
Autonomous Robots
The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-015-9493-5

Map Evaluation using Matched Topology Graphs

Sören Schwertfeger · Andreas Birk

Published: 03.09.2015

Abstract Mapping is an important task for mobile
robots. The assessment of the quality of maps in a sim-
ple, e�cient and automated way is not trivial and an
ongoing research topic. Here, a new approach for the
evaluation of 2D grid maps is presented. This structure-
based method makes use of a Topology Graph, i.e., a
topological representation that includes abstracted lo-
cal metric information. It is shown how the Topology
Graph is constructed from a Voronoi Diagram that is
pruned and simplified such that only high level topolog-
ical information remains to concentrate on larger, topo-
logically distinctive places. Several methods for com-
puting the similarity of vertices in two Topology Graphs,
i.e., for performing a place-recognition, are presented.
Based on the similarities, it is shown how subgraph-
isomorphisms can be e�ciently computed and two Topol-
ogy Graphs can be matched. The match between the
graphs is then used to calculate a number of standard
map evaluation attributes like coverage, global accu-
racy, relative accuracy, consistency, and brokenness. Ex-
periments with robot generated maps are used to high-
light the capabilities of the proposed approach and to
evaluate the performance of the underlying algorithms.

Keywords Mobile robot · Performance metric · Map
quality · Ground truth comparison · Topology · Place
recognition · Simultaneous Localization and Mapping
(SLAM)

Sören Schwertfeger
School of Information Science and Technology,
ShanghaiTech University, 200031 Shanghai, China
E-mail: soerensch@shanghaitech.edu.cn

Andreas Birk
Department of Electrical Engineering and Computer Science,
Jacobs University Bremen, 28759 Bremen, Germany
E-mail: a.birk@jacobs-university.de

1 Introduction

The development in the area of mobile robotics has
been constantly gaining pace in the recent years. Many
advanced capabilities of mobile robots require spatial
information about the robot, the interaction partners,
or of objects and places of interest. This information is
usually stored in maps [31]. Even if a-priori informa-
tion about the robot’s environment is available, map-
ping is needed to deal with dynamic and changing en-
vironments.

Many robotic algorithms rely on good maps, one
prominent example being autonomous navigation us-
ing path planning. Maps also assist an operator of a
remotely tele-operated robot in locating the robot in
the environment by providing information of features
of interest like corners, hallways, rooms, objects, voids,
landmarks etc. Those features are referenced in the map
in a global coordinate system defined by the applica-
tion. This frame of reference can be a geographic coor-
dinate system of the earth, or a local one, defined by
the application, e.g., the robot start pose or the pose of
an operator station.

The quality of the mapping algorithms and the gen-
erated maps has to be ensured. In order to be able to
specify and test the performance of mapping systems,
the result - the maps - have to be analyzed and evalu-
ated in a systematic, repeatable and reproducible way.
Maps generated by mobile robots are abstractions of
the real world, which always contain inaccuracies or er-
rors, for example due to localization errors caused by
bad odometry, inaccuracies in the sensor readings, in-
herent limitations of the used algorithms or dynamics in
the environment. There has been great progress in map-
ping in the last two decades, particularly with respect to
Simultaneous Localization and Mapping (SLAM) tech-

http://dx.doi.org/10.1007/s10514-015-9493-5

2 Sören Schwertfeger, Andreas Birk

niques. But especially on extended missions or in un-
structured environments, maps still often contain large
errors.

The usefulness of a map not only depends on its
quality but also on the application [18]. In some do-
mains certain errors are negligible or not so important.
That is why there is not one measurement for map qual-
ity. Di↵erent attributes of a map should be measured
separately and weighed according to the needs of the
application [17]. Those attributes can include:

– Coverage: How much area was traversed/visited.
– Resolution quality: To what level/detail are features

visible.
– Global Accuracy: Correctness of positions of fea-

tures in the global reference frame.
– Relative Accuracy: Correctness of feature positions

after correcting (the initial error of) the map refer-
ence frame.

– Local Consistencies: Correctness of positions of dif-
ferent local groups of features relative to each other.

– Brokenness: How often is the map broken, i.e., how
many partitions of it are misaligned with respect to
each other by rotational o↵sets.

Note that these aspects tend to be influenced by
several factors. The resolution quality for example not
only depends on the actual size of the grid cells of the
map, but it is also influenced by the quality of the lo-
calization and of the sensors. Pose errors between scans
of the same object cause its features to blur or to com-
pletely vanish.

