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A utonomous robots are increasingly suited for operations
in unstructured application domains. One impressive

example is the result of the Defense Advanced Research
Projects Agency (DARPA) Grand Challenge 2005, where five
teams managed to get autonomous vehicles to complete a
213 km track in the Mojave desert. Some conditions of the
Grand Challenge do not hold for Space Robotics, especially
the availability of a drivable track defined by GPS positions.
In general, it can be argued that Space Robotics and especially
Planetary Exploration have to deal with one of the most
challenging unstructured environments. There is absolutely no
infrastructure, the cost of mission failure is very high, and
many core sensors that form the foundations of intelligent
autonomous behaviors are not space proof, yet. But autonomy
is not a binary all or nothing property. Intelligent autonomous
functions can supplement different levels of teleoperation. In
the context of the 2008 Lunar Robotics Challenge (LRC)
of the European Space Agency (ESA), the Jacobs Robotics
team investigated 3D Perception and Modeling as an impor-
tant basis of autonomy in unstructured domains. Concretely,
the efficient modeling of the terrain via a 3D Laser Range
Finder is addressed. The underlying fast extraction of planar
surface patches can for example be used to improve situational
awareness of an operator or for path planning.

I. INTELLIGENT AUTONOMOUS FUNCTIONS FOR
PLANETARY EXPLORATION

As already pointed out in [1] in the context of Safety, Secu-
rity, and Rescue Robotics (SSRR), several different stages of
teleoperation can be distinguished that feature different levels
of intelligent autonomous functions. For almost all possible
application scenarios of mobile robots in unstructured domains
including Planetary Exploration, there is a human operator in
the loop issuing control commands. What potentially differs
are the levels of abstraction with which the operator interacts
with the robots (figure 1).

On stage 1 or motion level teleoperation, there is a direct
mapping between operator inputs - typically via a joystick -
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and motor activations. This level already involves many non-
trivial challenges that motivate the use of intelligent capabili-
ties onboard of the robot. One obvious example for planetary
exploration is advanced locomotion control [2][3][4][5][6].
But good situational awareness of the operator is also of
high importance for motion level teleoperation in planetary
exploration [7]. In doing so, 3D perception and representation
of the environment is of high interest.

Teleoperation for space robotics suffers from many commu-
nication related restrictions. There are long time delays and
links may even completely break down at particular locations
or for some time period. Furthermore, there is the risk that
the environment representation for the operator misses certain
details that pose a risk to the robot. These are the reasons
for stage 2 teleoperation by devising systems that can follow
telecommands on a behavior level. An example is short-
term autonomous driving through a narrow passage between
two rocks. But the challenges for telerobotics do not stop at
level 2. Especially if multi-robots are to engage in complex
cooperative tasks. Imagine for example the preparation or even
set-up of a lunar base. There is the need for stage 3 or mission
level teleoperation where the operator can specify high level
goals that the robots pursue in a largely autonomous fashion.

We consider 3D perception and modeling as an important
basis for autonomous intelligent functionalities in unstructured
environments including especially planetary exploration. This
holds for all three levels of teleoperation starting with the low
level control. For example, the Mars Exploration Rover (MER)
missions [8][9][10][11] are an impressive demonstration of the
possibilities of using mobile robots for planetary exploration.
Their very advanced capabilities can mainly be categorized
somewhere between stage 1 and stage 2 teleoperation with a
few level 3 elements. Enabling excellent situational awareness
for the operator via 3D perception and modeling is hence of
high importance.

