;
target pose3.position.z += (z-zp)/100.0;
waypoints.push back(target pose3);
xp = x, yp = y, zp = z; }
sx = &s1[1];
x = strtod(sx, NULL); }
else if (s1[0] == ’Y’)
{ sy = &s1[1];
y = strtod(sy, NULL);
if (first)
{ xp = x, yp = y, zp = z;
first = false;
} target pose3.position.x += (x-xp)/100.0;
target pose3.position.y += (y-yp)/100.0;
target pose3.position.z += (z-zp)/100.0;
waypoints.push back(target pose3);
xp = x, yp = y, zp = z; }
else if (s1[0] == ’Z’)
{ sz=&s1[1];

3

z = strtod(sz,NULL); }
else ;
s2 = s1; }
in.close();

With the help of this program, we input the data into
program and make complicated path planning available.

3.3. Move the Arm by Moveit!

MoveIt! is state of the art software for mobile ma-
nipulation, incorporating the latest advances in motion
planning, manipulation, 3D perception, kinematics, con-
trol and navigation. It provides an easy-to-use platform
for developing advanced robotics applications, evaluat-
ing new robot designs and building integrated robotics
products for industrial, commercial, R&D and other do-
mains. To use Moveit!, first we need to create our
own package through MoveIt! Setup Assistant. It can
be start by command: roslaunch moveit setup assistant
setup assistant.launch This will bringup the start screen
with two choices: Create New MoveIt! Configuration Pack-
age or Edit Existing MoveIt! Configuration Package.

Figure 5. Moveit!

We can load our schunk arm URDF file, in which
LWA4P is provided from schunk CANopen driver package,
and download schunk pg70 gripper. Also, we have done
some change in it, that is add the camera, table and drill.

Figure 6. Moveit! model

Then, we need to generate self-collision matrix, because
when planing, some link pairs are no need to calculate the
self-collision. For example, Arm 0 link and arm 2 link is
disabled because they will never in collision:

Figure 7. Moveit! Collision Arm

Workball link and workpiece link is disabled because
they are adjacent links. Then we create a virtual joint called
world joint, virtual joints are used primarily to attach the
robot to the world. Next is the most important part, we need
to set our move group, we set the group name to Arm, and
select the kinematics solver, you can even write your own
kinematics solver.

4

Figure 8. Moveit! Kinematics Solver

Our planning group is like figure 9:

Figure 9. Moveit! Planning Group

And then we can set some robot poses group, which will
be convenient later. And select our end-effecor. The end-
effector is important because its pose is just the x,y,z we
want the arm to go. Then generate the package. MoveIt!
operates on sets of joints called planning groups and stores
them in an object called the JointModelGroup. Throughout
MoveIt! the terms planning group and joint model group
are used interchangably.
static const std::string PLANNING GROUP = ”Arm”;

The MoveGroup class can be easily setup using just the
name of the planning group you would like to control and
plan for.
moveit::planning interface::MoveGroupInterface
move group(PLANNING GROUP);

We will use the PlanningSceneInterface class to add and
remove collision objects in our virtual world scene.
moveit::planning interface::PlanningSceneInterface plan-
ning scene interface;

We can print the name of the reference frame for this
robot.
ROS INFO NAMED(”tutorial”, ”Reference frame: %s”,
move group.getPlanningFrame().c str());

We can also print the name of the end-effector link for
this group.
ROS INFO NAMED(”tutorial”, ”End effector link: %s”,

move group.getEndEffectorLink().c str());
We can plan to a pose goal, which means we set a x,y,z

and p,r,y, and execute the plan, we can also plan to a joint-
space goal. But what we need in this project is cartesian
path plan, because plan to a pose goal can guarantee that
the trajectory is what we want, since the planner plans in
the joint space, the shortest path in the joint space is always
not the shortest in the world space.

We can plan a cartesian path directly by specifying a list
of waypoints for the end-effector to go through. Note that
we are starting from the new start state above. The initial
pose (start state) does not need to be added to the waypoint
list but adding it can help with visualizations.
std::vector geometry msgs::Pose waypoints;
waypoints.push back(start pose);
geometry msgs::Pose target pose = start pose;
target pose.position.z+=0.2;waypoints.push back(target pose);
target pose.position.y-=0.1;waypoints.push back(target pose);
target pose.position.z-=0.2;target pose3.position.y+=0.2;
target pose.position.x-=0.2;waypoints.push back(target pose);

Cartesian motions are frequently needed to be slower for
actions such as approach and retreat grasp motions. Here
we demonstrate how to reduce the speed of the robot arm
via a scaling factor of the maxiumum speed of each joint.
Note this is not the speed of the end effector point.
move group.setMaxVelocityScalingFactor(0.1);

We want the cartesian path to be interpolated at a
resolution of 1 mm which is why we will specify 0.001 as
the max step in cartesian translation. We will specify the
jump threshold as 0.0, effectively disabling it. Warning -
disabling the jump threshold while operating real hardware
can cause large unpredictable motions of redundant joints
and could be a safety issue.
moveit msgs::RobotTrajectory trajectory;
const double jump threshold = 0.0;const double eef step =
0.01;
double fraction = move group.computeCartesianPath(waypoints,
eef step, jump threshold, trajectory);
ROS INFO NAMED(”tutorial”, ”Visualizing plan 4
(cartesian path) (%.2f%% acheived)”, fraction * 100.0);

And the function will automatically visualize the plan in
Rviz. If the visualize is in our expectation, we can execute
the plan.

