
Evaluation of Map Quality by Matching and Scoring
High-Level, Topological Map Structures

Sören Schwertfeger and Andreas Birk1

Abstract— Mapping is an important task for mobile robots. But
assessing the quality of maps in a simple, efficient and automated way
is not trivial and an ongoing research topic. A new approach on map
evaluation is presented here. It is based on Topology Graphs as a
topological, abstracted representation of 2D grid maps. The Topology
Graphs are derived from Voronoi Diagrams that get post-processed to
capture the high-level spatial structures. Based on a similarity metric
on vertices in Topology Graphs, the vertices can be matched across
maps and spatial (dis)similarities and hence errors in the mapping can
be identified and measured. More precisely, the vertex-similarity is the
basis to match the structures of Topology Graphs up to the identification
of subgraph isomorphisms through wave-front propagation. This allows
to determine important map quality attributes up to very challenging
structural elements like brokenness, i.e., the number of locally correct
partitions in the candidate map and their relative placement towards
each other. Experiments with real robot generated maps including
examples from various teams in the RoboCup Rescue competition
are used to validate the usefulness of this method for map quality
assessment.

I. INTRODUCTION

Maps are often essential to enable the robot to perform its tasks,
for example for autonomous navigation and path planning. Maps
also assist an operator of a remotely teleoperated robot in locating
the robot in the environment by providing information of features
of interest (corners, hallways, rooms, etc.). It is hence of interest
to be able to assess the quality of maps and mapping approaches,
to identify working solutions as well as open problems.

Maps generated by mobile robots are abstractions of the real
world, which always contain inaccuracies or errors. There has
been great progress in mapping in the last two decades, especially
with respect to Simultaneous Localization and Mapping (SLAM)
techniques. But especially on extended missions or in unstructured
environments, maps still often contain large errors. Furthermore,
the usefulness of a map not only depends on its quality but also
on the application. In some domains certain errors are negligible
or not so important. That is why there is not just one measurement
for map quality. Different attributes of a map should be measured
separately and weighed according to the needs of the application
[1]. Those attributes can include:

• Coverage: How much area was traversed/visited.
• Resolution Quality: To what level/detail are features visible.
• Global Accuracy: Correctness of positions of features in the

global reference frame.
• Relative Accuracy: Correctness of feature positions after cor-

recting (the initial error of) the map reference frame.
• Local Consistencies: Correctness of positions of different local

groups of features relative to each other within each group.
• Brokenness: How often is the map broken.

Note that the Resolution Quality is not only dependent on the actual
size of the grid cells of the map but is also influenced by the quality

1Both authors are with the Department of Electrical Engineering and
Computer Science, Jacobs University Bremen, 28759 Bremen, Germany
[s.schwertfeger, a.birk] at jacobs-university.de

of the localization. If there are pose errors between scans of the
same object, its features blur or completely vanish.

Ground truth information is typically used for map evaluation.
There are notable exceptions that solely rely on the appearance of
a single map, e.g., [2] where suspicious and plausible arrangements
of 3D planes are considered. But if an objective analysis, e.g., for
a comparison of mapping algorithms, is required then subjective
appearance criteria have their limits - it can never be fully ensured
whether the appearance criterion really holds in the experimental
environment unless the ground truth is studied as well.

One option is to use ground truth robot paths, e.g., [3] and [4]
compare those paths with those estimated by SLAM algorithms. But
obtaining highly accurate robot paths can be a difficult problem.
Using ground truth maps can be easier and also allows for the
comparison of maps generated by different robots that may have
gone different paths, used different sensors, and so on.

Therefore, most other approaches to map evaluation use accurate
maps of the environment as ground truth, which is particularly easy
if simulations are used [5], [6]. One can, for example, measure the
alignment error of virtual scans in the ground truth map [7] or use
image-processing techniques. But image similarity methods [8] that
try to register maps or parts of them with image-processing have
their limitations. Though this can even be used in the best case to
determine certain attributes like the level of brokenness [9] it is
always a pixel-level processing that suffers from local noise and
smaller errors that severely challenge the registration of matching
regions of ground truth and the evaluated map.

