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Introduction

•Due to the properties of underwater environments, underwater perception is quite dif-
ferent from air. Images captured underwater usually look bluish or greenish. Besides,
the underwater images are more blurred than that in air captured by the same camera
due to turbidity. These reasons increase the difficulty of depth estimation from images.
•We exploit a deep learning based depth estimation for in-air perspective images to es-

timate the depth of underwater perspective and omni-directional images. The system
overview is shown as Figure 1.
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Figure 1: Perspective and omni-directional image processing training pipeline.

Distortion Removed

To handle the distortion of omni-directional images, we replace the square kernel with
spherical ones in tangent space as shown in Figure 2. Assume the center of a n × n
square kernel is (0, 0), then the relative coordinates of n × n kernel can be described as[

(αxij, βyij)
]
n×n where

xij = tan(|i|∆θ), yij =
tan(|j|∆φ)

cos(|i|∆θ)
(1)

, α and β are the symbols consistent with the relative coordinates to center.

𝜽𝜽

𝝋𝝋

𝑶𝑶

𝒖𝒖

𝒗𝒗

𝒐𝒐𝒊𝒊

Equirectangular Image

𝜃𝜃

𝜑𝜑

𝒙𝒙
𝒚𝒚

𝒛𝒛

𝑶𝑶𝒔𝒔

Sphere Coordinates

T

Figure 2: Mapping between longitude-latitude and spherical coordinates.

Synthetic Dataset

•Underwater NYU: We transfer NYU-v1 [1] dataset to underwater style via Water-
GAN [2], which is an underwater style transfer generative adversarial network (GAN).
It contains 32,704 images, of which 26,163 are for training and 6,541 are for testing,
and all input data is resized to 228×304.
•Underwater 360D: The 360D dataset [3] is transferred to underwater style via . It con-

tains 35,977 images ,of which 34,679 are for training and 1,298 are for testing, and
image size is 256×512.
• Preprocessing: random scaling, rotation, center-crop and horizontal flip, as proposed

by Eigen et al. [4].

Methods & Models
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Figure 3: The Fully Convolutional Residual Neural Network (FCRN) [5] architecture of depth estimation networks for perspec-
tive and omni-directional images. We train a ResNet-50 FCRN model for the underwater NYU dataset. We are then using a
Sphere ResNet-18 architecture to train the model with underwater 360D datasets to reduce the memory and training time.

Experiments and Results

• Perspective Images
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Figure 4: The experimental results of underwater NYU dataset. (a) are RGB images from the testing set. (b) are the predicted
depth of Eigen et al.’s [4]; (c) are the predicted depth maps of ours; (d) are the ground truth depth maps.

•Omnidirectional Images
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Figure 5: The experimental results of underwater 360D dataset. (a) are RGB images from the testing set. (b) are the predicted
depth maps; (c) are the ground truth depth maps.

•Error Metrics: The experiment results shows our model exhibit a very nice performance
on the dataset. And our method still performs better than Eigen et al.’s. [4] in perspec-
tive scene.

Input Model RMSE MAE REL δ1 t gpu(s)

Perspective
ResNet-50 0.162 0.117 0.098 0.914 0.0201
Eigen et al. 0.235 0.184 0.148 0.806 0.005

Omnidirectional SphereResNet-18 0.604 0.362 0.172 0.711 0.0145

Table 1: The error metrics of each model. t gpu means the average operation time on each image on GPU.

Conclusion

•Underwater NYU-v1 and 360D dataset: transfer in-air images to underwater style im-
ages via WaterGAN and theoretical analysis method respectively.
•Conventional FCRN achieves good performance for underwater perspective images and

spherical FCRN works well for underwater omni-directional images.
• Future work:

– Transfer conventional FCRN to spherical FCRN without retraining.
– Enlarge the diversity of the training dataset to adapt to different scenarios.
– Collect more real underwater images to improve the robust of our models.
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