In the context of space robotics, stereo vision is the domi-
nant approach for 3D perception and modeling [12] [13] [14]
[15] [16], and also some other vision based techniques can
be found [17][18]. But stereo vision has its limitations for
planetary exploration, especially in planetary settings with few
features [19]. Also, computer vision in general has difficulties
in coping with extreme lighting conditions like the ones
found in the scenario of the ESA Lunar Robotics Challenge.
Furthermore, stereo has its limitations in terms of maximum
range and precision. There is hence an interest in exploring
alternative technologies for robotic planetary exploration like
3D Laser Range Finders (3D-LRF) [20], which as further
benefits provide a large field of view and quite precise, high
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Fig. 1. Teleoperation can involve different degrees of intelligent autonomous functions onboard of the robots.

resolution data.
But what in principle is a significant advantage, namely the

provision of large amounts of high resolution 3D data, is also
a drawback when it comes to the processing of the data as
well as the transmission of the data to the operator’s station
on earth. A way out of this dilemma is the representation of 3D
data through efficient surface models. In the following, some
of our work is presented that was also tested on data collected
as part of the 2008 Lunar Robotics Challenge (LRC) of the
European Space Agency (ESA).

II. THE ESA LUNAR ROBOTICS CHALLENGE

Fig. 3. The two robots of the Jacobs team during the ESA Lunar Robotics
Challenge. On the left, the relay robot with a 3D Laser Range Finder to
generate models of the environment. On the right, the probe robot to take soil
samples in the crater. The photos are taken during the day with good visibility
conditions.

The European Space Agency (ESA) introduced the Lunar
Robotics Challenge (LRC) [21] in 2008 as a research oriented
competition for university student teams. The motivation for
the ESA LRC is the scientific interest to search for the
presence of water on moon, especially at the bottom of craters
in the polar regions. For this purpose, a probe robot has to get
from a landing site to the crater, to descend into it, to take
probes of interesting soil spots at the bottom, to climb out

of the crater, and to return back to the lander where the soil
probe has to be delivered for an automated analysis. This leads
to several particular challenges (figure 2). First, the crater is
steep and loose soil makes locomotion challenging. Second,
there is no RF-communication from the lander - that provides
the communication link to the operator station on earth - into
the crater, hence direct teleoperation is not possible. Third,
there is very bright, horizontal illumination by sunlight on the
top and the rim of the crater and absolute darkness inside of
it, making teleoperation via video-streams extremely hard and
vision based environment modeling impossible.

Eight teams qualified for the 2008 ESA LRC and received
funding from the ESA General Studies Programme (GSP):

• Universität Bremen, Germany,
• Jacobs University Bremen, Germany,
• Universidad Politecnica de Madrid, Spain,
• Oulun Yliopisto (University of Oulu), Finland
• Universit di Pisa, Italy,
• Scuola Superiore Sant’Anna Pisa, Italy,
• Surrey Space Centre, University of Surrey, United
• Swiss Federal Institute of Technology (ETH) Zurich,

Switzerland

After a few months of design and implementation phases,
the actual LRC took place in October 2008 in the volcanic
landscape of the Teide National Park on the island of Tenerife.
The team of Jacobs University built two robots (figure 3) for
this event. One major goal of the team was to use the unique
opportunity of this field test to investigate intelligent onboard
features. One particularly interesting aspect in this scenario
is that vision based approaches to environment modeling are
severely hindered by the light conditions (figure 4).

The Jacobs team hence used a second robot in addition to
a probe robot. This second robot serves as a communication
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Fig. 2. The setup of the ESA LRC features a typical scenario where 3D sensing and modeling is highly desirable, but vision based approaches would have
to cope with very challenging light conditions.

Fig. 4. The robots of the Jacobs team during the actual ESA Lunar Robotics Challenge taking place in the night with simulated light conditions as found
in the polar regions of the moon. On the left top, the robots heading for the crater rim. On the right top, the probe robot has already passed the rim of the
crater. The second robot serves as communication relay station and assists in the search operation. On the bottom, the light conditions within the crater can
be seen.

