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Abstract: This paper describes the Jacobs autonomous underwater vehicle (Jacobs-
AUV). The vehicle has been largely developed using the CubeSystem, a collection
of hard- and software components for fast robot prototyping. The CubeSystem has
previously been used for the development of various mobile robots, but never for an
underwater system. As the development of the Jacobs-AUV shows, a significant
amount of component reuse across significantly di↵erent application domains is
possible for autonomous robots.
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1. INTRODUCTION

Underwater robotics poses substantial scientific
challenges, especially with regard to autonomy
in this field [Yongkuan (1992)]. Underwater ex-
ploration is of tremendous interest from the in-
dustrial as well as from the scientific perspective,
let it be in shallow coastal waters or in the deep
sea. Examples include the exploration of seismic
and volcanic activities [Ura et al. (2001)], envi-
ronmental monitoring [Uliana et al. (1997); Craik
(1986)], archaeological research [Coleman et al.
(2000)] and of course the exploration of natural
resources [Nebrija et al. (1976)]. An interesting
question is to which extent the development of
an autonomous underwater vehicle (AUV) can be
facilitated by robotics prototyping tools.

Many projects assume, that a robots hard- and
software are two rather distinct parts, that can
be easily brought together by the usage of the
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Fig. 1. The AUV searching for a midwater target
in form of a submerged orange buoy.

right type of abstractions and interfaces [Mallet
et al. (2002); Bruyninckx (2001)]. The so-called
CubeSystem in contrast tries to o↵er a component
collection for fast prototyping of complete robots,
i.e., the hardware and the software side [Birk
(2004)]. The center of the CubeSystem is the so-
called RoboCube controller hardware [Birk et al.



(1998)]. On the software side, the CubeSystem
features a special operating system, the CubeOS
[Kenn (2000)], and libraries for common robotics
tasks [Birk et al. (2002)], supporting teleoperation
as well as autonomy [Birk and Kenn (2003)].

The CubeSystem has been used in various robotics
applications, ranging from educational activities
[Asada et al. (2000)]over basic research [Birk and
Wiernik (2000); Birk et al. (2002)] to industrial
applications [Birk and Kenn (2002, 2001)]. It has
been noted before that the CubeSystem indeed
supports component re-use for the development
of autonomous intelligent systems [Kenn and Birk
(2005)]. Here it is shown that this is also feasible
across substantially di↵erent application domains.

2. THE AUV HARDWARE

The Jacobs-AUV (Fig. 1) is intended for basic
research and robotics education purposes. Some
of the most basic hardware parts, namely the hull,
the motors and the batteries, are based on parts
from a so-called Seafox ROV that was provided by
ATLAS ELEKTRONIK. The complete develop-
ment of the electronics, the sensors, the on-board
computer, the actuators, and software was solely
done by the Jacobs team. The AUV uses two com-
putation units, which is a common approach for
CubeSystem applications [Birk (2004)]. The basic
hardware control is done by a RoboCube. Higher
level AI software is running on an embedded PC.
The robot can either operate autonomously or be
controlled via a wireless link which is relayed by
an antenna-buoy.

Fig. 2. The main sensors of the AUV.

The submarine is composed of a main hull, four
long tubes and a nose which contains the pressure
sensor, the gyro, a high-resolution scanning sonar
head and the front camera. The Cube System,
the high level controller (PC), the wireless access
point and the DC/ DC converters are placed

inside the middle section, while the echo sounder,
the marker disposal system and a bottom camera
are outside of the middle section. The vertical
middle thruster is mounted in the middle section
in an open ended cylinder perpendicular to the
vehicle body. Four battery tubes are attached
to the middle section, each containing a battery
and a propulsion motor with electronics for the
motor control and guarded propellers. The four
thrusters allow a kind of di↵erential drive steering
in a horizontal, respectively vertical plane. To
maximize re-use of software from land robots,
the AUV mainly uses di↵erential driving in the
horizontal plane and adjusts its depth as desired
with the middle thruster.