A number of approaches to the map evaluation prob-
lem have been proposed. Using the ground truth path of
robots, these paths are compared in [36] and [15] to the
pose estimations of SLAM algorithms. This principle
can be applied in general to sensor datasets with ac-
curately known ground truth poses of the places where
the data was recorded. [29], [20] and [11] provide for ex-
ample datasets of 3D sensor measurements and ground
truth poses for benchmarking the performance of SLAM
algorithms. The ground truth information has been ob-
tained using a tracking system or by creating the data in
a simulator, respectively. While these datasets are very
useful contributions for benchmarking purposes, it is in
general not feasible to obtain the actual robot locations
for path-based evaluation, e.g., to test the performance
of a complete system consisting of an arbitrary robot
and sensor payload with an arbitrary SLAM algorithm
in an arbitrary environment. In addition, it does not
allow to compare maps that are generated with di↵er-
ent control strategies, e.g., in exploration experiments,
as the evaluation is bound to the specific path in which
the data was gathered.

Most other approaches to map evaluation use ground
truth data of the environment itself. These can for ex-
ample be ground truth occupancy grid maps, which are
particularly easy to obtain if simulations are used [27].
One can, for example, measure the alignment error of
virtual scans in the ground truth map [16] or use image-
based techniques. Image similarity methods [33] have
their limitations due to the common errors in maps,
because maps often have structural errors like noise,
structures appearing more than once due to localization
errors and the like. Nevertheless, certain attributes like
the level of brokenness [6], can still be obtained.

In place-based map evaluation approaches features
are quite often detected in the maps by treating them
like images. The Harris corner detector, the Hough trans-
form and the Scale Invariant Feature Transform (SIFT)
are e.g. used in [35] while Speeded Up Robust Fea-
tures (SURF) and a room detection method are used in
[19]. Those approaches have in common, that they use
the pose of the detected features to determine the map
quality. They also require detailed ground truth repre-
sentations of the environment to be usable. A combina-
tion of methods is used in the RoboCup Rescue Virtual
Robots competition [4].

To ease place-based evaluation the use of artificial
markers in the environment, called Fiducials, has been
proposed [26,25]. In this place-based approach just the
positions of those Fiducials has to be known to calculate
the map attributes mentioned above. The main disad-
vantage of this approach to map evaluation is, that the
mapped area as to be populated with those markers.

The topological approach on map evaluation pre-
sented in this paper has already been outlined by the
authors in [23] and described in this thesis [22].

The rest of this article is structured as follows. Sec-
tion 2 gives an overview and introduces the notations
used in this article. Section 3 introduces the gener-
ation of the Topology Graph, which is mainly based
on a Voronoi Diagram computation and simple prun-
ing strategies, especially the concentration of the graph
structure on junctions and dead-ends. Section 4 presents
di↵erent methods to calculate the similarity of vertices
from two graphs. This includes several substantially dif-
ferent strategies, especially the use of place-recognition
based on local occupancy information, i.e., sensor-data,
as well as the investigation of alternative methods based
on topological information. Experiments are presented
that benchmark the di↵erent algorithms for vertex simi-
larity. In Section 5 an algorithm for matching two Topol-
ogy Graphs is introduced. It is shown in Section 6 how a
match can be used for map evaluation, i.e., how to com-
pute the di↵erent map quality attributes from it, and

Map Evaluation using Matched Topology Graphs 3

experimental results for map evaluation are presented.
Section 7 concludes this article.

2 Overview and Notations

The input to our map evaluation are two dimensional
grid maps, i.e., arrays of free or occupied cells [25]. We
assume w.l.o.g. that any kind of ”geo-referencing” in-
formation to project the maps to real-world metric co-
ordinates, especially o↵sets and scalings, can be a priori
extracted and stored as separate parameters. A map m

can hence be formalized as a function m : N ⇥ N !
{0, 1}, where 0 represents free and 1 occupied space. A
grid cell at the coordinates (i, j) is denoted with m[i, j]
with i, j 2 N.

We use topological structures defined via a graph
G = (V,E) with a set of vertices V = {v0, ..., vk} and
a set of edges E = {e0, ..., el} ✓ V ⇥ V . The idea is as
usual with topological representations that vertices rep-
resent places and edges represent connections between
them.

We also maintain metric information for the com-
ponents of the graph G within the reference frame of
the grid map m from which G is derived from. This is
reflected by using a labeled graph. The locations of the
vertices and of the connections between them are real
valued. Though being formally two di↵erent functions,
the two labeling functions for V and E are denoted with
L() for the sake of convenience:

L : V ! R2, L(v) = (x, y)

L : E ! (R⇥ R)k, L(e) = ((w0), ..., (wk�1))|
e = (v1, v2) ^ w0 = v1 ^ wk�1 = v2

So, the label of a vertex v represents the exact loca-
tion (x, y) of this place in the frame of map m. The ver-
tices are as mentioned real-valued. This allows for ex-
ample to place a vertex v that is derived from the com-
putation of a Voronoi Diagram between the two grid
cellsm[0, 0] andm[1, 0] at the location L(v) = (0.5, 0.0).