relay between the lander and the probe robot and furthermore
as a 3D environment modeler. For this purpose, the robot
is equipped with an actuated laser range finder (LRF). The
sensor is based on a commercial 2D LRF of the type SICK
S300 combined with a simple servo for a pitching motion
for the additional degree of freedom. The SICK S300 has a
horizontal field of view of 270◦ of 541 beams. The servo
allows a maximum motion from −90◦ to +90◦ at a maximum
spacing of 0.5◦. This gives a 3D point-cloud of a total size of
541×361 = 195, 301 per sample in the highest resolution. The
maximum range of the sensor is about 20 meters. The time to
take one full scan in maximum resolution is about Tscan ≈ 32
seconds. This scan time is the main bottleneck for the envi-

ronment modeling. But there are - more costly - off-the-shelf
3D-LRF alternatives that provide even higher resolution 3D
data at significantly faster rates; an example is the Velodyne
HDL-64E that provides an update rate with > 1.333 million
points per second. The preparation of the team for the LRC,
as well as the related research are supplemented by additional
experiments in the Unified System for Automation and Robot
Simulation (USARSim) [22] where a model of a Velodyne
HDL-64E is available for testing purposes. Furthermore, we
have imported ground truth data from Mars into USARsim
(figure 5).
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Fig. 5. Planetary exploration in the Unified System for Automation and
Robotics Simulator - USARsim.

III. ESTIMATION OF PLANE PARAMETERS AND THEIR
UNCERTAINTY

A general idea of an analytical solution to the Approximate
Least Squares Problem (ALSP) formulated for the optimal
plane fitting under the assumption of the radial Gaussian noise
is presented here. It is based on our previous work [23][24].

The equation of a plane is n̂ · r = d, where n̂ is the
plane’s unit normal and d the distance to the origin. Assume
that the sensor returned a point-cloud rj = ρjm̂j , j =
1 . . . N , where, m̂j are the measurement directions for the
sensor, usually accurately known, and ρj are the respective
ranges which are noisy. We make an assumption that ρj ∼
N
(
ρ̄j , σ

2(ρ̄j , n̂ · m̂)
)
, where, ρ̄j = d

n̂·m̂j
is the true range of

j-th measurement.
For commonly available 3D sensors like actuated Laser-

Range-Finders (aLRF) the standard deviation is modeled as
([25], [26], [27])

σ(ρ̄j , n̂ · m̂j) =
σ̂(ρ̄j)
|n̂ · m̂j |

, σ̂(ρ̄j) , κρ̄2
j (1)

where n̂ is the local normal to the surface the point rj lies
on. The coefficient κ > 0 can be estimated by doing initial
calibration experiments with the sensor. Using this we get the
following log-likelihood function

L = K−
N∑
j=1

log
σ̂(ρ̄j , n̂ · m̂)
|n̂ · m̂j |

− 1
2

N∑
j=1

[(n̂ · m̂j)ρj − d]2

σ̂2(ρ̄j)
(2)

L has to be maximized w.r.t. n̂, d. This can not be handled
analytically, especially as σ is a function of d

n̂·m̂j
, therefore we

make the assumption σ̂(ρ̄j) ≈ σ̂(ρj). We define σ̂j , σ̂(ρj)
and note that σ̂j is now no longer a function of ρ̄j and hence
of n̂ and d. Using Eq. (2) and ignoring constant terms together
with sum of logarithms we get the ALSP formulation

max
n̂,d
LALSP = −1

2

N∑
j=1

(n̂ · rj − d)2

σ̂2
j

(3)

After solving the constrained optimization problem using La-
grange multipliers we get the estimates of the plane parameters

d∗ = n̂∗T
(∑N

j=1
1
σ2

j
rj∑N

j=1
1
σ2

j

)
, n̂∗TrG (4)

where n̂∗ is the eigenvector corresponding to the smallest
eigenvalue of the positive semi-definite weighted scatter matrix
and rG can be seen as its center of gravity when thinking of
the weights as masses

M =
N∑
j=1

1
σ2
j

(rj − rG)(rj − rG)T. (5)