An alternative is to try to detect features or places in the maps.
The Harris corner detector, the Hough transform and SIFT are for
example used in [10] while SURF and a room detection approach
are applied in [11]. Those approaches have in common, that they
use the pose of the detected features to determine the map quality
by matching them to their counterparts in the ground truth. To ease
this process, there is also the option to use artificial markers in
the environment, so called fiducials [12], [13]. Just the positions
of those fiducials has to be known to calculate the map attributes
mentioned above. The main disadvantage of this approach to map
evaluation is, that the mapped area as to be populated with those
markers.

Here we propose the use of graphs that try to capture the
topological structure of maps - hence Topology Graphs. The graphs
are derived from post-processed Voronoi Diagrams. We present a
way to first match the Topology Graphs of two maps and then
evaluate this match to get a similarity metric. It is shown through a
validation with real world maps, among others from various teams
from RoboCup Rescue competitions and response robot field tests,
that the metric allows to assess the quality of maps as it captures
important quality aspects. All maps used in the evaluations of our
algorithms have been produced by teams unrelated to the authors
in various test scenarios designed by third parties.

The rest of this paper is structured as follows: First the Topology
Graph is introduced and it is described how it is created and

Fig. 1. A Topology Graph in a map generated by one of the teams at
the RoboCup Rescue 2010 competition. Turquoise edges and vertices are
spurious edges or vertices.

attributed. Then the matching of two Topology Graphs is explained,
concentrating on the algorithm to find isomorphisms. Next it is
described how a match of the Topology Graphs of a ground truth
map and a robot map can be used to measure the quality of the
robot map. An experiment is then showing the performance of the
map brokenness computation, followed by the conclusions.

II. TOPOLOGY GRAPH

The map evaluation algorithm presented here makes use of what
we call Topology Graphs, as they are designed to represent the
topological structure of the environment. In the end, the topologies
of a ground truth map and the robot-generated map are compared
and their differences analyzed. The topological information we are
interested in are passage ways like hallways, their junctions and
dead ends, and their general connectivity.

Generating the Topology Graph is a form of skeletonization. The
input to the algorithm is a two dimensional grid-map which is
colorized to occupied and free space [13]. After some simplification
and pruning, the desired Topology Graph can be extracted from the
Voronoi Diagram. As an example of the desired output, Figure 1
shows a map and its Topology Graph; the data is from one of the
teams participating in the RoboCup Rescue Competition 2010.

A. Voronoi Diagram

The creation of the Topology Graph is based on the Generalized
Voronoi Diagram (GVD). It is a partition of the space into cells.
The cells enclose a site, and in this application the site is an obstacle
point from the map. The Voronoi cell associated with a site is the
set of all points in whose distance to the site is not greater than
their distance to all other sites. In this work the interest is not so
much in the Voronoi cells but in the graph that is defined by the
boundary of said cells.

The generation of the Topology Graph involves several post-
processing steps that are illustrated using an example map (see
Figure 4 for a complete version together with the resulting Topology
Graph), which was generated by a team in an experimental setting
known as the random maze at the Response Robot Evaluation
Exercise (RREE) 2010. The map has 4398 points and a resolution
of 5cm per pixel.

B. Creating the Topology Graph

The input points for the computation of the Voronoi Diagram
(VD) are the center points of the occupied cells from the grid
map. CGAL is used for that [14]. In the first step edges whose
geometrical distance to the closest obstacle (as determined during

Fig. 2. The CGAL Voronoi graph. A nearly unfiltered graph (left) and the
graph filtered for the distance to the obstacles (right). A minimum distance
of 30cm is configured. This reduces the number of CGAL half edges from
10280 to 2352.