The label of an edge e = (v1, v2) is a sequence of
R2 map coordinates, i.e., an ordered list of k waypoints
that form a path from v1 to v2. Note that the term
“path” is used here as a matter of convenience; the
“waypoints” are derived from the computation of the
Voronoi Diagram and its subsequent processing as ex-
plained later on. They are not related in any way to the
path of the robot that generated the map. The path
L(e) that is associated with each edge e is not required
to be a single straight line - it is polyline between the

waypoints. Given an edge e = (v1, v2), the term exit of
e from v1 is used to refer to the start of the path L(e)
from L(v1), e.g., to refer to local metric information like
the rotation-invariant relative angles of all exits from
vertex v1.

Appending an element to an ordered list is denoted
in this article with a dot; we use for example follow-
ing pseudo-code to extent the path associated with an
edge e with the real-valued coordinates of vertex v as
additional waypoint: L(e) = L(e) · L(v). As explained
in detail later on, these paths - as well as the whole
structure of the graph G - are derived from the Voronoi
Diagram of the grid map m.

The typical input form of a map is a rectangular
m⇥n array min. The area of interest of the map where
the evaluation is applied to can nevertheless have an
arbitrary shape; we use for example as explained later
on an alpha-shape operator to exclude unmapped parts
from min. We therefore denote the area of the locations
that a map covers with Am ⇢ R2. A ray is a special edge
e 2 E that connects to a vertex v̂ that is located out of
the of the area Am, i.e.,:

ray(e = (v, v̂)) = true () L(v) 2 Am ^ L(v̂) /2 Am

A ray can for example be generated by the Voronoi
Diagram computation when an open corridor ends at
the boundary to unmapped territory.

Suppose k(x1, y1), (x2, y2)k2 denotes the Euclidean
distance between two locations (x1, y1), (x2, y2) 2 R2.
The length len() of an edge e = (v1, v2) is then defined
as the Euclidean distance between the locations of its
vertices, i.e.,:

len() : E ! R, len(e) = kL(v1), L(v2)k2

Furthermore, the length len(L(e)) of a path L(e) =
(w0, ..., wn�1) of k waypoints wi is defined as:

len() : (R⇥ R)k ! R, len(L(e)) =
k�2
X

i=0

kwi, wi+1k2

As mentioned before, a path associated with an edge
is not necessarily a straight line and it hence holds that
len(L(e)) � len(e).

Given two maps m and m0 - where m is typically a
ground truth representation - the goal is to compute an
assessment of the quality Q(m0,m) of m0 relative to m.
This is done using the topological structures, i.e., using
two labeled graphs G = (V,E) and G0 = (V 0, E0) that
are matched against each other. Note that the quality
Q(m0,m) is usually not just a single value but that it

4 Sören Schwertfeger, Andreas Birk

is typically a multivalued vector composed of several
di↵erent attributes as motivated in the introduction.

A similarity function sim() : V ⇥ V 0 ! R is used
to find places that so to say look alike. This similarity
is the basis for finding correspondences between ver-
tices vk 2 V and vertices vl 2 V 0. (Assumed) corre-
spondences are denoted with vk ⌦ vl. The correspon-
dences are one to one mappings and they can then be
used to identify matches between the evaluated map
and the ground truth. Up to here, this is conceptually
similar to previous work on map evaluation using place
recognition like [35,19,26,25], which mainly di↵er in the
computation of sim() - using di↵erent forms of natural
landmarks or even artificial markers.

Here, the topological structure, i.e., connections be-
tween places, are also taken into account. This has three
major advantages:

1. Considering every grid cell neighborhood as a poten-
tially recognizable place in a mapm is computation-
ally expensive. Also, many cell neighborhoods are
not particularly distinctive. The Voronoi Diagram
that we use to derive the graph G from m provides
inherently few, typically quite distinctive candidate
locations for place recognition, namely the junctions
of paths in the Voronoi Diagram.

2. The vertex similarity sim() can exploit local neigh-
borhood information, e.g., if sim(vk, v0l) is very high
and we hence assume that vk ⌦ v0l then there should
also be high similarities between some neighbors
of vk with some neighbors of v0l. Using these rela-
tions makes the computation of sim() much more
robust and leads to proper determination of cor-
respondences of places even between a very noisy,
distorted map and a clean ground truth.

3. Given initial (possible) correspondences, the labeled
edges can be used to compute subgraph isomor-
phisms between G and G0. This allows the iden-
tification of corresponding partitions of m and m0,
e.g., to determine high-level map evaluation criteria
like brokenness.

Based on these concepts we explore di↵erent options
for the computation of sim() and for the computation
of the subgraph isomorphisms. But first, the way the
graph G is generated from m is presented in the follow-
ing section.

3 Computation of a Topology Graph

3.1 Overview

Our extraction of topologies from robot generated maps
is related to the generation of skeletons in computer vi-

Fig. 1 Photo of the RoboCupRescue 2010 arena. Variations
of this environment are represented in Figures 2 and 12 and
used in the experiments in Section 6.3.

sion [28,3], especially in the context of skeleton match-
ing in applications like object recognition [32,2]. But
there are several aspects that are quite specific to map
evaluation. First, skeleton matching for object recog-
nition is typically applied to the full silhouette of an
object; a map that is to be evaluated is in contrast typ-
ically not a full representation of the ground truth, i.e.,
this would correspond to a situation with occlusions
and partial views in the case of object recognition. Sec-
ond, there is typically a high amount of noise in the
maps whereas object silhouettes are typically assumed
to be well segmented. Third, the errors in mapping can
lead to non-rigid transformations, e.g., in the case of a
broken region.

