
Optimized Octtree Datastructure and Access
Methods for 3D Mapping

Jann Poppinga, Max Pfingsthorn, Sören Schwertfeger, Kaustubh Pathak and Andreas Birk
School of Engineering and Science

Electrical Engineering and Computer Science (EECS)
Jacobs University Bremen

Campus Ring 1, D-28759 Bremen, Germany
a.birk@jacobs-university.de, http://robotics.jacobs-university.de

Abstract — 3D maps are becoming increasingly important for
robots operating in real world scenarios. As occupancy grids are a
popular standard in 2D mapping, it is a natural choice to extend
them to spatial representation in 3D. But this approach suffers
from large memory requirements that render 3D grids unfeasible for
realistic mapping applications. A well-known alternative is quadtrees
in 2D, respectively octtrees for 3D, where cells that contain identical
information are collapsed into a single node in a tree. But octtrees
only allow relative slow access to the spatial information stored in
them. Here, a very efficient implementation of an octtree is presented.
It is based on technical optimizations as well as newly introduced
heuristics like the exploitation of typical access patterns. It is shown
that the optimizations are indeed beneficial through experiments with
real world 3D sensor data. In addition to basic access methods, a
very fast nearest neighbor operation - as needed for example for
registration in SLAM or map merging algorithms - for octtrees is
presented. It is shown in experiments with real world data that this
nearest neighbor operation outperforms a comparable operation on
occupancy grids by far.

Keywords: 3D Mapping; Spatial Representation; Range
Sensing; Safety, Security, and Rescue Robotics (SSRR)

I. INTRODUCTION

3D range sensors are of particular interest for rescue
robotics. In this domain, robots have to operate in complex,
unstructured environments, which can not be reliably covered
by standard range sensors that work best in normal environ-
ments with many walls, i.e., plain, perpendicular surfaces. In
addition to providing local 3D range data to an operator, e.g.,
to asses the size of an opening, 3D range sensors can be
used for advanced perception and modeling. One important
application is 3D mapping, which is not only of obvious
interest to Safety, Security, and Rescue Robotics (SSRR), but
also of increasing importance to the whole mobile robotics
community [1], [2], [3], [4], [5]. Further important applications
are terrain classification to detect drivable areas, e.g., to assist
a human operator or even for autonomous mobility, as well as
map annotation [6], [7], [8], [9], [10].

For 2D maps, occupancy grids are the predominant form of
representation [11] and they are hence also a natural candidate
to be extended to the 3D case. An alternative option are oct-
trees, which provide in principle the same access operations as
3D grids. The big advantage of the octtree data structure is that

it can store spatial occupancy information in a more memory-
efficient manner than grids [12], [13]. The disadvantages are
the computationally more expensive access operations, i.e.,
reads from and stores to a cell. Here, a special implementation
is presented, which allows very fast cell access. First of all,
an optimized coding using bit-arithmetics is used. Second, a
heuristic is introduced, which exploits the fact that consecutive
accesses are often to spatially adjacent cells. The benefits are
demonstrated in experiments using real world 3D sensor data.

A further contribution is made by introducing an extremely
fast nearest neighbor operation, i.e., an operation that given a
cell finds the closest cell with same properties - like occupied
or not - in a second dataset. According operations are very
important for registration, for example for SLAM as well
as map merging algorithms. As shown through exhaustive
experiments with real world data, the operation is up to several
orders of magnitude faster than its counterpart on a 3D grid.

II. A FAST OCTTREE IMPLEMENTATION

The well known octtree data structure is a means of storing
spatial occupancy information very memory-efficiently, espe-
cially more efficiently than in the default solution, a 3D grid,
which also occasionally called regular mesh. More precisely,
we are interested in a datastructure where for every cell
(x, y, z), a value occ 2 {occupied, free} has to be stored.
The word “octtree” is formed from “oct” (short for “octant”)
and “tree”. As the name suggests, information is stored in a
tree. An octtree is able to collapse nodes. This happens when
all sibling nodes are either “occupied” or “free”. Then, this
node will be represented in the parent by a single value, saving
memory.