The submarine is trimmed slightly positively
buoyant, i.e. it comes up to the surface in case
of some error. Thus the middle thruster has to
be used to force the vehicle under water. The
maximum power of the four propulsion motors is
350 W of which up to 280 W are usable due to
PWM duty cycle limitations.

2.1 Low level controller

As mentioned before, the CubeSystem is a col-
lection of hardware- and software-components for
fast robot prototyping. The main goal of the
CubeSystem project is to provide an open source
collection of generic building blocks that can be
freely combined into an application.

The most basic parts of the CubeSystem are

• RoboCube: a special embedded controller,
based on the MC68332 processor

• CubeOS: an operating system
• RobLib: a library with common functions for

robotics

(a) The structure of
a CubeSystem applica-
tion.

(b) A processor-, bus- and
I/O-board stacked together.

Fig. 3. The CubeSystem.

The general CubeOS and RobLib are collections
of software components that can be customized
and combined to a particular set of libraries suited
for a particular application. The CubeOS has
for example POSIX constructs to write realtime
code. The RobLib provides for example generic
functions for controlling motors via Pulse-Width-
Modulation (PWM). The CubeSystem also allows



quite some flexibility to adopt the hardware side
to the actual application. The RoboCube or short
Cube features some standard electronic compo-
nents like the processor-, bus-, and I/O-board
that are combined with a more application specific
base-board. The boards are equipped with a spe-
cial stacking connector that allows to put several
boards on top of each other. The compact form
factor of the boards and the stacking leads to a
cubic shape of the controller (Fig. 3), hence the
name RoboCube. The organization of the Cube
architecture can be thought of in a tree-like man-
ner. At the root is the minimal Cube, namely a
processor-board which can be expanded by a bus-
board. This new branch adds new functionalities
like, e.g., UARTs and I2C controllers that allow
to expand to further branches, for example in form
of certain sensors.

So, a CubeSystem application is a concrete in-
stance of a collection of components, for example
in form of a mobile soccer robot. The task for the
Jacobs AUV team was hence to design a suited
baseboard and low level software based on RobLib
functions. The particular challenge is the number
of motors, namely five, in contrast to the usual
number of two on land-based robots. Furthermore,
locomotion is harder as it is in 6D.

The AUV is just like any mobile robot a typical
embedded system with an according development
environment. The structure of the development
environment is shown in figure 4. The CubeSys-
tem is connected via a serial connection to the so-
called access-host. This connection is a simple RS-
232 cable. The AUV CubeSystem is programmed
for e�ciency reasons only in C. The generation
of executables, i.e., compilation and linking, is
done on a so-called compile-host. In doing so, the
GNU tool chain with an according cross-compiler
is used. The generic CubeOS and Roblib, as well
as customized and pre-compiled instances, are also
located on the compile-host.

2.2 High level controller

Fig. 4. Di↵erent hosts used for the AUV.

The RoboCube with its MC68332 micro-controller
is not suited for any high-level computation that

are required for fully autonomous control of an
underwater vehicle. Like in many other Jacobs
robots an additional PC is used as a so-called
compute host, which is also dubbed “cognition”
unit. For the submarine, a Sumicom S625F car-
computer is used as compute host. This PC is
a fanless computer with a Celeron M 370 at
1.5 GHz, it weighs about 1.5 kg and it is very
compact.

2.3 The Sensor Equipment

2.3.1. The Heading Sensor A MTi IMU from
Xsens is used. It is a low-cost miniature inertial
measurement unit with an integrated 3D compass.
It has an embedded processor capable of calculat-
ing the roll, pitch and yaw in real time, as well as
outputting calibrated 3D linear acceleration, rate
of turn (gyro) and (earth) magnetic field data.

2.3.2. Scanning Sonar The submarine has a
hight resolution scanning sonar which enables it
to scan the surrounding for obstacles and their
distance by emmitting soundsignals of 550 kHz
and measuring the time it takes until the sounds
echo comes back. The sonar covers up to 360
degrees since it is being turned by a motor in steps
of one degree or greater and it has an opening
angle of 1.5�. The range of the sonar is selectable
to up to 80 meters. The sensor can also scan
vertically with a coverage of ± 20�. The horizontal
scan rate is about 60� per second at distances of
up to 10 m.