While the above aspects make map evaluation harder
than skeleton based object recognition, we can also profit
from special aspects of dealing with maps. For example,
we assume the presence of corridors and junctions, i.e.,
of specific environment structures that can be exploited
for simplification of the skeleton and for matching. Fur-
thermore, the Topology Graph maintains abstracted
metric information including especially local metric in-
formation like the relative angles in which edges - or
more precisely, the related metric paths - leave a ver-
tex. This abstracted metric information can be used for
place-recognition.

We use as main basis a very standard approach for
skeletonization, namely a Voronoi Diagram [34], com-
puted with the centers of the obstacle cells of the 2D
grid map as sites. The Topology Graph G is then de-
rived through simplifications and pruning from the Voronoi
Diagram VD. As an example of the desired output, Fig-
ure 2 shows a map from the RoboCup Rescue Competi-
tion in Singapore 2010 and its Topology Graph; Figure

Map Evaluation using Matched Topology Graphs 5

Fig. 2 A Topology Graph in a map from the RoboCup Res-
cue 2010 maze.

1 shows a photo of the maze wherein the map was gen-
erated.

In the following, a short overview of the steps for
generating a Topology Graph is given first; a more de-
tailed description of the steps with pseudo-code follows
in sections 3.2 to 3.7.

3.1.1 Initial Voronoi Diagram Calculation with CGAL

The input to the Voronoi Diagram computation is a
robot generated 2D grid map that is converted into a
set M of occupied cells, with i and j being the row and
column of the grid cell:

M = { (x, y) | m[i, j] = 1, (i, j) 2 N⇥ N}

The Voronoi Diagram VD0 is created using the stan-
dard implementation from the Computational Geome-
try Algorithms Library (CGAL). The set of row and
column coordinates of the occupied cells are used as
the input points (see Section 3.2 for more details):

M
Voronoi������! VD0 =

⇣

VVD0

,EVD0
⌘

During the computation of VD0, CGAL also de-
termines for each edge EVD0

the geometric distance
dmin(e) 2 R to the closest occupied cell from M . This
information will be used in the next step.

3.1.2 Filter with Obstacle Distance

Now a new graph VD1 is created, which filters out all
edges from VD0 whose distance to the next occupied
cell is smaller than a threshold value td (see Section 3.3
for more details).

VD0 obst. distance�����������! VD1 =
⇣

V VD1

, EVD1
⌘

V VD1

= V VD0

EVD1

=
n

e 2 EVD0

| dmin (e) > td

o

The main motivation is to keep only edges that be-
long to passable structures like corridors or doorways.
The threshold is accordingly just set to a value that
corresponds to 30 cm in the real world.

3.1.3 Topology Generation with only Dead Ends and
Junctions by Edge Skipping

Next, the first level Topology Graph G0 is generated
based on the strategy to only keep dead-ends and junc-
tions as main places in the graph. First, all vertices
with a degree of zero or two are filtered out, i.e., only
dead end vertices and junction vertices are left in the
graph. Second, edges connected to filtered out vertices
are merged; this includes the merging of the paths that
are associated with them. This is done by starting a
(1D) wavefront propagation algorithm along all edges
of every vertex from V 0.

VD1 edge skipping�����������! G0 =
�

V 0, E0
�

V 0 = {v 2 V VD1

|
deg (v) = 1 _ deg (v) > 2 _

(deg (v) == 2 ^ 9e 2 v | ray(e))}

E0 = {e = (v1, v2)|v1, v2 2 V 0;

e 2 EVD1

_

8ṽi 2 V VD1

\ V 0 :

(v1, ṽ1), (ṽi, ṽi+1), (ṽi+1, v2) 2 EVD1

}

3.1.4 Boundary Computation and Cleaning

The next step cleans the graph from superfluous data
that is beyond the boundaries of the actual map. As
mentioned already in Section 2, the input map is typi-
cally a rectangular array which includes unmapped ar-
eas at its outer parts. So a boundary for the map has to
be found to remove unknown areas - unless they are ex-
plicitly represented in some form. To accommodate to
the sometimes complex shapes of the maps, the alpha
shape algorithm is used for this purpose (see Section

6 Sören Schwertfeger, Andreas Birk

3.5 for more details). Edges where both vertices are
outside of the alpha-shape are removed together with
their vertices, while edges with one vertex inside the
alpha-shape and one vertex outside of the alpha-shape
are becoming rays.

Furthermore, dead end vertices and edges that are
shorter than a certain threshold are removed , i.e., only
proper dead-ends that are within the boundaries of the
actual map are kept.

