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Abstract — This paper describes the latest version of an integrated
hardware and software framework developed for autonomous oper-
ation of rescue robots. The successful operation of an autonomous
rugbot - short for ”rugged robot - was especially demonstrated during
several runs at the RoboCup world championship 2006 in Bremen.
The design of the autonomous system is described in detail with an
emphasis on extendibility and the specific requirements of a typical
unstructured rescue scenario.
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I. INTRODUCTION

Existing professional rescue robots are optimized with
respect to locomotion and ruggedness. They are proven to
be useful, field-able devices [1][2][3][4][5][6], but they have
their limitations. Especially, they require teleoperation by a
user. Due to the high cognitive demands on the operator in
purely teleoperated mode [7], any bit of intelligence added
makes the systems more useful. There are additional reasons
to strive for intelligent functionalities up to full autonomy on
the robots. First of all, there are technological aspects like the
limitations of communication systems. Second, there are the
logistic aspects of rescue operations. Human rescue workers
are a scarce resource at accident sites. A single operator should
hence supervise as many robots working in parallel as possible.
A more detailed discussion of the scopes of autonomy for
rescue robotics can be found in [8].

Fig. 1. The RoboCup rescue competition features a very complex test
environment (left), which includes several standardized test elements. The
Jacobs team demonstrated at the world championship 2006 a combined usage
of a teleoperated with a fully autonomous robot (right).

The framework for autonomous operation of a rescue robot
presented here is an extension of an earlier system [9]. The
new framework has been successfully run in the Robocup
2006 competition, where the Jacobs team made it as the
only participant with intelligent functionalities on board of
the robots into the final round. Fig. 2 shows a screenshot of
the GUI used by the operator to view robot’s progress and
interact with it on victim detection. Fig. 2 shows a map
autonomously generated by the robot during one of the runs
at Robocup rescue league. The identified victims are indicated
by their numbered IDs on the map. The RoboCup Rescue
League in general offers an interesting option to explore the
prospects of intelligent rescue systems, as also indicated by
related work, e.g., on navigation and exploration for rescue
[10] or autonomous victim detection [11].

Fig. 2. A screen-shot of the GUI running on an operator station (left). A
map completely autonomously created during an actual run at Robocup 2006
(right). The numbers on the map are the victim IDs.

II. HARDWARE DESCRIPTION

The Rugbot rescue robot platform is a complete in-house
development based on the so-called CubeSystem, a collection
of hardware and software components for fast robot proto-
typing [12]. Rugbots are tracked vehicles that are lightweight
(about 35 kg) and have a small footprint (approximately 50
cm x 50 cm). They are very agile and fast on open terrain. An
active flipper mechanism allows Rugbots to negotiate stairs
and rubble piles. Some additional information on the robot
as well as its teleoperation software can be found in [13]. A
more detailed description of the locomotion mechatronics of
the robot is given in [14].



Fig. 3. An autonomously detected victim. The top image shows an overview
photo taken by a spectator of the robot after it detected a victim - the arm
in the box. The bottom images are the robot’s view of a different detected
victim. The left image is from the webcam on the robot, and the right image
is from the thermocam on the robot.
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Fig. 4. The autonomous rescue robot Rugbot with some important onboard
sensors pointed out.

The robot’s onboard sensors can be categorized as follows:
1) Odometry Information

a) The CubeSystem has the provision of returning
Odometry data using Serial communication.

b) XSense MTi Gyros for providing the robot heading
direction or yaw, pitch, and roll. This yaw is used
to correct and recalibrate the drift in the odometry
returned by the CubeSystem.

2) Cameras
a) A Panasonic KX-HCM280 pan-tilt webcam with

optical zoom.
b) A Philips USB Cam for front view. Optionally, a

back camera, and side view cameras of the two
tracks can be installed.