The Hessian of log-likelihood evaluated at the optimum is

H∗ =
[
H∗
nn H∗

nd

H∗T
nd H∗

dd

]
, (6)

where

H∗nn = −
N∑

j=1

rjr
T
j

σ2
j

+

[
N∑

j=1

n̂∗T(rj − rG)(n̂∗T rj)

σ2
j

]
I3 (7)

H∗nd =

N∑
j=1

rj

σ2
j

, H∗dd = −
N∑

j=1

1

σ2
j

Then the covariance matrix is [28]

C(n̂∗, d∗) = −(H∗)+ (8)

H∗ has a zero eigenvalue in the direction of (n̂∗, d∗)T there-
fore the Moore-Penrose generalized inverse has to be used.
This property of the Hessian is discussed in [23], [29].

IV. RANGE IMAGE SEGMENTATION

In this section, the principle of our algorithm for identifying
regions of points that lie on one plane is presented. This
extends the work presented in [30] by modifying the algorithm
by reformulating the underlying mathematics to an incremental
version, which allows a highly efficient implementation. The
detailed description of the algorithm can be found in [24].
Here only an overview and the most important optimizations
are provided.

The algorithm proceeds as follows. The best seed for a new
region is selected from points yet unassigned to any region.
This is done by using local planarity criteria. Concretely, the
local planarity of a point is evaluated by fitting a plane in
a small 10×10 window around the point and calculating the
mean square error of the optimal fit. A preference list of the
seeds is created in a preprocessing step by sorting all the
points according to this error. Then the region is expanded
using breadth-first-search. The neighbors of each boundary
point are taken from its Moore neighborhood of range 1 in
the range image. The new point is assigned to the region only
if it satisfies the mean square error and the distance to the
optimal plane constraints. Once the region cannot be grown
further, a new region is started. The algorithm terminates when
no new seeds are available.

The most crucial operation of the algorithm is the calcula-
tion of the optimal fit and its mean square error. It has to be
performed whenever a new point is investigated. Therefore,
we introduce a minimization of the computational complexity
for this.

We know that calculating the optimal fit for a set of 3D
points rj = (xj , yj , zj)T, j = 1 . . . k requires to find the
eigenvector n̂∗ corresponding to the smallest eigenvalue of
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the weighted scatter matrix Mk (Eq. (5)). Now suppose the
matrix Mk would be calculated from the start every time a new
point is added to the region. This would mean that one would
need to traverse every point in the current region leading to
a huge overhead. Here a way to an incremental update of the
matrix Mk and its mean square error is presented, which takes
previous calculations into account.

Three variables can be defined that describe a state of k
points rj
• The sum of all weights - wk =

∑k
j

1
σj

• The weighted sum of all points - sk =
∑k
j

rj

σ2
j

• The weighted sum of all product matrices -
Pk =

∑k
j

rjr
T
j

σ2
j

We can express the matrix Mk and the mean square error
MSEk using these state variables in the following way

Mk = Pk −
sksTk
wk

, (9)

MSEk =
1
wk

n̂∗Tk Pkn̂∗k −
2d∗k
wk

n̂∗k · sk + d∗2k .

Now suppose we want to add a new point rk+1. We can
easily update the state variables

wk+1 = wk +
1

σ2
k+1

, sk+1 = sk +
rk+1

σ2
k+1

, (10)

Pk+1 = Pk +
rk+1rT

k+1

σ2
k+1

From equations (9) and (10) we get Mk+1 and MSEk+1. In
other words we have updated Mk+1 and MSEk+1 indirectly
by updating the variables sk, wk and Pk. Please note that for
MSEk+1 the new normal vector n̂∗k+1 and d∗k+1 have to be
calculated based on the Mk+1 matrix.