In addition, only the biggest connected graph is
kept, or more precisely, the connected graph with the
largest sum of the lengths of the paths of its edges is
kept. All vertices and edges not belonging to the biggest
connected graph are filtered out . The reason for this is
simple, namely, the graph matching can only be applied
to a properly connected graph. There is of course the
option to apply the graph matching - and hence map
evaluation - to all connected components separately.
Note that it is rare that there are unconnected com-
ponents. Normally, the robot that has generated the
map needed free passages between all components to
map them. Nevertheless, the e↵ects of noise and struc-
tural errors can distort maps such that they appear to
consist of disconnected components - the quality is then
computed per default for the largest connected part.

G0 cleaning������! G1 =
�

V 1, E1
�

G0 ↵ shape������! . . .
dead end filter�����������!

. . .
max conn. graph�������������! G1

3.1.5 Final Pruning by Vertex Merging

In a simplistic environment with clean straight walls
and junctions, we would be done now - each junction
and dead end would be represented by a single ver-
tex each. But in reality there is furniture, sensor noise,
possibly even dynamic objects, etc. There can be hence
be multiple vertices generated by the Voronoi Diagram
within one physical junction or room in the environ-
ment - in a more or less arbitrary way due to e↵ects
of noise and dynamics. This is a problem if the same
place gives rise to a (significantly) di↵erent number of
vertices in the ground truth versus the evaluated map.

But fortunately, a simple heuristic can be used to
avoid this e↵ect, namely by merging vertices that are
close to each other, i.e., within a single place, into a sin-
gle vertex. The final step hence prunes short edges from
E1, i.e., there is a threshold tV join and the vertices con-
nected to edges shorter than tV join are merged. Those

short edges are removed while the edges that were con-
nected to the original vertices are now connected to the
new joined vertex.

G1 merging������! G2 =
�

V 2, E2
�

3.2 Computation of the Voronoi Diagram

As mentioned before, the di↵erent steps to generate the
Topology Graph are now explained in a bit more detail
in the following subsections, starting here with the com-
putation of the Voronoi Diagram.

The Generalized Voronoi Diagram (GDV) (also called
Voronoi decomposition, the Voronoi tessellation, or the
Dirichlet tessellation) is a geometric structure, which is
widely used in many application areas [14,1]. It is a par-
tition of the space into cells. The cells enclose a site, and
in our application the site is the center of an occupied
cell from the grid map. The Voronoi cell associated with
a site is the set of all points whose distance to the site
is not greater than their distance to any other site. In
this work the interest is not so much in the Voronoi cells
but in the graph VD0 that is defined by the boundary
of the cells. The Computational Geometry Algorithms
Library (CGAL) [13] is used in our implementation for
the computation of the Voronoi Diagram.

The Voronoi Diagram only serves as basis for fur-
ther simplifications and pruning as motivated before.
The according steps are explained in more detail in the
following and illustrated using an example map (see
Figure 7 for a big version together with the resulting
Topology Graph), which based on the random maze of
the Response Robot Evaluation Exercise 2010 [30]. This
map has 4398 occupied points and a resolution of 5 cm
per pixel.

3.3 Filtering Edges with Short Distances to Obstacles

As the Voronoi computation uses the 2D point set of
the centers of the occupied grid cells as input, there are,
among others, edges going between the centers of adja-
cent cells. The Voronoi graph VD0 hence has edges go-
ing through directly adjacent obstacles, i.e., those edges
go for example through walls (see Figure 3) as an un-
avoidable side-e↵ect of the 2D point input. Fortunately,
these edges can be filtered out in a trivial manner based
on the minimum distance to the nearest occupied cell.

While these side-e↵ects could be avoided by more
complex pre-processing, this filtering step for edges close
to obstacles, i.e., occupied cells, is needed anyway. After
all, we are interested in edges representing traversable

Map Evaluation using Matched Topology Graphs 7

areas, i.e., the goal is a topological graph represent-
ing the hallways, doorways and rooms. Therefore, Al-
gorithm 1 removes all edges with a distance of less than
td to the closest obstacle (Figure 4). This can be done
very e�ciently as for every CGAL half edge the face of
the dual Delaunay representation stores the location of
the point, i.e., of the occupied cell, closest to the edge.

Implementing this edge removal is hence quite sim-
ple. Every half edge in CGAL has information about
the face it belongs to. Each face has exactly one site,
which is the obstacle cell from the grid map. And by
definition of the Voronoi Diagram, this is also the clos-
est site to this edge.

Fig. 3 A zoomed in view of a part of an unfiltered Voronoi
Diagram. The centers of the occupied cells are shown as small
squares.

Algorithm 1 Filtering edges close to obstacles.

for all e 2 EVD0
do

if dmin(e) > t
d

_ ray(e) then

e 2 EVD1

end if

end for

Fig. 4 The filtered Voronoi Diagram where edges with a
minimum distance to occupied cells of less than 30cm are
removed to concentrate on edges that are traversable. This
reduces the number of CGAL half edges from 10,280 for the
unfiltered graph to 2,352.