4. Experiment and Result
Our system is maily aimed to build a robot-arm based 5

or 6 axes CNC machine. It consists of 3 parts:
1.Model building: We need to build up mathematica model
to show the trasformation and rotation among different
joints.
2.Motion planning and g-code generate: we try to build
up a bridge to take the use of G-code, which is highly
integrated and easily to control 3D printer, so that the

5

motion planning can be realized at the same time.
3.Arm execute: just apply it and check and recorrect the
error!

We finally adjust the algorithm to make sure that every-
time the exectution is 100% successful, and there is no miss-
ing point or path in pratice. However, because of the limi-
tation of velocity, Schunk arm does not completely goes in
average speed as we expect. Here is an example we draw
by schunk arm:

Figure 10. Example for 2D Drawing.

As we can see, the result is not bad, and the accuracy
is high when the driller rotating speed is quick enough and
the board is not so tough, i.e. the friction force is too large.
Otherwise the arm will departure from the planning path
with strong friction.

5. Time-Line

03/11/2016-05/11/2016
Research, read paper, and wrote proposal for our project.
14/11/2016-20/11/2016
Generated the coordinates for path planning, made sample
program to motivate the arm do some simple movements,
and wrote the reading txt program to get the coordinates.
21/11/2016-27/11/2016
Wrote the Xtmls to describe a model with visual and
colliding attributes, finally we drive the Moveit! to draw
some squres and ellipse by robot arm.
05/12/2016-11/12/2016
Solved bugs that appear in our trying, 3D printed the
pedestal to install the driller on Robot Arm.
12/12/2016-18/12/2016
Planned complicated path for the arm and got prepared for
mid-term presentation.
19/12/2016-10/1/2016

Fix bugs such as getting connected with finger of gripper
which is out of control, and refine the algorithm so that it
can draw any 2D pictures as long as it stays in its touchable
domain.
11/1/2016-19/1/2016
And getting prepared for final report.

6. Conclusions
In conclusion, our team firstly focused on 2D incision,

and the main problem was to build a mathematical model,
which contains relationship between different frames. Then
based on each servo motors’ rotating ability, we applied the
model and motion planning method into program, then we
kept repeating test till it works well. In those processes, we
three students learned the knowledge about ROS system,
Robot Arm and how to program to manage path planning.
Also, we develop the ability of team work.

Finally, we will thank professor Soren Schwertfeger for
giving us much help in our project, giving us a very nice
introduction to the robot arm, and providing us with so nice
hardware Schunk, Xtion and ohter equipments. And he pa-
tiently teaches us a lot from scratch. We will also thank our
University for providing us so nice place to study and do
experiments.

References
[1] H. Choset. Robotic motion planning: Configuration space.

Robotics Institute 16-735.
[2] D.-H. L. J. Y. L. Dong-Hyung Kim, Sung-Jin Lim and C.-

S. Han. A rrt-based motion planning of dual-arm robot for
(dis)assembly tasks. DOI: 10.1109/ISR.2013.6695698. IEEE.
06 January 2014.

[3] E. A. Jaesik Choi. Factor-guided motion planning for a robot
arm. University of Illinois at Urbana-Champaign. Urbana, IL
61801. Oct 29 - Nov 2, 2007.

[4] J. W. Richard Tatum, Drew Lucas and J. Perkins. Geometri-
cally motivated inverse kinematics for an arm with 7 degrees
of freedom. IEEE.

[5] G. M. Sergey Pluzhnikov. Motion planning and control of
robot manipulators. Norwegian University of Science and
Technology. June 2012.

[6] M. S. Tobias Kunz, Ulrich Reiser and A. Verl. Real-time path
planning for a robot arm in changing environment. IEEE/RSJ
International Conference on Intelligent Robots and Systems.
(IROS’10) Oct. 2010.

[7] Y. C. WC Tse. A robotic system for rapid prototyping.
Proceedinps of the 2000 IEEE. lntemahonal Conference on
Robotics & Automation. San Francisco. CA April 2000.

[8] Y. C. YN Hu. Implementation of a robot system for sculp-
tured surface cutting. department of mechanical engineer-
ing. The University of Hong Kong, Hong KongCN. DOI:
10.1007/s001700050112.

[9] B. X. J. Zhao and Y. Liu. Human-like motion planning
for robotic arm system. DOI:10.1109/ICAR.2011.6088543.
IEEE. 01 December 2011.

6