2.3.3. Pressure sensor The pressure sensor mea-
sures the depth of the submarine below the water
surface. It has an operating pressure range from 0
to 31 bar thus being operational to depth of 300
meters. It can be directly interfaced to the A/D
converters of the RoboCube.

2.3.4. Echo sounder The echo sounder mea-
sures the distance from the submarine to the
ground by emmitting sound pulses with a fre-
quency of 500 kHz and a width of 100 µs. The
echo of this sound signal is being received and the
travel time measured is then used to calculate the
depth. The beam width is ± 3�, the accuracy ± 5
cm and the depth range 0.5 to 9.8 meters.

2.3.5. USB cameras Two Creative NX Ultra
USB cameras are used in the vehicle. They sup-
port a resolution of up to 640 x 480 pixel. Those
USB 1.1 devices have a wide-angle lens which
enables a field of view of 78�. Both cameras are
inserted in a waterproof protective lid of transpar-
ent plastic.



2.4 Power

The submarine has four tubular packs of nickel-
cadmium rechargeable batteries with 29 volts that
can supply the AUV for more than two hours. The
battery power is connected to di↵erent DC/DC
converters. One converter is used to deliver the
12V needed for the PC, the access point and the
Sonar, another 12V converter powers the cube and
the motor relays while a third DC/DC converter
with an output voltage of 5V is connected to a
USB hub and the gyro. An external switch is used
to cut o↵ the power for all systems. A pushbutton
is connected to the binary input of the Cube. If
this button is pressed all motors are stopped.

3. THE AUV SOFTWARE

The software for the AUV is structured like in
other CubeSystem robots in two parts [Birk and
Kenn (2003)]. The basic low level control is done
on the RoboCube. It uses the CubeOS and the
RobLib to generate the proper PWM signals, to
decode the encoder signals from the motors and to
access the analog pressure and echo sound sensors.

The higher level AI software is running on the
Linux compute host. It collects all sensor data
from the cube, as well as from the sensors directly
attached to the PCs interfaces. It uses the scan-
ning sonar to do obstacle avoidance and localize
other objects in the basin. The cameras are used
to find targets in the water or at the bottom. The
software reuses quite some functions and libraries
developed for other Jacobs Robotics projects, es-
pecially the rescue robot.

The AI software is embedded in a robot-server,
which is a multi-threaded program written in
C++. All system-wide constants like port num-
bers, resolutions, etc., are read at startup from a
configuration file. A client GUI running on a PC
or a laptop is connecting to this server in order
to manually drive the robot to a start position
using a gamepad, to start the autonomy and to
observe the submarine’s status during the mission
if wireless connection is still available (Fig. 5).

The NIST RCS framework [Albus (1 April 1997)]
is used to handle communication between the
robot-server and the operator GUI. This frame-
work allows data to be transferred between pro-
cesses running on the same or di↵erent machines
using Neutral Message Language (NML) memory
bu↵ers.

3.1 Finite State Automaton

During a mission autonomous underwater vehicles
have to perform di↵erent tasks. In order to allow

Fig. 5. The GUI showing the front and down
camera as well as the depth, roll and pitch
and the scanning sonar display.

fast and reliable mission planning we use a finite
state automaton which is defined in a human
readable way as a text file. For debugging and
during a run this automaton is shown as a graph
within the GUI, indicating the current state and
the last transition.

This finite state automaton consists of states,
transitions (start with a $), conditions and actions
(start with a #). At a new iteration all actions of a
state are executed in the order they were specified.
Actions can actively manipulate the submarine
by, for example, changing the desired speeds of the
thrusters, by opening the marker box or by start-
ing a timer. Only after all actions have been called
the new motor speeds are applied, allowing for
nice implementation of behavior-based robotics.
After that the conditions of the transitions are
checked. New actions and conditions have to be
implemented in C++. The first transition whose
condition is true is then being used to change the
state of the automaton. If no condition is true the
state of the automaton is not changed. A small
example automaton is shown here:
START_STATE
{

$ lets_go : trueCond => GO_TO_MEDIUM_DEPTH
# StartMissionTiming(100)

}
GO_TO_MEDIUM_DEPTH
{

$ missionEnd : isMissionTimeOver => MISSION_ENDING_STATE
$ reachedMediumDepth : reachedMediumDepth => DRIVE_STATE
# goToMediumDepth()
# StartTimer(driving_over,15)

}
[...]
}

The automaton is executed as a speed of 10
Hz. This means that the actions as well as the
conditions can block the execution only for a very
short time. Actions and conditions have a unique
string identifier that corresponds to the actual
implementation of those action or condition in the
code.