3.4 Edge Skipping

The main idea of this step is to keep only dead-ends and
junctions. Therefore, unconnected vertices with degree
0 are removed and edges leading to vertices with degree
2 are merged. Figure 5 illustrates this.

(a) The original graph. (b) After edge
skipping.

Fig. 5 The Edge Skipping algorithm merges edges leading
to vertices with degree 2, i.e., only junctions and dead-ends
are kept.

The algorithm works as shown in Algorithm 2: First,
for all vertices, the number of edges connected to this
vertex is counted. Then, the algorithm iterates over the
vertices. All vertices that so to say just lay on a path,
i.e., that have degree 2, are skipped. More precisely,
these are the vertices that have two edges connected
and where none of those edges is a ray. All other vertices
are added to the new graph. In the example in Figure

8 Sören Schwertfeger, Andreas Birk

5, we can see that the vertices 4, 6 and 7 are included in
the new graph. Vertices 4 and 6 have 3 edges connected
and vertex 7 just one. Even if there would be no vertex
7, vertex 4 would still be added to the new graph since
one of its then two edges are rays. Vertices 1, 2, 3 and
5 are filtered out because they have exactly two edges.

Algorithm 2 Skipping vertices.
V 0 = {}
for all vVD1 2 V VD1

do

if (deg(vVD1
) == 2) then

if ¬9eVD1

ray

: vVD1 2 eVD1

ray

^eVD1

ray

2 EVD1 ^ray(eVD1

ray

)
then

continue

end if

end if

V 0 = V 0 [{vVD1}
end for

Now we iterate through all vertices V 0 in the new
graph and apply the edge skipping algorithm (see Al-
gorithm 3) to all edges connected to the vertices. The
algorithm is following the edges until it reaches a vertex
with rays or a vertex with other than two edges. The
vertex where it is stopping is then saved as the goal
vertex for the new edge.

In the example, starting at vertex v4, edge e{2,4} is
subjected to the edge skipping algorithm. Edge e{2,4} is
leading to v2. Vertex v2 has two edges, so it is skipped.
The next edge is e{1,2}. Since v1 also has two edges, the
next edge selected is e{1,3} and then e{3,4}. v4 has three
edges, so the loop is broken and a new edge between
the start vertex of the algorithm (v4) to the last vertex
(also v4) is created. Now the edge skipping algorithm is
applied to the other two edges leaving from v4, too.

In the implementation several abstracted metric prop-
erties of the edges and vertices are calculated at the
same time. The distance from vertex to vertex and the
minimum distance to an obstacle are calculated in the
Skip Edges Algorithm. Afterwards the distance for all
vertices to their closest obstacle is gathered (using the
distances from the neighboring edges) and the dead end
vertices are marked. Figure 4 shows the color coded
graphs. Please note that the graphs are actually much
bigger than shown here, since they continue beyond the
boundaries of the images.

3.5 Alpha Shape Boundary and Cleaning

In the context of map evaluation, only the parts of the
graph the represent the actual map area are of interest.
Since maps typically do not have a simple outer shape,
bounding boxes are not an ideal option. So an Alpha

Algorithm 3 Skipping edges along one path.

Input: VD1, start edge eVD1

start

2 EVD1

Input: start vertex vVD1

start

2 eVD1

start

: vVD1

start

2 V 0

v
curr

= vVD1

start

Initialize current vertex
e
curr

= eVD1

start

Initialize the current edge
l
sum

= 0 Initialize the sum of the lengths
e
new

= {} Initilize the new edge
while TRUE do

l
sum

= l
sum

+ len(e
curr

) Add up the lengths
L(e

new

) = L(e
new

) · [L(v
curr

)] Add the vertex
coordinate to the path label
v
next

2 e
curr

| v
next

6= v
curr

Set the next vertex
if deg(v

next

) 6= 2 then

break

end if

The next vertex only has two edges - continue and select
the next edge:
e
next

2 EVD1 | v
next

2 e
next

^ e
next

6= e
curr

if ray(e
next

) then

break If this edge is a ray the loop is also broken
end if

e
curr

= e
next

v
curr

= v
next

end while

The algorithm is finished - we have to add the new edge:
L(e

new

) = L(e
new

) · [L(v
next

)] Finalize the path label
e
new

= {v
start

, v
next

} Fill the new edge
len(e

new

) = l
sum

Label the edge with the length
E0 = E0 [{e

new

} Add the edge to the graph

Shape [9] is used to define the outer boundary of the
map. The biggest polygon generated by the alpha shape
algorithm on the grid map is then used to define the
outer boundary. All vertices outside this polygon are
removed. Edges that have one vertex inside and the
other outside are turned into rays. Figure 6 shows the
alpha polygon and the filtered graph, now including
many rays.