The FastOctTree (FOT) introduced here is an imple-
mentation of an octtree optimized for speed. The key design
feature is the distinction between leafs of the octtree and
leafs of the FOT: The latter store the values for eight of
the former in a bitmap, thus saving one level of nodes.
FastOctTreeNode is used for the nodes as well as for
the leaves. It only has a single one-word member, a union.
This union can either be used as a pointer or as a bitmap.
As a pointer, it points to a struct containing all children as
member variables. As a bitmap, it stores the occupancy of its

Fig. 1. Examples of 3D data delivered by the stereo camera (left) and the
Swiss ranger (right).

children. Which role a node plays depends on whether it is a
leaf or not, which can be determined by the value of the least
significant bit of the union. As an inner node the variable is
a pointer. The class FastOctTreeNode is 4 byte memory
aligned, thus ensuring that at least the two least significant
bits of pointers to objects of this class are always 0. For FOT
leafs, on the other hand, the union stores a bitmap. As an
inner octtree node always has eight children, only the most
significant byte is used. The least significant bit is always set
to 1.

The class FastOctTree manages the tree of
FastOctTreeNodes. No coordinates and edge lengths
are stored in the nodes, these have to be maintained by this
class. Both iterative and recursive tree traversals are used,
depending on the task at hand.

In addition to these technical optimizations in the imple-
mentation, a special conceptual optimization is introduced,
namely the so-called LineBurstAccess. This heuristic starts the
traversal to access a specific node from the last visited one.
This strategy is more efficient than the default to start from
the root as geometrically close points are usually consecu-
tively accessed. As demonstrated in the experiments later on,
this optimization is especially beneficial for typical mapping
applications.

III. PERFORMANCE COMPARISON

In this section we benchmark the performance of our
optimized octtree implementation for core operations, i.e., read
and store of cell values. One of the optimizations is the dual
use of its single 1-word-variable as either a pointer to the
array of its children or as a bitmap storing the occupancy of
its children if the node is collapsed. For the comparison, an
equally heavily optimized implementation of a 3D occupancy
grid was realized. This class is called FastOccMesh. We
implemented a one-dimensional array to hold all cells of the
3D grid. Each grid cell is exactly one bit in the array.

For the benchmark experiments, extensive 3D real world
data sets are used. The data was collected outdoor with a
Jacobs rugbot - from ”rugged robot” [14]. The 3D sensors
used for this purpose are a the SwissRanger SR-3000 and the
Videre Stereo-on-a-chip (STOC). The SR-3000 is a time-of-
flight camera, which uses modulated near-IR light to attribute
a distance value to each of its ⇠25,000 pixels. The STOC
is a stereo camera which generates distance information from
difference of the features in the images of its two embedded

TABLE I
PROPERTIES OF THE TWO COMPUTERS USED IN THE TEST

Feature Robot PC Office PC
Processor type Pentium M Pentium 4 HT
Clock speed 1.6 GHz 3.0 GHz
Front side bus speed 400 MHz 800 MHz
Main memory 0.5 GB 1 GB
L2 cache 2 MB 2 MB
L1 cache 32 kB 16 kB

cameras. All computation is done in hardware, and so the
STOC also directly delivers a 3D point cloud. Example data
is shown in Figure 1.

The data sets for the experiments presented here were
collected in nine different outdoor scenarios: bush, car, unob-
structed concrete, grass, hill, rubble, grass and bushes while
the robot was moving, and tree. Each scenario consists of
several datasets with a point cloud each. In each scenario, a
number (5 – 200) of point clouds for each of the sensors was
produced. The point clouds were inserted into the two data
structures as follows. First, only the point clouds themselves
were entered. To make the measurement more exact, each
point cloud was not only entered once, but 20 times. In
a second experiment, a line was drawn to the origin for
every point of a point cloud, i.e., a ray-tracing operation to
determine free space was conducted. Note that this is a typical
computation for mapping applications. In each test run, both
data structures were kept in memory and each point cloud was
entered into both in random order.

The program has been compiled with g++ with optimization
option -O6. The main part of the computation was done on
the on-board robot PC. For comparison, some tests were also
run on an office PC as noted later on. The properties of the
PCs are listed in Table I.