Fig. 3. An unfiltered Topology Graph (left). Turquoise edges lead to dead
end vertices. The left graph has 291 Vertices, 584 half edges. The graph
filtered for all vertices outside the alpha shape enclosing the map is shown
on the right. Ray edges are colored green. An alpha value of 2500 (2.5 m)
was used, resulting in an alpha polygon consisting of 133 segments. The
filtered graph features 211 vertices and 424 half edges.

the VD generation) is shorter than a certain threshold are filtered
out (see Figure 2). The threshold is chosen according to the
minimum width of hallways/openings that should be represented
in the Topology Graph.

The initial Topology Graph is generated by looking at the vertices
from the Voronoi Diagram. All vertices with a degree of one or
more than two are used as vertices in the Topology Graph. The
Topology Graph edges are then created according to the edges of
the VD, merging together edges to vertices that were not copied
over to the Topology Graph (those vertices have a degree of two
and are thus connected to exactly two edges, which are merged in
turn).

The graph is then further filtered from short dead-end edges.
Also, we are just interested in the topology inside the grid map, so
the parts outside of the map are to be removed. This is achieved
by first determining the outer shape of the map using the Alpha
Shape algorithm [15]. The longest polygon generated by the Alpha
Shape is the one defining the outer boundary. All vertices outside
this polygon are removed. Figure 3 shows in the right image the
alpha polygon and the filtered graph. Also edges and vertices that
are not part of the biggest graph are deleted. At last vertices in
close proximity to each other are joined together. The new vertex
gets the average position of the joined vertices. The edges coming
from other vertices to the joined vertices are connected to the new
one.

C. Attributing the Topology Graph

Several attributes for the edges and vertices of the Topology
Graph are calculated. Those are used during the later steps of vertex
similarity calculation and the graph matching.

The length of the path along an edge is calculated. As can be
seen for example in Figure 1, the path of an edge between two
vertices often does not follow a straight line but is winding along the
corridor. Other attributes for the edges are the average and minimum
distance of the path to the obstacles. Dead end edges (edges that are

Fig. 4. The resulting Topology Graph with 17 vertices and 36 half edges.
The added length of all edges (only counting one of the two half edges
forming an undirected edge) is 52 m.

connected to a vertex with a degree of one) are marked. Dead end
edges that are shorter than a certain threshold and their vertices
are marked as “spurious”. This is because for different maps of
the same environment, those might or might not be created in the
Topology Graphs, due to minor differences in the map. During the
graph matching those vertices could then be ignored.

The edges connected to a vertex are not just saved as an
unordered set. Instead they are put into a ring buffer, according to
their incidence angles to that vertex. The ring buffer does not store
global angles but only the difference between neighboring angles,
thus making this information rotation independent. The vertex is
then attributed with the smallest and biggest angle between two
neighboring vertices from the ring buffer.

D. Stability of the Topology Graph

The stability of the Topology Graph is important - the graphs
have to be similar such that the graph matching can work. The pure
Voronoi Diagram might have problems with stability, for example
with two doors on opposite sides of a corridor, where one or two
vertices might be created and the order of the vertices might also
differ. But due to the merging of vertices in close proximity, those
ambiguities are avoided in the Topology Graph.

So the stability is generally very good in ”normal” environments
where there are at least some obstacles. Only in large open areas,
minor changes in the environment might lead to drastic changes in
the Topology Graph, due to the nature of the underlying VD.

The experiments performed by the authors at different field tests
and competitions with various 3rd party maps show that the graphs
of the same, real life environments, represented by different grid
maps, are very similar even if the resolution or amount of errors
differ.

III. MATCHING OF TWO TOPOLOGY GRAPHS

In order to compare the Topology Graph of the ground truth map
and the one from the robot-generated map, those graphs have to be
matched against each other. The matching is done on the vertices
as well as the graph structure. The positions of the vertices in the
map are not used at all for this matching step, because those can
be severely wrong due to the errors in the map.