3) 2D Range Detection
a) Two Hokuyo URG-04LX Laser Range Finders

(LRF): One for frontal obstacles (LRFF) and an-
other inclined (LRFD) for detecting immediate

movement impediments like ditches, and blocks.
These range finders have a field of view (FOV) of
240

o comprising of about 680 beams.
4) 3D Range Detection

a) a stereo-camera model STH-DCSG-STOC-C from
Videredesign for 3D frontal obstacle range detec-
tion.

b) a Swiss-ranger SR-3000 from CSEM for 3D frontal
obstacle range detection.

5) Other sensors
a) a FLIR thermocamera for temperature information

in a range of �40

oC to 120

oC with 0.08

oC reso-
lution.

b) a CO2 detector

III. SOFTWARE FRAMEWORK

The software framework is coded in C++, and consists of
two main modules: a server program running on the robot
onboard computer, and a graphical user interface running on
an operator station. The communication between these two
modules is handled using the Neutral Messaging Language
(NML) memory buffers of the NIST RCS library [15]. This
is shown in Fig. 5.
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Fig. 5. UML Deployment diagram showing the overall system.

A. NML Server

This server is spawned by the robot server on initialization.
Thereafter, it takes care of buffering messages between the
robot-server and its clients. Messages arriving in a buffer
overwrite previous messages. Currently, the framework has ten
buffers. The most important being: the actuation commands
buffer for sending operator joystick speed and flipper com-
mands to the robot server, and other buffers for receiving the
samples of various sensors, and results of mapping algorithms.



B. The Multi-threaded Robot Server
The server program is multi-threaded and runs on the SUSE

Linux O/S. There are separate threads to handle the following
tasks.

1) One thread each for all the onboard sensors and actua-
tors, viz. Gyro, Cube serial communication, LRF (front
and inclined), CO2 sensor, stereo-camera, swiss-ranger.

2) The image capturing of the themo-cam and various
webcams is done by a palantir server [16].

3) One main thread for sensor data collection and NML
communication with the client. The latter includes send-
ing actuator and speed commands to the Cube thread.

4) One thread each for all the mapping threads. Currently
we have a basic occupancy grid based mapping, a
SLAM algorithm based on scan-matching [17], and a
3D occupancy grid based algorithm.

5) Autonomy thread for autonomous operation of the mo-
bile robot. This thread analyzes sensor data and gener-
ates actuator and speed commands which are sent to the
Cube thread via the main thread. The autonomy thread
can be started and stopped from the remote operator
GUI. This allows the operator to take charge in difficult
situations, and drive the robot using a joystick. The
autonomy thread in turn spawns auxiliary threads for
automatic victim detection. Currently we have imple-
mented the following algorithms.

a) A thread which detects motion in the webcam
image when the robot is stationary.

b) A thread which scans the thermocam images for
warm or heated objects.

Fig. 6. UML class diagram showing the principal threads involved in the
autonomous mode. Mapping and camera threads are not shown for clarity.

As shown in Fig.6, all thread classes derive from a generic
thread class. All sensor-thread classes are derived from a
templated SensorThread class which takes care of mutex
locking and data copying. Similarly, all mapping-thread classes
are derived from a generic MappingThread class framework
which takes care of distributing odometry and LRF sensor
data to all mappers and transmission of the resulting map to
the NML buffer, from where the operator GUI can fetch it.

TABLE I
PARAMETER LIST

VRot 1250 mm/s
VFwd 1750 mm/s
�T

S

0.5 s
NBeams 682
hLRFD 400 mm
fR

min 0

fR

max 3/8
fF

min 3/8

fF

max 5/8
fL

min 5/8

fL

max 1
dF

min 280 mm
dF

max 600 mm
dF

IgnoreSide 600 mm

dF

SD 310 mm
dF

SHD 600 mm
dF

SideMax 700 mm
� 0.693/(dF

SHD � dF

SD)

C. The Autonomy Thread Main Loop

Remark 3.1 (Basic Idea): A behavior is a complex se-
quence of motions executed by the robot in response to a
situation detected through its sensors. Behaviors can be aggre-
gated together to form a new behavior. We distinguish between
a behavior and a primitive motion like in-place rotation or
pure translation. There is always an active (current) behavior
which handles the situation, i.e., computes motion and actuator
commands for the robot.