Note that the Hessian matrix in Eq. (7) can be efficiently
evaluated during the optimal fit calculation in the following
way. Suppose we have a set of k points {rj} with the state
{Pk, sk, wk} and the estimate

(
n̂∗T, d∗

)T
, where n̂∗ is the

eigenvector corresponding to the smallest eigenvalue λ of
matrix Mk, then it can be shown that

H∗ =
[
−Pk + λI3 sk

sT
k −wk

]
(11)

As we always keep track of the state {Pk, sk, wk} and the
eigenvalue λ is calculated during the optimal fitting, we need
only a few extra operations to find the Hessian matrix, which
can be used to obtain the covariance matrix in Eq. (8).

The incremental formulation leads to a linear O(n) com-
putational complexity, where n is the number of points in a
point cloud.

V. FINDING POLYGONAL REPRESENTATION OF PLANAR
SURFACES

This is the part where most of the compression of the
original point cloud can be made. Once the range image is
segmented, the points are projected to their optimal planes,
thus reducing the representation dimension to 2, i.e., each
segment can be represented by the parameters (n̂∗, d∗)T ,

H∗ (actually, it is enough to store only the Hessian H∗, as
(n̂∗, d∗)T is in its nullspace) of the optimal plane and a set of
2D points defined in the planes’ frame.

We note that the most important part per segment is
the boundary of its 2D set of points. As the neighborhood
information of points is sustained from the pixel space of
the range image to the Cartesian space, the boundary of the
segment is the same in both spaces. Finding border pixels
of a segment in a range image is straightforward. One just
need to check the Moore neighborhood of range 1 for each
pixel in the segment. If all neighbors of the pixel are from
the same segment then it is an inner pixel otherwise it is a
boundary pixel. Taking corresponding Cartesian coordinates of
border pixels gives us the outline of the planar patch. The inner
points are redundant and can be removed. Note that the outline
usually consists of several components - one outer boundary
and several boundaries of inner holes.

The boundary representation already reduces the initial size
quite significantly, however it is usually very dense and can be
approximated, thus allowing us to increase memory efficiency
even more. One option is to use a Minimum Description
Length (MDL) encoding of the chain code, which is com-
putationally expensive. A simple, but sufficient alternative is
a convex hull algorithm in form of Graham’s scan, which
achieves very high compression rates in a short runtime of
O(n · log(n)). Convex hull has certain limitations such as
holes closing and loosing concave features, which sometimes
ends in very rough approximations. Therefore one should
always consider which detail level is needed before applying
it. Usually in datasets with large openings (which is true in our
case), the large scale features are more interesting, therefore
the convex hull is suitable candidate.

VI. EXPERIMENTS AND RESULTS

The performance of the presented approach was among
others evaluated in the context of the ESA LRC. As mentioned
before, one of the Jacobs LRC robots is equipped with a self-
made actuated Laser Range Finder (LRF). This is a rather low-
end solution for acquiring 3D LRF data. The 3D measurements
were made in the volcanic landscape of the Teide National
Park on Tenerife where the ESA Lunar Robotics Challenge
(LRC) took place. To test scalability with high amounts of
data, we also conducted experiments in a virtual environment,
where the Eagle crater on Mars is modeled in USARsim based
on ground truth data from the Mars Exploration Rover (MER)
mission data archives. There, a high end 3D LRF sensor in
form of a Velodyne HDL-64E is used. Examples of the point
clouds used in the experiments are shown in figures 6 and 7.

Examples of the results of the plane fitting and polygo-
nalization are shown in figures 8 and 9. Multiple views of
the 3D models are shown in these two figures; nevertheless,
a full 3D visualization - like, for example, the one provided
in the operator GUI of the Jacobs robots - provides a much
better overview. For the convenience of the reader, several
movies with 3D visualizations of the raw point clouds as well
as of the results of the plane fitting can be downloaded from
http://robotics.jacobs-university.de/projects/3Dmap.
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Fig. 6. Several views of a 3D-LRF point cloud acquired at the ESA Lunar Robotics Challenge.

Fig. 7. A point cloud from a simulated robot with Velodyne 3D-LRF in a scenario with ground truth data from Mars.