A. Vertex Similarity

Calculating some similarity between two vertices of two different
graphs is a first step for matching the graphs - this is done between
all vertices from both graphs. The concept of two approaches is
shortly presented here.

The first approach calculates a similarity value by comparing the
values of attributes of the vertices. Those attributes were generated
while building the graph. Those are, for example, the number of
edges connected to a vertex, the biggest and smallest angle between

Fig. 5. Example match between a ground truth map (left) and a robot
generated map (right) using the isomorphism algorithm and then the grow
neighbors approach. There are 28 assignments made and one assignment is
missing from the left graph (vertex 11).

the edges of a vertex, the lengths of those edges, the minimum and
average distance to obstacles along the edges and to the vertex, etc.

The second approach takes all obstacle points within a certain
radius to the vertex from the grid map and compares those two
point clouds from the two vertices using the Iterative Closest Point
(ICP) algorithm [16]. Since ICP is sensitive to the initial rotation of
the point clouds, the algorithm is started with a number (e.g. 12) of
different starting angles. The lowest mean squared error of the ICP
runs is then used to calculate the similarity between the vertices.

The results of both approaches can be improved by taking
the similarities of the neighboring vertices into account. The first
approach can be computed many orders of magnitude faster than the
ICP approach, while delivering only slightly less accurate results.
If computation time is not such a big issue, the ICP method (for
which the computation for one pair of graphs is typically less than
one minute) might be preferred.

B. Find Isomorphisms

Two Topology Graphs are matched by first finding an isomor-
phism and then applying a neighbor growing approach. Finding
an isomorphism is a quite fast and strict way to find parts of the
maps that do not diverge in the connections of the graph. The
second, more heuristic approach is the neighbor growing algorithm
which makes heavy use of the vertex similarity. It partially ignores
the constraints that guide the isomorphism algorithm and uses a
similarity value for the whole match to guide the search.

The Graph Isomorphism is a concept of graph theory. We are only
looking for subgraphs from both graphs that form an isomorphism,
which is called the maximum common subgraph isomorphism
problem. In our concrete application we deal with planar graphs (no
edges intersect on a 2D plane) and we have a very good heuristic
(the Vertex Similarity), thus easing the solution. But the graphs may
contain spurious edges and vertices which may have to be ignored
during the matching as they are random artifacts, which makes the
problem harder. All these factors motivate why we developed a
custom solution for the graph matching problem at hand. There are
two rules for finding the isomorphism in our method, namely the
number and geometric order of the connected edges of the vertices
matched must be correct and the length of the edges must coincide
at least to a certain degree.

For every vertex (which has not yet been assigned), it is tried to
find a new isomorphism starting at said vertex v

x

. This works by

Algorithm 1 The Wavefront Propagation
function wavefrontProp(wavefront, currentVertexAssignment)
while not wavefront.empty() do

currentVertexPair = wavefront.pop()
goodAssignments = getGoodAssignments(currentVertexPair, cur-
rentVertexAssignment)
if goodAssignments.size() == 1 then

addToVertexAssignmentAndWavefront(goodAssign-
ments.top(), wavefront, currentVertexAssignment)
continue

else if goodAssignments.empty() then
continue

end if
// goodAssignments has more than one entry - recursion!
for all assignment in goodAssignments do

wavefrontCopy = wavefront
assignmentCopy = currentVertexAssignment
addToVertexAssignmentAndWavefront(assignment, wavefront-
Copy, assignmentCopy)
wavefrontPropagation(wavefrontCopy, assignmentCopy)

end for
end while

function getGoodAssignments(currentVertexPair, currentVertexAs-
signment)
varGoodAssignments.empty()
edgeAssignmentTable = vertexTable[currentVertexPair.first][cur-
rentVertexPair.second].edgeTable
for all edgeAssignment in edgeAssignmentTable do

if checkedgeAssignmentForConsistency(edgeAssignment, cur-
rentVertexAssignment) then

varGoodAssignments.insert(edgeAssignment)
end if

end for
return varGoodAssignments

trying to match this vertex with every vertex from the other graph
that has the same number of connected edges.