A new behavior is selected at each time instant based
on the robot’s perception. If a behavior has not finished its
complete sequence of motions, it can ask the autonomy thread
to consider running it in the next sample instant. This is,
however, not guaranteed. This mechanism allows all behaviors
to be interrupted in mid-run if a situation with a higher severity
occurs which can best be handled by another behavior.

Fig. 8 shows an overview of one step of the autonomy thread
(shown as an object of AutonomousMode class) main loop
using a UML collaboration diagram. The static relationships
between participating classes is shown in Fig. 9. At each
sample time instant within this loop, all the sensors threads are
sampled and their data analyzed to fill in a current situation
object. The design of the Situation class is depicted in
Fig. 9. A Situation object S has boolean flags S.f

i

, i =

1 . . . NSituations, for flagging various runtime conditions like
nearby obstacles, dangerous pitch or roll, whether the robot
is stuck or near a fall, whether any of the automatic victim
detection algorithms found a victim, etc. Each such flag S.f

i

has its own statically assigned priority S.f
i

.p. Each flag is as-
sociated with an overall runtime severity value S.f

i

.s 2 [0, 1].
Furthermore, this severity value is also provided directionally,
e.g. if an obstacle is flagged, one can check all the different
directions in which an obstacle has been detected, and what the
relative severities S.f

i

.s[Direction] 2 [0, 1] are. How situations
are analyzed and how severity values are arrived at will be



Fig. 7. UML class diagram showing the interrelationships between the classes
responsible for the behavior selection process.

Fig. 8. One step of the main loop illustrated using UML Collaboration
diagram.

Fig. 9. UML class diagram showing the design of the situation class.

discussed for a few representative sensors in the following
Sec. III-D.

D. Analyzing Sensor Data and Assigning Severities

1) Detection of Robot being Stuck: This detector sets the
S.fStuck flag. It samples robot odometry (x, y, ✓) every �T

S

seconds and keeps a window of last N
w

data sets. It then finds
the radial and angular distance between the most recent and
the most past data points. If this is within a threshold, the
S.fStuck is set. Note that the robot has ⇡ N

w

�T
S

seconds
to get out of a stuck situation, before this flag is set, and Back
off behavior takes over.

2) The Front Laser Range Finder (LRFF): The assignment
of severities based on LRF data involves experimentation to
determine some critical parameters (refer Table I). The basic
idea is that if the robot sees no obstacles in its front, it
should go ahead ignoring the side obstacles. Otherwise, a
side obstacle causes the left and right wheel speeds to be
modulated which makes the robot to veer to a side to avoid
collision. The left and right severities are assigned as shown
in Algo. III.1. The argument Dir takes the values of Left and
Right. Thereafter, the front severities are assigned as shown in
Algo. III.2.

Algorithm III.1: ASSIGNSIDESEVERITIES(Situation S, Dir)

Find Side beams set F = [NBeamsf
Dir
min, NBeamsf

Dirmax].
Find shortest beam d in F ignoring error beams.
if d  dF

SideMax

then

8
><

>:

if d  dF

SD
then S.fObstacle.s[Dir] = 1.0

else S.fObstacle.s[Dir] = e
��(d�d

F

SD)

else

n
comment: Obstacle flag not set.

Algorithm III.2: ASSIGNFRONTSEVERITIES(Situation S)

Find front beams set F = [NBeamsf
F

min, NBeamsf
Fmax].