The mapped area covered 1024 ⇥ 1024 ⇥ 1024 cells. This
relatively small resolution is due to restrictions of the two data
structures. On the one hand, the edge length of the mapped
cube has to be a power of two for the octtree. On the other
hand, the 3D grid consumes a lot of memory. 1024 was
the greatest power of two such that a 3D grid of that size
(equivalent to 128 MB) would fit into main memory. Note
that this is already a knock-out criterion for the use of 3D
grids for many realistic mapping applications. The octtree in
contrast does not suffer from these large memory requirements
as also shown in the following experiments.

A. Results for Cell-Access

The results for raw point cloud data are shown in Table II.
One interesting fact is that the speed advantage for the
occupancy 3D grid is considerably higher for TOF data. This is
due to the structure of the stereo data and the LineBurstAccess
heuristic of entering consecutive points into the octtree (see
Section II). Usually, the stereo camera distance image is not
dense but consists of patches of very similar distances where
features have been found and of gradients of distances along
the edges of large objects. Furthermore, errors produced by the

TABLE II
PERFORMANCE OF BASIC ACCESS METHODS. TIME IS AVERAGED FOR

EACH POINT CLOUD AND MEASURED IN CLOCK CYCLES.

Stereo camera data TOF camera data
Scene time #

P

#
pc

time #
P

#
pc

FT GR FT GR

Bush 187,843 95,686 2,649,956 51 109,423 43,654 1,279,417 52
Bush 2 84,412 40,294 758,821 34 81,714 34,286 634,258 35
Car 99,773 66,364 1,724,173 44 74,894 30,638 818,429 47
Concrete 29,846 21,692 865,453 65 46,620 19,718 807,431 71
Grass 36,000 22,000 59,607 5 53,151 23,699 1,008,215 73
Hill 375,192 198,077 5,374,168 52 38,387 13,226 447,213 62
Rubble 28,039 24,188 714,171 51 59,474 25,790 853,781 57
Moving 129,500 73,833 6,882,265 180 61,100 20,900 2,351,969 200
Tree 31,800 16,800 464,843 50 86,226 40,000 1,246,244 53

Average speed advantage factor of the 3D grid (GR) over the fast octtree (FT):
1.697 2.470

#
P

: total number of points; #
pc

: number of point clouds for the scene

TABLE III
THE RESULTS FOR THE RAY-TRACED DATA. TIME AND WRITE OPERATIONS

ARE AVERAGED FOR EACH POINT CLOUD, TIME IS IN CLOCK TICKS.

Stereo camera data TOF camera data
Scene time S #

w

time S #
w

FT GR (⇥106) FT GR (⇥106)
Bush 564,314 192,941 2.925 7.255 149,808 60,769 2.465 1.828
Bush 2 703,824 292,941 2.403 13.744 124,571 53,143 2.344 1.522
Car 1,826,140 960,000 1.976 46.954 104,894 38,723 2.709 1.054
Concrete 1,096,770 532,462 2.060 28.121 57,042 23,239 2.454 .666
Grass 536,000 240,000 2.233 11.699 68,630 27,671 2.480 .779
Hill 1,227,880 421,923 2.910 16.127 59,032 20,000 2.951 .499
Rubble 770,000 279,000 2.760 13.500 67,543 29,825 2.265 .787
Running 876,889 425,444 2.061 19.212 78,700 38,950 2.021 .886
Tree 125,600 37,000 3.395 1.331 84,340 34,717 2.429 .918

average 2.517 2.458
S= �t

F T

/�t

GR

stereo camera often take the form of a straight line from the
origin. The FastOctTree exploits this circumstance with
the LineBurstAccess.

In Figure 2, the execution time is plotted against the average
number of points per point cloud. It becomes clear that the
time needed linearly depends on the number of points and
that it increases faster for the octtree.