The Voronoi graphs can still be very detailed due to
complexity in the environment, e.g., furniture, as well
as due to sensing artifacts like noise or dynamics in
the environment. This often leads to short dead end
edges that for example point towards the walls. Hence
all dead end edges that are shorter than a threshold
are filtered out. After the removal of dead ends there
might be (again) vertices with exactly two neighboring
vertices. Those are removed and the edges are joined
accordingly.

In addition, dead end edges that are shorter than a
slightly larger threshold and their related vertices are
marked as spurious. They are kept as potentially useful
information in the graph while the spurious label indi-
cates them as a possible sensing artifact that should be
not fully trusted in topological place recognition. The
term major vertex is used to explicitly denote vertices
that are not spurious, i.e., that are considered to pro-
vide trustworthy topological information.

Map Evaluation using Matched Topology Graphs 9

Fig. 6 A topology graph (left) after edge skipping, cleaning (filtered for short dead ends) and the application of the alpha-
shape boundary (in blue) around the underlying grid map. The graph after keeping only the biggest connected graph is shown
on the right. Ray edges are colored in green. An alpha value of 2500 (2.5 m) was used, resulting in an alpha polygon consisting
of 133 segments.

Only a connected graph can be later-on used for the
map evaluation. Thus all edges and vertices not part
of the biggest connected graph are removed. The size
attribute used to find the biggest graph is the sum of
the length of all edges of a connected sub-graph.

3.6 Pruning by Vertex Merging

The final Topology Graph G2 is generated by join-
ing together vertices in close proximity to each other.
The new vertex gets the average position of the joined
vertices. The edges coming from other vertices to the
joined vertices are connected to the new one. The re-
lated pseudo-code is shown in Algorithm 4.

Algorithm 4 Vertex Merging.

for all eVD1 2 EVD1
do

if (len(eVD1
) < �

joinMax

) then

v1, v2 2 eVD1

EVD1
= EVD1 \ {eVD1}

V VD1
= V VD1 \ {v1, v2}

V VD1
= V VD1 [{v

new

}
Set the label in v

new

to the average position of v1 and
v2
for all e 2 EVD1

do

if 9v : v 2 e ^ (v == v1 _ v == v2) then

Replace v with v
new

L(e) = L(e) · [L(v
new

)]
end if

end for

end if

end for

As explained before, the motivation for this step is
to merge vertices that are close to each other, i.e., that

Fig. 7 The final Topology Graph with 17 vertices and 36
half edges.

are likely within a single physical place, into a single
vertex to represent that place. An example for a joined
vertex can be seen in Figure 12: Vertex 18 of the left
ground truth map was merged from two vertices. Figure
7 show the final graph for the example map used earlier.

The information that a vertex ṽ is generated by
merging k vertices vi is maintained in the topology
graph by labeling ṽ as a joined vertex. The relative
spatial locations of the vertices vi with respect to the
location L(ṽ) of ṽ are also kept. They can be used as a
local topological feature related to ṽ when looking for
correspondences between vertices across maps.

10 Sören Schwertfeger, Andreas Birk

3.7 Ordering of the Edges of a Vertex

To facilitate the subsequent calculations of topological
vertex similarities, the sequence in which the edges con-
nect to each vertex v 2 V G2

of graph G2 is determined,
i.e., a deterministic spatial ordering based on the angle
in which the associated paths are connected is com-
puted for the edges of each vertex.

The goal of this step is hence to sort the edges con-
nected to a vertex according to their incidence angle,
such that the left- and right-hand neighbors of edges
can be retrieved easily. This is not completely trivial,
because the location of a goal vertex of the edge cannot
be used - it might be somewhere completely di↵erent
after a long and winding path. So a part of the path
L(e) associated to edge e = (v, ṽ) close to the originat-
ing vertex v is used. Since this path might be curved,
a number of points are sampled on the path and their
angles are averaged. The edges are then put into a ring
bu↵er, sorted by their global angle. But only the an-
gle di↵erences are stored, thus making this information
rotation invariant.

4 Calculating the Similarity of two Vertices

In order to compare the Topology Graph of a ground
truth map m with the one from a robot-generated map
m0, the graphs Gm and Gm0 have to be matched against
each other. The first step for matching the graphs is to
calculate the pair-wise similarities between the vertices
from the two graphs. The positions of the vertices in
the map are not used for this, because they - like any
global metric information - can be severely wrong due
to errors in the map. Nevertheless, some local metric
information - like the relative orientations of the exits,
i.e., of the paths leaving a vertex - can be used for es-
tablishing correspondences. Furthermore, purely topo-
logical properties - like the degree of a vertex - as well
as appearance-based place recognition methods using
local sensor data can be used for this purpose.