The Wavefront Propagation algorithm explained below is then
applied to this pair. Should this algorithm result in a found iso-
morphism, it is checked if the number of matched vertices in this
assignment is at least as big as a threshold. If this is the case,
the result is accepted. The biggest accepted assignment for v

x

is
then added to the final vertex assignments. Typically there will be
just one accepted assignment for v

x

, since the algorithm will only
return very good matching isomorphisms. Only if there are large
scale repetitive patterns in the environment that are reflected in the
topology graph, taking the maximum match can help finding the
correct match.

1) Wavefront Propagation: In the Wavefront Propagation algo-
rithm, vertices that have edges to other, not yet matched vertices
form the wavefront. In the beginning, just the proposed pair is in
the frontier.

In Algorithm 1 an edge assignment table is used in the function
getGoodAssignments. One edge assignment is the pairwise
matching of edges of one vertex from the first graph with edges of
the matched vertex from the second graph. The edge assignment
table consists of all permutations of those matches.
checkEdgeAssignmentForConsistency tests if one

edge assignment is consistent with the current vertex assignment.
This is only true when the edges are equal in number and are
matched in the correct (geometric) order. Otherwise the function
immediately returns false. Then it is checking if the vertices that
the edges are leading to are already matched and if so, if they

Fig. 6. Eight example maps (map 1 to map 8 from left to right and from
top down) generated in the context of RoboCup Rescue. Map 1 is shown
in big in Figure 9.

are matched with the correct vertices. Additionally, the length of
the edges are compared. The recursive step only happens for the
first match inserted into the wavefront, since afterwards getGoodAs-
signments will return at most one assignment. This is because all
new matches added to the wavefront will already have at least
one matched neighbor (from which they were added). Since the
matching of the edges is strict with respect to the order of edges
connected to a vertex, at most one assignment can be returned.

The found graph match can be extended by a neighbor growing
approach. It is also a wavefront approach which has relaxed
constraints and is heavily guided by the vertex similarity. Figure
5 shows an example match between the ground truth map from
RoboCup and a robot generated map using the isomorphism and
neighbor growing approaches.

IV. MAP EVALUATION USING MATCHED TOPOLOGY GRAPHS

Once the matching of the structures of two Topology Graphs is
done this still has to be turned into a metric for assessing their
similarity. Evaluating the map quality after matching the Topology
Graph G of the map with the Topology Graph G0 of a reference
map is similar to the approach of the Fiducial Map Metric [13].
The map attributes are calculated as follows:
Coverage: Calculate the percentage of vertices from the

ground truth Topology Graph matched to vertices from the graph
of the robot map.
Global Accuracy: Correctness of positions of the matched
vertices in the global reference frame.
Relative Accuracy: Correctness of positions of matched
vertices after correcting (the initial error of) the map reference frame
using Horn’s algorithm [17].
Local Consistencies: The shortest graph distances between
any two vertices in the ground truth graph are calculated. All vertex
pairs are permutated. The pairs are put into different difficulty
classes according to their distance over the graph. The geometric
distance between the two vertex positions is calculated and com-
pared to the geometric distance between the two matched vertices
from the robot generated map. The errors of those comparisons are
averaged for each of the difficulty classes.
Brokenness: It is defined as ”the degree with which a map

can be partitioned into regions that are locally consistent with
ground truth but ’off’ relative to each other” [9].

From the experience of the authors from field tests like RREE
or competitions like RoboCup Rescue, even state of the art SLAM

TABLE I
COMPARISON: TOPOLOGY MAP EVALUATION TO HUMAN ASSESSMENT.