In addition to raw point cloud data, ray tracing from the
camera origin to each point representing occupancy is used.
This computation is needed to determine the free space in
mapping applications. The results of the ray-traced point
clouds are shown in Table III and Figure 3. Again, the 3D
occupancy grid is faster than the octtree. However, there are
no observable differences between the two sensors other than
the delivered number of points. Also, the constant factor
for the linear depence is equal for both storage methods.
This is due the fact that many straight lines are traced, for
which the LineBurstAccess-heuristic is especially beneficial.
Furthermore, they result in a high structual similarity between
the data from the two sensors.

TABLE IV
THE OCTTREE’S SIZE IN KB AND THE RELATED NUMBER OF POINTS

Scene stereo camera TOF camera ray-traced size
size #

P

size #
P

stereo c. TOF c.
Bush 121 2,649,956 125 1,279,427 1050 105
Bush 2 110 758,821 190 634,258 1680 385
Car 178 1,724,173 297 818,429 1199 923
Concrete 34 865,453 106 807,431 2170 454
Grass 45 59,607 164 1,008,215 1683 712
Hill 325 5,374,168 584 447,213 1193 1910
Rubble 307 714,171 153 853,781 1353 637
Moving 2570 6,882,265 3210 2,351,969 5603 4544
Tree 48 464,843 136 1,246,244 3768 650

Fig. 2. Results for the raw 3D data in terms of runtime (top) and memory
size (bottom). Note the logscale on both axes in the graph for the memory
usage.

Fig. 3. Performance on the ray-traced data; note the log scale on both axes.

Fig. 4. Comparison between 3D grid and octtree (logarithmic y-axis)

The size of the octtree in the experiments with real-world
data is given in Table IV. For comparison, the size of the 3D
grid was always 131,072 KB. Although the FOT is never faster
than or as fast as the fast grid implementation, the difference
in speed is not as high as one might have expected. This is to
some extent due to the fact that the FOT can be kept in cache
memory because of its small size, whereas the grid has to
be swapped to main memory. Figure 4 summarizes all data in
this section. Note the significant difference in size. While a 3D
grid’s size linearly depends on the size of the mappable area,
the size of an octtree (almost) entirely depends on the data
entered into the map. Consequently, the 3D grid put the limits
on resolution/mappable area in this test. Another advantage
is that the size and position of the octtree is dynamic. They
do not have to be fixed beforehand, e.g. by specifying that
the robot always starts at the origin, which might render large
parts of the map useless if it only moves in one direction.
Furthermore, the map will only be as big as required by the
mission, not using up valuable memory. For an octtree, the
operations of resizing and repositioning easily and effortlessly
fit in with the standard operations. For a 3D grid, they are very
expensive. Last but not least, the LineBurstAccess heuristic
plays a significant role. This holds especially for typical
mapping related access patterns like consecutive storage of
range image from typical 3D sensors and even more with
respect to ray-tracing operations to determine free space.

IV. NEAREST NEIGHBOR OPERATION ON OCTTREES

Many important map-related algorithms like various ap-
proaches to SLAM or map merging require the computation
of nearest neighbor operations. This means that given a
particular cell in one data set, the closest cell with the same
property must be determined in a second data set, such that
a distance metric is minimized. One example is the distance
function , which is based on accumulated minimal Manhattan
distances between cells in the two data sets that share the same

⌥

⌃

⌅

⇧

Algorithm IV.1: NEARESTTREENEIGHBOR(node)

procedure NEARESTTREENEIGHBOR(node)
if node.hasChildren() and not at maximum depth

then

⇢
node getNextChild(node, point)
NEARESTTREENEIGHBOR(node, point)

else upperBound 4 · edgeLength(node)
SEARCHCHILDEN(node, upperBound)

procedure SEARCHCHILDEN(node, upperBound)
if not node.hasChildren()

then

⇢
upperBound manhattan distance to filled cell closest topoint

nearestP oint said cell
else if any point within this node falls within current upper bound

then

8
<

:

children = list of children, ordered by distance to point
for all child 2 children

SEARCHCHILDREN(child, upperBound)

properties [15]. For each cell in a grid P1 with a certain value
v, finds the cell in grid P2, which has the same value and
the smallest Manhattan distance to the cell in P1. This is done
for all cells and the distances are accumulated. For symmetry
of the metric, the same is done in reverse, meaning starting
with all pixels in grid P2. The two results are then added.