The visualization that is being generated using
the graphviz library is shown in figure 6.



Fig. 6. The automaton controlling the AUV. The
current state and the last transition are col-
ored red.

3.2 Submarine Control

An example for a basic behavior is obstacle avoid-
ance. The data from the seeking sonar head are
used for this purpose. Unlike laser range finders
the sonar returns a value for every distance which
is sampled in discrete steps. That is why a mini-
mum echo intensity for obstacles has to be defined
such that the closest sample above this value de-
termines the closest obstacle in this direction. The
closest obstacle distances from the left, the right
and the front of the vehicle are then extracted and
used to change the motor speeds in order to avoid
collisions. A problem is the relatively slow speed
of the seeking sonar which takes six seconds for
a complete 360 degrees scan. Since the submarine
has a decent speed the update rate of the sonar
makes the obstacle avoidance relatively unreliable.

The AUV tries to work as much as possible
in a horizontal plane to exploit 2D di↵erential
steering, which can serve as basis for standard
mapping, path planning, exploration, and so on.
The extension to 3D can be done by so-to-say
switching between di↵erent levels. In doing so, the
depth is controlled by a standard PID controller
using the middle-thruster and the echo sounder.

3.3 Vision processing

An open source Palantir server running on the
robot PC is used to serve the images from the
webcams so that di↵erent application can access
them - in this case the images are used by the
vision system on the submarine itself as well as
the GUI interface on the operator station. The
image processing is done in two steps. The first
step is always a segmentation of the picture. This
implies deleting all pixels that are considered to
not belong to the searched object. In our case this
was decided based on the color of the object by
defining color ranges that should be accepted.

Fig. 7. The AUV autonomously approaching a
gate at SAUC-E.

After the segmentation a second step is either
hough transform or detecting the largest blob
of color. Both algorithms have their advantages
and disadvantages, therefore the user has to make
the decision when designing the automaton. The
hough transform is slower, but performs better
with noisy data. On the other hand detecting
the largest blob of color is fast and usefull for
situations when the object is not completely in the
field of view of the camera used. Hough transform
returns the lines on which most of the points are,
while the other algorithm returns the bounding
box sourounding the largest connected blob of
color as well as the weight center and the total
number of points found. The actions specified in
the finite state automaton define which strategy
is used.

3.4 The Facilitation of Re-Use with the CubeSystem

The AUV was developed within only three months.
A major part of this e↵ort was done by undergrad-
uate students as part of free time activities within
the Jacobs robotics club. The only reason why this
is possible is that the CubeSystem supports an
e↵ortless re-use of components from di↵erent sys-
tems. The AUV is to a large extent identical with
an autonomous rescue robot developed within the
robotics group of Jacobs University Bremen [Birk
et al. (2006); Birk and Carpin (2006)]. This holds
with respect to hardware as well as software.

The amount of re-use can be illustrated as follows.
For the software, a detailed analysis of the relevant
code reveals that 91.3% are identical. Quantifying
this for the electronics side is more di�cult. A
rough indicator in form of the ratio of the PCB-
area of identical versus di↵erent components that
are not o↵ the shelf can be used. With this
indicator, it can be seen that 79% of the electronic
components are indeed re-used.



4. CONCLUSION

The Jacobs-AUV is presented here. It is based
on the CubeSystem, a collection of hardware and
software components for fast robot prototyping.
The fast and successful development of the AUV,
which was to quite some extent done by un-
dergraduates as free time activity in a robotics
club, shows that component re-use is even possible
across robots developed for very di↵erent applica-
tion domains.
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