Find shortest beam d in F ignoring error beams.
if d  dF

min
then S.fObstacle.s[Front] = 1.0

else if d � dF

IgnoreSide

then

8
<

:

S.fObstacle.s[Front] = 0.1
S.fObstacle.s[Left] 0.2S.fObstacle.s[Left]
S.fObstacle.s[Right] 0.2S.fObstacle.s[Right]

else S.fObstacle.s[Front] =
d

Fmax�d

d

Fmax�d

F

min

3) The Inclined Laser Range Finder (LRFD): Initial ver-
sions of the autonomous robot only had the front LRF which
scans the neighbourhood for obstacles in a horizontal plane
above the ground. This is sufficient for mapping, but it can
only see obstacles which are at its height (hLRFD in Table I).
With this configuration, the robot cannot detect any stairs or
dangerous edges from which it might fall down. To enable
the autonomous robot to navigate in more difficult terrain, an
inclined LRF (LRFD) was installed. The main idea behind this



is to measure the height or depth of obstacles or falls in front
of the robot. Subsequently, severities for front, left and right
can be (re)calculated. Additionally, the distances of obstacles
on the sides can be used for the calculation of the side-left
and side-right severities.

b�

a�

Fig. 10. Schematics of the inclined LRF. All beams lie on an inclined plane.
]b = 77o.

The device faces forward and is inclined at the relatively
steep angle of about 77

o. All its NBeams beams are evenly
distributed over the opening angle of the laser scanner of 240

o.
Zero degrees hits the ground at the front of the robot and
corresponds to beam number 341. About 90 beams to the left
and 90 beams to the right still hit the ground in front of the
robot. The beams which leave the sensor at 90

o are parallel to
the ground, while the first and last beams go backwards in the
air. Only the forward-going beams which are between �50

o

and 50

o are used for obstacle avoidance. The sensor returns
the distance (d

b

) from the sensor to the obstacle. Eq. (1) is
used to calculate the height h of the obstacle relative to the
ground. This value depends on the angle at which the beam
leaves the sensor (]a) as well as on the inclination of the
sensor itself (]b) (refer Fig. 10).

h = d
b

cos(a) cos(b)� hLRFD (1)

With the robot standing on flat ground, the values for h for
all beams are then calibrated to 0. The error observed in h
ranges between 5 mm in the centre and 30 mm on the sides.
The (vertical or horizontal) distance between the robot and
those obstacles is not calculated. The detected obstacles are
all very close (the beam hits the ground a distance of about
20 cm), so that this information would not be of interest. The
use of gyro roll and pitch data for the calculation of the height
of the obstacles has its pros and cons. If this data is not used,
the robot will see flat ground in front of it even when standing
on an inclined plane. On a triangular ramp a big fall would
be detected once the top of the ramp is reached. If the pitch
of the robot is compensated by simply adding this value to
the inclination of the sensor (]b) during the calculation this
fall is much smaller. Since in reality such a fall on a ramp is
not dangerous for a robot, the pitch compensation is preferred.
The downside of this compensation is that while going up or
down a ramp the robot will see a (small) obstacle or fall in
front.

Remark 3.2 (Severity Computation): The robot is about 33

cm high and is quite rugged. It is no problem for it to fall

down up to hf

u

= 18 cm. Climbing up obstacles, especially in
autonomous mode, is more difficult. If an obstacle is higher
than the radius of the track wheels (⇡ 13 cm), overcoming
it becomes really challenging even when being tele-operated.
Therefore, the maximum height which the robot should at-
tempt is set to about ho

u

= 13 cm. An obstacle height below
ho

l

= 3 cm and a fall depth less than hf

l

= 4 cm is ignored.
Between those minimum values and the maximum values
the severity rises from zero to one. These severities are put
in the situation object S as in Sec. III-D.2. The directional
severity values already filled in by analyzation of LRFF data
are overridden by those of LRFD data only if they are more
critical.