Map Human Top.Gr. Cov. Rel. Consistency
Rank Rank Acc. Short Med. Long
5 1-2 2 2 1 2-3 1-2 1
6 1-2 1 1 2-3 1 4 2
1 3 4 3 4 4 1-2 5
4 4 3 4 2-3 2-3 3 3
3 5 5 5 5 6 6 7
2 6-8 6 6 7 7 7 4
7 6-8 7 7 6 5 5 6
8 6-8 8 8 8 8 8 8

Fig. 7. The Ground Truth Map (Map 0 - bottom) matched to Map 2 (top),
which has two broken areas. The green matches are made by the Topology
Graph Isomorphism and the red matches by the Neighbor Growing. The
numbers represent the brokenness group the vertex belongs to.

algorithms occasionally produce maps with broken regions. One
example of a real-world case of a broken map can be seen in Figure
9. This map was generated from real sensor data. The upper part of
the map is slightly broken, as can be seen V-shaped wall indicated
with the arrow.

Calculating the brokenness using a Topology Graph that is
matched against a ground truth Topology Graph is relatively simple.
A subset of connected vertices, a Brokenness Group, has to be
found whose minimal mean square error regarding the location of
the vertices compared to the matched ground truth vertex locations
does not exceed a certain threshold. This is done using a Wavefront
Propagation algorithm. The minimal mean square error is easily
computed using Horns algorithm. This subset is saved. The process
is iterated over the remaining vertices that are not yet part of a
subset. A subset is only accepted if it contains at least a certain
number of vertices. The number of subsets found minus one is
then the brokenness degree as defined in [9].

V. EXPERIMENTS

First the results of the approach is compared to a human a
ssessment. It can be noted that the proposed metric generates
rankings of map qualities that are similar to human judgments.
Figure 6 shows eight maps generated in the context of RoboCup
Rescue - the very good map from Figure 1 is used as the ground
truth map. Table I shows a human ranking of the quality of the
maps as well as their automatic scoring.

In a second experiment, it is shown that Topology Graphs can
even be used to compute challenging map quality attributes like
brokenness. The six maps that were used in [9] for brokenness
experiments are also used here. Map 0 (Figure 7) serves as the
ground map while Maps 1 to 5 (Figures 7 and 8) are applied to the
map metric. The computation is done in pixel coordinates, because

TABLE II
MATCHING OF TOPOLOGY GRAPHS WITH GROUND TRUTH.

Map # # Matching Vertices with Ground Truth
Vertices Half Isomorphism Neighbour Missing

Edges Growing
0 75 176 - - -
1 74 172 58 8 8
2 76 178 61 6 8
3 79 188 49 9 17
4 79 186 50 9 16
5 79 186 47 9 19

the scaling factor to real world was not encoded in the images. The
configuration values are 80 for the SquaredErrorThreshold and 5
for the MinNumberVertices value.

In Figure 7 Map 2 is shown together with the matches to the
ground truth map and the found Brokenness Groups. The numbers
represent the Brokenness Group the vertex belongs to. The biggest
group with 44 matches (which also means 44 vertices per map) is
number 0 - this part represents the unbroken map. Horns algorithm
also calculates the transformation between two point sets. The angle
from this transformation is -69.5 degrees for set 1 and 21.8 degrees
for set 2, which is correct.

Table II gives statistics about the matching between the ground
truth and the broken maps. In Table III the different Brokenness
Groups for the matches are presented. Maps 1 and 2 deliver the
expected result and detect a brokenness of 1 and 2, respectively.
For maps 3, 4 and 5 the left-most brokenness cannot be detected.
It is very small and only represented by three vertices. Since
MinNumberVertices is 5, this broken part cannot form its own set.
All other broken parts from maps 3, 4 and five are nicely detected.

In Table IV the results for the other map attributes can be found.
The inherent ranking of the maps (maps with higher numbers being
more often broken and thus worse than lower number maps) is
nicely reflected in the Consistency attributes. The coverage of all
maps, including the ground truth, is the same. Due to the brokenness
some vertices cannot be matched and thus the coverage is not 100%
for the maps. But still the value is and remains quite high for the
different maps.