 (P1, P2) =
X

v2V

d(P1, P2, v) + d(P2, P1, v) (1)

d(P1, P2, v) =
X

P1(p1)=v

min{dmanhattan(p1, p2)|P2(p2) = v} (2)

The metric is computed using a lookup table for all
coordinates. This table, called a distance map or dmapv , has
to be computed for all values v and contains the distances
for each coordinate to the nearest pixel with a specific value.
The algorithm is linear in the number of cells. Independent of
the concrete definition of , its computation on the occupancy
grid is typical for this type of problem.

For octtrees, a much more efficient technique can be used.
Due to the hierarchical structure of the octree, we can quickly
find all filled cells and only compute the nearest neighbor
distances for only those points. Therefore, this way to evaluate
 only depends on the number of filled cells instead of on
the region the octree covers. This in itself is a significant
performance boost. Furthermore, an algorithmic optimization
is introduced, which extents the work of Hoel and Samet
on nearest neighbor search on line segments in a quadtree
[16]. In a dynamically growing octree, the presence of a node
implies that within the boundaries of that node, there is at
least one leaf node. Thus, we can immediately deduce an
upper bound to the volume we have to search in the tree.
Potentially, a lot of subtrees can be pruned from the search that
lie completely outside this bound. While searching the nodes
which do fall within this bound, we can progressively tighten
said bound when we encounter leaf nodes in lower levels. This
way we prune even more nodes from the search. Exploiting
this property of octrees makes this algorithm very efficient.
There are two phases for our recursive implementation of
this algorithm: First, finding the octree node from which we
want to start the search and finding the upper bound on the
subsequent search. Second, we search this node’s children and
this node’s parents children, and so forth, until we reach the

root node. During the search, we progressively tighten the
upper bound to correspond to the closest filled cell found so
far, ensuring the pruning of subtrees that lie outside of the
current bound. In the first phase, we first need to find the node
which contains the point from where we start our search. In
order to do so, we traverse the tree downwards, choosing the
child node which contains that point. We do this until there are
no more children, or until we reached the maximum depth. We
then set the estimate of the upper bound to six times the edge
length of the node we are at (six times because we want the
Manhattan distance across the parent in 3D). This procedure
is implemented recursively and shown in Algorithm IV.1. The
upward phase actually performs the search. Going up the stack
generated by the recursive downward phase, we search the area
around the query point outwards. To ensure this search patter,
the children of the current node are sorted by the manhattan
distance to that point. In order not to replicate work, we do
not search the child of the current node which contains the
original point, if there is such a child, since we would have
visited it before. The children of the current node are only
searched if any of them lie within the current upper bound.
This phase is shown in Algorithm IV.1.

V. PERFORMANCE OF NEAREST TREE NEIGHBOR

Both the nearest tree neighbor method and the dmapv

method to evaluate are compared in terms of execution
speed. The experiment consists of two parts, one focusing on
real world sensor data and one focusing on the scalability prop-
erties of each method. The real sensor data is the same as used
in the performance comparison of the octree implementation
itself. The scalability experiment varies the number of points in
a random point cloud to understand what the impact is on the
execution time. It is important to note the inherent difference
between such random and real data. Real data is governed
by very complex distributions which can not be accurately
modeled with random point clouds. It is thus very interesting,
how the methods behave under real world constraints which
results in sparse but clustered data. Random data is drawn
from a uniform distribution, so we mainly test the efficiency
tradeoff between point density and the amount of points in the
region.

To achieve better timing accuracy, the similarity function
was run five times per comparison. This was especially
important for the nearest neighbor method since it achieved
execution times very close to the granularity of the clock. Each
data set produced up to 15 point clouds that were compared.
The mean and variance listed in the results are computed over
these several comparisons. The range of the point cloud size in
the second experiment includes the normal sizes as measured
by the two sensors. We generate points clouds from 100 points
up to 100000 points. The TOF camera delivers at most 25000
points while the stereo camera can deliver up to 307200 points.
However, the stereo camera relies on color patterns in the
images, so it will never return as many points. Usually, the
stereo camera returns between 300 and 100,000 points. Thus,
the range chosen for this experiment covers all important sizes.