4) The Victim Motion Detection: We have coded a basic
movement detector which activated periodically after stopping
the robot. Two successive frames are taken from the USB
camera and compared. If a certain amount of pixles change
above a certain threshold, a movement is detected. Several
movement detections in a row lead to the assumption that a
moving victim is found.

This simple movement detector works well and is easy to
implement. But it has some drawbacks. The first is that a
calibration phase is needed which can take up to 15 seconds.
A second problem is that the detection quality might suffer
if the light conditions change. The most important drawback
is that the robot has to be stationary for somewhere between
two and eight seconds, every time the scene is checked for
movement.

E. Selecting a Behavior

Now, we look at the actual logic for selection of a current
behavior from the set of available ones. Each behavior B
has an overall priority B.p 2 [0, 1], and a list of flags B.f

i

corresponding to the situation flags S.f
i

that it can handle.
Each such behavior to situation-flag association also has a
corresponding priority B.f

i

.p. The suitability of a behavior B
for handling a situation S is computed as in Algo. III.3. Let
the behavior activated in the last sample time instant be B

L

.
The selection of a suitable behavior then happens according
to the flow presented in Fig. 8.

Algorithm III.3: BEHAVIOR::SUITABILITY(S, B
L

)

s 0
for i 1 to NSituations

do

⇢
if S.f

i

and B.f
i

then

�
s s + (B.p) (B.f

i

.p) (S.f
i

.p)
if this = B

L

and MotionSequenceNotFinished
then s s + LastRepeatPriority

return (s)

As shown in Fig. 7, the autonomy thread object is associated
with the following behavior objects:

1) A default behavior: This behavior is activated when no
severe situation is flagged.

2) A current behavior: This is the last behavior activated.
Additionally, the autonomy thread has the following repertoire
of available behaviors. In each case, the way a behavior



handles a situation, i.e., computes motion commands is also
described in brief. The motion commands ususally consist of
the left and right wheel speed (v

L

, v
R

) in mm/s, though, they
could also activate auxilliary actuators like the flipper. Refer
to Table I for parameter definitions.

1) Obstacle Avoidance: This is the default behavior which
handles the flag S.fObstacle. It is a stateless purely
reactionary behavior and as such does not require
to be run again to complete its sequence. Therefore,
variable MotionSequenceNotFinished mentioned in
Algo. III.3 is always false.

v
L

 VFwd
�
1� S.fObstacle.s[Forward]

�
,

v
L

 v
L

� VRotS.fObstacle.s[Right]. (2)
v

R

 VFwd
�
1� S.fObstacle.s[Forward]

�
,

v
R

 v
R

� VRotS.fObstacle.s[Left]. (3)

2) Largest Opening: This behavior does not handle any
situational flags directly, but is aggregated within other
behaviors, e.g. Back off. It makes use of the LRFF data
to find the largest opening amongst obstacles for the
robot to escape, and rotates the robot to that direction.
As noted in Remark 3.1, this behavior can be interrupted
before reaching its end.

3) Back off: It handles situational flags S.fStuck, S.fDitch,
S.fRoll/Pitch, S.fMotorsStalling. Essentially, it backs
up a certain distance and then calls Largest Opening.
As noted in Remark 3.1, this behavior can be interrupted
before reaching its end.

4) Victim Found: It handles the following situational flags:

S . fIRDetectedVictim,

S . fMotionDetectorDetectedVictim,

S . fDetectedVictimWaitingForUser.

This behavior has the highest priority, and cannot be
interrupted by another behavior. It basically stops the
robot and waits till a user confirmation is received or a
timer times out.

5) Motion Planner: This behavior is run periodically based
on a situational flag set by a timer. It samples the motion
planner thread which tries to find paths to unexplored
regions based on the generated occupancy grid map.
The behavior runs only when no critical situations are
flagged. It rotates the robot in the direction of the
planned path.

IV. CONCLUSIONS

This paper presented an integrated hardware and software
framework for autonomy of a rescue robot. This framework
was field tested in Robocup 2006.
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