One can see that the Relative Accuracy does also not change
too much with the level of brokenness. This is because sometimes
the next brokenness is bend towards the ”correct” direction, thus

TABLE III
THE DIFFERENT BROKENNESS GROUPS.

Map Detected Set # Squared Angle
Brokenness Number Matches Error in �

1 1 0 44 20.8 0.0
1 18 57.3 20.6

2 2
0 44 58.5 0.1
1 11 8.9 -69.5
2 9 79.9 21.8

3 2
0 35 68.5 0.1
1 8 69.9 23.4
2 6 44.4 -70.8

4 3

0 28 77.7 0.3
1 10 79.7 7.4
2 9 79.9 21.8
3 7 77.3 -70.5

5 4

0 19 76.8 0.7
1 9 71.4 7.4
2 9 79.9 21.8
3 7 77.3 -70.5
4 6 53.8 7.8

TABLE IV
BROKENESS EXPERIMENTS RESULTS.

Map Coverage Relative Consistency
Accuracy Short Medium Long

1 0.88 0.71 0.95 0.88 0.41
2 0.89 0.62 0.94 0.84 0.29
3 0.77 0.63 0.87 0.68 0.25
4 0.79 0.63 0.86 0.70 0.17
5 0.75 0.59 0.82 0.53 0.13

Fig. 8. The brokenness groups (1, 3, 4 and 5) for the different maps.

potentially even improving the Relative Accuracy. As expected, the
Consistency attributes are the strongest indicator for the brokenness.
Three Local Consistency attributes have been calculated: One for
graph-distances between two vertices from the ground truth graph
(Map 0) of less than 60 pixel (short), one for distances between 60
and 180 pixel (medium) and one for higher distances (long). The
medium and long range Consistency values significantly decrease
in value with every brokenness that is added to the map. Since
the broken parts do not have any other errors, the short range
Consistency is quite high and only slowly decreasing (due to the
errors around the start areas of the broken parts).

Another example of a nicely detected brokenness is shown in
Figure 9. Here a small brokenness of 7.6 degrees was detected.

VI. CONCLUSIONS

A novel approach for map evaluation using Topology Graphs has
been proposed in this paper. The steps to building the Topology
Graph representation of a 2D grid map and how to match two
Topology Graphs have been shown. The different map evaluation
attributes have been defined and methods on how to compute them
using the matched graphs were proposed. The algorithms were
demonstrated using real life examples - one experiment has been
conducted that in particular highlights the assessment of a highly

Fig. 9. Map from the RoboCup Mapping Challenge 2010 matched to the
ground truth map from Figure 1. The parallel match-lines indicate a good
match. The small map brokenness (see arrow at the V-shaped wall) was
detected.

non-trivial map quality attribute in form of brokenness.
The main advantage of the Topology Map Metric is that it

abstracts from the grid representation with the occupied cells and
just works on the topology. It thus does not matter how the walls
and obstacles are shown and small scale errors and artifacts on the
walls do not effect the map score. Wrong initial orientations of the
map and big broken parts are no problem to detect and compensate
for in this map metric - those are very difficult situations for many
image-based approaches. No detection of features, neither naturally
occurring or artificially placed ones, is needed and the computation
is fast enough for practical purposes - less than five seconds for
each example in this paper on a standard laptop.

In the future an extension of the approach to 3D maps is planned.

REFERENCES

[1] D. C. Lee, The Map-Building and Exploration Strategies of a Sim-
ple Sonar-Equipped Mobile Robot: An Experimental, Quantitative
Evaluation, ser. Distinguished Dissertations in Computer Science.
Cambridge University Press, 1996.

[2] M. Chandran-Ramesh and P. Newman, “Assessing map quality using
conditional random fields,” in Field and Service Robotics, Springer
Tracts in Advanced Robotics, C. Laugier and R. Siegwart, Eds.
Springer, 2008.

[3] O. Wulf, A. Nuchter, J. Hertzberg, and B. Wagner, “Ground truth
evaluation of large urban 6d slam,” oct. 2007, pp. 650 –657.