(a)

(b)

(c)

Fig. 5. Execution times vs. number of points for the nearest tree neighbor
method (top). Execution times vs. number of points for dmapv method
(center). Speedup by using nearest tree neighbor rather than dmapv vs.
number of points. Note the log scales of the x and y axis (bottom).

The computer used in the experiment contained a Pentium D
2.8GHz dual core CPU with 16KB L1 and 1MB L2 cache per
core, and 1GB of RAM. The program has been compiled with
GNU g++ and optimization option -O6.

Table V shows the results of the first experiment using real
sensor data. The second column shows the average number
of voxels in the octree that were filled. It is evident that this
number has an impact on the execution time of both methods.
In the case of dmapv , this is mainly due to the lookup
operations in the octree necessary for the algorithm. The
most eye catching result, however, is the significant speedup
achieved with the nearest neighbor method. The speed-up is

Nearest Neighbor dmap

v

Scene Voxels Mean time Variance Mean time Variance speedup
rubble (St) 13776 0.030200 0.000248 41.569000 0.902541 1376.5
rubble (TOF) 10566 0.016400 0.000002 40.748800 0.013036 2484.7
grass (St) 448 0.001000 0.000002 39.255000 3.080162 39255
grass (TOF) 10594 0.017600 0.000002 40.367800 0.007788 2293.6

TABLE V
RESULTS FOR NEAREST NEIGHBOR.

several orders of magnitude ranging from 1,000 and up to
almost 40,000 times faster.

The second experiment included the comparison of varying
amounts of random points. Figures 5(a) and 5(b) show the
results. The speedups are similarly impressive, ranging from
55 up to 14,000, decreasing with the number of points. This is
shown graphically in Figure 5(c). Interestingly, dmapv scales
sublinearly, while nearest neighbor scales only linearly in the
number of points. Actually, dmapv should always take exactly
the same time because the grid size does not vary. However, it
does need to access the octree while it constructs the lookup
table, so what is visible in the graph is the sublinear scaling
of the octree access. Our previous observation that the nearest
tree neighbor method only depends on the number of occupied
cells is also validated. Additionally, the results from Table V
indicate that the nearest tree neighbor method can work up
to 10 times faster on real data than on random data. Thus,
clustering of points and the highly non-uniform distribution
of points in real data facilitate an even faster comparison of
point data.

VI. CONCLUSION

Several significant optimizations to the well-known octtree
for spatial representation were presented. The optimizations
consist of several technical feats in the implementation of
the data structure itself as well as conceptual improvements
for the access methods. The technical implementation aspects
include for example the minimized memory size: the opti-
mized nodes just consume 4 bytes of memory; thus many if
not all nodes of a fast octtree (FOT) fit into the cache. The
conceptual improvements are the LineBurstAccess for basic
read/write operations and a special nearest neighbor method.
The LineBurstAccess, i.e., exploiting the high likelihood of
spatial proximity of consecutive accesses, is a particular useful
heuristic for mapping applications. It is especially efficient
with storage of range images from typical 3D sensors and in
particular in ray-tracing operations as needed for determining
free space from range data. This is supported by extensive
experiments with real-world 3D data from a stereo camera
and a time-of-flight range camera, a so-called Swissranger.
Furthermore, a highly efficient nearest neighbor operation
for octtrees is presented. This operation performs orders of
magnitude faster than standard naive implementations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of
Deutsche Forschungsgemeinschaft (DFG).

Please note the name-change of our institution. The Swiss
Jacobs Foundation invests 200 Million Euro in International

University Bremen (IUB) over a five-year period starting
from 2007. To date this is the largest donation ever given
in Europe by a private foundation to a science institution.
In appreciation of the benefactors and to further promote the
university’s unique profile in higher education and research,
the boards of IUB have decided to change the university’s
name to Jacobs University Bremen. Hence the two different
names and abbreviations for the same institution may be
found in this article, especially in the references to previously
published material.

REFERENCES

[1] A. Howard, D. F. Wolf, and G. S. Sukhatme, “Towards 3d mapping in
large urban environments,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sendai, Japan,
2004.