TABLE I
AVERAGE PERFORMANCE STATISTICS ON THE DATASET FROM THE ESA LRC (11 SCANS, ∼ 4 · 104 POINTS PER SCAN)

Polygonal Raw Size, Compressed Compression Space Savings
Representation KB, (1) Size, KB, (2) Ratio, (1)/(2) 1 - (2)/(1)
Boundary 576.93 39.24 14.7 0.932
Convex Hull 576.93 4.02 143.37 0.993
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Fig. 9. Results of the plane patch fitting for the three point clouds from the Velodyne 3D-LRF on Mars shown in figure 7. Again, two views are shown for
each case. Despite the compression by three orders of magnitude, the general overview is still very useful; easy as well as hard to negotiable areas can be
well recognized.

Fig. 8. Results of the plane fitting for the point cloud shown in figure 6.
On top, two views of a representation where the boundaries of the plane
patches are computed using the convex hull; on the bottom, the boundaries
are computed by MDL polygonalization.

TABLE II
AVERAGE RUNTIMES ON THE DATASET FROM THE ESA LRC (11 SCANS,

∼ 4 · 104 POINTS PER SCAN)

Polygonal Runtimes (sec)
Representation Segmentation Polygonalization Total
Boundary 0.66 0.05 0.71
Convex Hull 0.66 0.14 0.80

Tables I and II show the compression rates and run-times
for the ESA LRC data. All experiments were carried out
on a 64-bit mobile platform with Intel Core 2 Duo T7100
(1.8GHz) CPU. As can be seen, the plane fitting with convex
hull polygonalization leads to compressions of two orders of
magnitude. The computations are very fast, the total runtimes
are in the order of a few hundred milli-seconds; the approach
is hence well suited for online computations on the robot.

TABLE III
THE MINIMUM, MAXIMUM, AND AVERAGE RUNTIMES (SEC) FOR

COMPUTING A VORONOI DIAGRAM FOR PATH PLANNING ON THE POINT
CLOUDS, RESPECTIVELY ON THE OPTIMIZED POLYGONS

min max average
point clouds 72.81 97.91 85.48
fitted polygons 0.92 2.44 1.49

The planar surface models are helpful in increasing the situ-
ational awareness of the operator. They are in addition a useful
basis for more complex autonomous operations, especially
path planning. Based on the point cloud data, respectively the
boundary points of the optimized polygon patches, Voronoi
diagrams can be computed as the basis for roadmaps of the
environment. Concretely, the 3D points are projected down
to the plane, a 2D Voronoi diagram is computed, and edge
segments can be assigned a cost that corresponds to the
inclination of the related surface in the original 3D data;
steep surfaces exceeding the robots locomotion capabilities are
hence associated with infinite cost, the corresponding edges
in the roadmap are marked as non-traversable. As shown in
table III, the computation of the Voronoi diagrams benefits
significantly from the generation of large surface patches. The
more compact representation of the environment has a very
positive influence on the runtime.

VII. CONCLUSIONS

3D perception and modeling is an important basis for mobile
robot operations in planetary exploration scenarios as it sup-
ports good situation awareness for motion level teleoperation
as well as higher level intelligent autonomous functions. It is
hence desirable to get long range 3D data with high resolution,
large field of view, and very fast update rates. 3D Laser Range
Finders (3D-LRF) have a high potential in this respect. In
addition, 3D-LRF can operate under conditions where standard
vision based methods fail, e.g., under extreme light conditions.
But it is non-trivial to transmit the huge amounts of data
delivered by a 3D-LRF to an operator station or to use this
point cloud data as basis for higher level intelligent functions.
Based on our participation in the Lunar Robotics Challenge
(LRC) of the European Space Agency (ESA), it is shown
how the huge amounts of 3D point cloud data from 3D-LRF
can be tremendously reduced. Concretely, large sets of points
are replaced by planar surface patches that are fitted into the
data in an optimal way. The underlying computations are very
efficient and hence suited for online computations onboard of
the robot.
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