[4] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner, “On measuring the accuracy of slam
algorithms,” 2009.

[5] C. Scrapper, R. Madhavan, and S. Balakirsky, “Stable navigation
solutions for robots in complex environments,” in IEEE International
Workshop on Safety, Security and Rescue Robotics (SSRR), 2007, pp.
1–6.

[6] B. Balaguer, S. Balakirsky, S. Carpin, and A. Visser, “Evaluating maps
produced by urban search and rescue robots: lessons learned from
robocup,” Autonomous Robots, vol. 27, pp. 449–464, 2009.

[7] R. Lakaemper and N. Adluru, “Using virtual scans for improved
mapping and evaluation,” Auton. Robots, vol. 27, no. 4, pp. 431–448,
2009.

[8] I. Varsadan, A. Birk, and M. Pfingsthorn, “Determining map quality
through an image similarity metric,” in RoboCup 2008: Robot World-
Cup XII, Lecture Notes in Artificial Intelligence (LNAI), L. Iocchi,
H. Matsubara, A. Weitzenfeld, and C. Zhou, Eds. Springer, 2009,
pp. 355–365.

[9] A. Birk, “A quantitative assessment of structural errors in grid maps,”
Autonomous Robots, vol. 28, pp. 187–196, 2010.

[10] A. I. Wagan, A. Godil, and X. Li, “Map quality assessment,” in PerMIS
’08: Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems. New York, NY, USA: ACM, 2008, pp. 278–282.

[11] J. Pellenz and D. Paulus, “Mapping and Map Scoring at the
RoboCupRescue Competition,” Quantitative Performance Evaluation
of Navigation Solutions for Mobile Robots (RSS 2008, Workshop CD),
2008.

[12] S. Schwertfeger, A. Jacoff, C. Scrapper, J. Pellenz, and A. Kleiner,
“Evaluation of maps using fixed shapes: The fiducial map metric,” in
Proceedings of PerMIS, 2010.

[13] S. Schwertfeger, A. Jacoff, J. Pellenz, and A. Birk, “Using a fiducial
map metric for assessing map quality in the context of robocup rescue,”
in International Workshop on Safety, Security, and Rescue Robotics
(SSRR). IEEE Press, 2011.

[14] M. Karavelas, “2D Voronoi diagram adaptor,” in CGAL User
and Reference Manual, 3.8 ed. CGAL Editorial Board, 2011,
http://www.cgal.org/Manual/3.8/doc html/cgal manual/packages.
html#Pkg:VoronoiDiagramAdaptor2.

[15] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” Information Theory, IEEE Transactions on,
vol. 29, no. 4, pp. 551 – 559, jul 1983.

[16] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, Feb 1992.

[17] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America, vol. 4, no. 4,
pp. 629–642, 1987.

 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of

any copyrighted components of this work in other works.

Schwertfeger, S., and A. Birk, ”Evaluation of Map Quality by Matching and Scoring High-Level,

Topological Map Structures”, IEEE International Conference on Robotics and Automation (ICRA):

IEEE Press, 2013.

http://dx.doi.org/10.1109/ICRA.2013.6630876

Provided by Sören Schwertfeger http://robotics.shanghaitech.edu.cn/people/soeren

ShanghaiTech Advanced Robotics Lab http://robotics.shanghaitech.edu.cn

School of Information Science and Technology http://sist.shanghaitech.edu.cn

ShanghaiTech University http://www.shanghaitech.edu.cn/eng

File location http://robotics.shanghaitech.edu.cn/publications

http://robotics.shanghaitech.edu.cn/
http://dx.doi.org/10.1109/ICRA.2013.6630876
http://robotics.shanghaitech.edu.cn/people/soeren
http://robotics.shanghaitech.edu.cn/publications
http://www.shanghaitech.edu.cn/eng
http://sist.shanghaitech.edu.cn/