[2] S. Thrun, D. F. D. Haehnel, M. Montemerlo, R. Triebel, W. Burgard,
C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker, “A system
for volumetric robotic mapping of abandoned mines,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), Taipei,
Taiwan, 2003.

[3] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3D models
of indoor and outdoor environments with a mobile robot,” Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

[4] J. Davison and N. Kita, “3d simultaneous localisation and map-building
using active vision for a robot moving on undulating terrain,” in IEEE
Conference on Computer Vision and Pattern Recognition, Hawaii, Dec
8-14, 2001.

[5] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun, “Using
em to learn 3d models of indoor environments with mobile robots,” in
18th Conf. on Machine Learning, Williams College, 2001.

[6] R. Unnikrishnan and M. Hebert, “Robust extraction of multiple struc-
tures from non-uniformly sampled data,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 2. IEEE
Press, 2003, pp. 1322–1329 vol.2.

[7] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, “Autonomous rover navigation on unknown terrains:
Functions and integration,” International Journal of Robotics Research,
vol. 21, no. 10-11, pp. 917–942, 2002.

[8] ——, “Autonomous rover navigation on unknown terrains functions and
integration,” in Experimental Robotics Vii, ser. Lecture Notes in Control
and Information Sciences, 2001, vol. 271, pp. 501–510.

[9] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping,” in
ICRA, 2000, pp. 321–328.

[10] D. B. Gennery, “Traversability analysis and path planning for a planetary
rover,” Autonomous Robots, vol. 6, no. 2, pp. 131–146, 1999.

[11] S. Thrun, “Proper label: Thrunmapsurvey; robotic mapping: A survey,”
in Exploring Artificial Intelligence in the New Millenium, G. Lakemeyer
and B. Nebel, Eds. Morgan Kaufmann, 2002.

[12] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in representing
three-dimensional objects,” Computer Graphics Image Process, vol. 14,
no. 3, pp. 249–270, 1980.

[13] D. Meagher, “Geometric modelling using octree encoding,” Computer
Graphics Image Process, vol. 19, no. 2, pp. 129–147, 1982.

[14] A. Birk, K. Pathak, S. Schwertfeger, and W. Chonnaparamutt, “The
iub rugbot: an intelligent, rugged mobile robot for search and rescue
operations,” in IEEE International Workshop on Safety, Security, and
Rescue Robotics (SSRR). IEEE Press, 2006.

[15] A. Birk, “Learning geometric concepts with an evolutionary algorithm,”
in Proc. of The Fifth Annual Conference on Evolutionary Programming.
The MIT Press, Cambridge, 1996.

[16] E. G. Hoel and H. Samet, “Efficient processing of spatial queries in
line segment databases,” in Advances in Spatial Databases, Second
International Symposium, SSD’91, Zürich, Switzerland, August 28-30,
1991, Proceedings, ser. Lecture Notes in Computer Science, O. Günther
and H.-J. Schek, Eds., vol. 525. Springer, 1991, pp. 237–256.

 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of

any copyrighted components of this work in other works.

Poppinga, J., M. Pfingsthorn, S. Schwertfeger, K. Pathak, and A. Birk, "Optimized Octtree

Datastructure and Access Methods for 3D Mapping", IEEE Safety, Security, and Rescue Robotics

(SSRR): IEEE Press, 2007.

http://dx.doi.org/10.1109/SSRR.2007.4381275

Provided by Sören Schwertfeger http://robotics.shanghaitech.edu.cn/people/soeren

ShanghaiTech Advanced Robotics Lab http://robotics.shanghaitech.edu.cn

School of Information Science and Technology http://sist.shanghaitech.edu.cn

ShanghaiTech University http://www.shanghaitech.edu.cn/eng

File location http://robotics.shanghaitech.edu.cn/publications

http://robotics.shanghaitech.edu.cn/
http://dx.doi.org/10.1109/SSRR.2007.4381275
http://robotics.shanghaitech.edu.cn/people/soeren
http://robotics.shanghaitech.edu.cn/publications
http://www.shanghaitech.edu.cn/eng
http://sist.shanghaitech.edu.cn/