The Vertex Similarities that are presented in this
section are always normalized such that their value is
between 0 and 1 - where 1 corresponds to a perfect
match and 0 corresponds to a maximum di↵erence. As
we will see in the following section, parts of the similar-
ity score are often based on the di↵erence �() of the val-
ues of an attribute that is maintained in the Topology
Graph for each vertex, e.g., on the di↵erence of the re-
spective distances to the nearest obstacle. To normalize
scores that are based on di↵erences of attribute values,
we use an o↵set off 2 R and a clipping value max 2 R
as follows:

�(�(), off,max) =

8

<

:

0 if �() < off ;
1 if �() > max;
�()�off
max�off

So, small di↵erences below off are considered to be
still perfect matches of the attributes while anything
larger than max is considered to indicate no similarity
at all. A side-e↵ect of the use of di↵erences of attributes
is that a 0 (the absence of a di↵erence) indicates the
highest possible similarity and a 1 (substantial di↵er-
ence) indicates no similarity at all. As a matter of con-
venience, we hence define for a similarity score s() its
related dissimilarity score s̄() as s̄() = 1� s() and vice
versa.

The vertex similarity will guide the search for match-
ing the graphs. It is thus desirable to use an algorithm
which gives very good results for matching pairs while
having a low complexity. Two substantially di↵erent
approaches are investigated in this article, namely cal-
culating similarities just using either

1. the information stored in the graph, i.e., topological
methods (including the use of the abstracted metric
data), or

2. the occupancy information of the local area around
the vertices from the original maps, i.e., methods of
sensor-based place recognition.

For each approach di↵erent algorithms and options
are presented and tested. As shown later on, it turns
out that the sensor-based methods deliver very good
results. But methods just using information from the
graphs perform very similar in terms of correspondence
accuracies - while they are at least three orders of mag-
nitude faster.

Once the similarities between all vertices are known
and hence initial correspondence assumptions are es-
tablished, one can boost the accuracy of the matching
by checking the similarity values of neighboring ver-
tices. If a correspondence between two vertices is cor-
rect, their neighbors should also correspond, i.e., they
should all also have high similarities. This idea can be
propagated to the neighbors of the neighbors, and so on.
High, respectively low consistency in the similarities of
the neighbors of similar vertices can hence be used to
increase, respectively decrease the previously computed
similarities. This leads to a strengthening of correspon-
dence assumptions, respectively to their weakening up
to a level where the correspondence assumption does
not hold anymore. The related strategy for consistency
checking is hence called a Propagation Round as it leads
to a strengthening of consistent correspondence while
it breaks up inconsistent correspondences - for which

Map Evaluation using Matched Topology Graphs 11

then new assumptions based on the updated similar-
ities must be found. This strategy can be applied to
boost the robustness of all similarity algorithms; a de-
tailed description is presented in Section 4.1.

In Section 4.2 the Local Vertex Similarity is intro-
duced as a first method for computing a vertex similar-
ity. It just uses topological information like the vertex
degree as well as simple local metric information that is
maintained in the Topology Graph like the relative ori-
entation of paths leaving a vertex. The Enhanced Ver-
tex Similarity presented in Section 4.3 also just uses
information from the Topology Graph. It is based on
the Local Vertex Similarity in combination with the
Propagation Round strategy, which is supplemented by
additional information from the graph.

Appearance-based similarity methods that use lo-
cal occupancy information for place recognition are pre-
sented in Section 4.4; more precisely, ICP (Section 4.4.1),
respectively iFMI (Section 4.4.2) are used as registra-
tion methods on local grid map data to check for cor-
respondences between the related vertices.

In Section 4.5 the di↵erent algorithms for vertex
similarity are experimentally compared.

4.1 Propagation Rounds

Once similarity values between all permutations of pairs
of vertices from two maps have been calculated, it is
possible to increase the robustness of correspondences
by taking the similarity values from the neighboring
vertices of the Topology Graphs into account. Thus
vertices which have neighbors that also match nicely
get higher similarity values, i.e., the correspondence as-
sumption is hence strengthened, while the similarity
value of vertices with more incompatible neighbors is
decreased, i.e., the correspondence assumption is weak-
ened and possibly even dropped.

A single update of the similarities of all assumed
correspondences based on the consistency of the simi-
larities of their neighbors is called a Propagation Round.
Consecutive runs of the Propagation Round algorithm,
each taking the vertex similarities from the previous
round as input, lead to increased stability in the cor-
respondences. In addition, further propagation rounds
take more indirect neighbors into account.

Though the concept is simple, the actual imple-
mentation is not completely trivial. This is because
the matching of vertices (vx and v0y) between the two
graphs (G and G0) is not (yet) determined. Suppose the
set of the direct neighbors of a vertex vx from G is n(vx)
and the i-th neighbor is n(vx)i. Let us assume that vx
and v0y are vertices from G and G0 for which the consis-

tency check has not been completed yet. The correspon-
dence between the two sets of neighbors is then still an
open issue. The main idea of the consistency check is to
try all possibilities, to then assign a combined similarity
to each of the permutations of possible neighbor corre-
spondences, and to take the best combined similarity to
boost correct correspondence assumptions. Two vari-
ants of this Propagation Round algorithm are tested:

The Normal Propagation Round algorithm takes all
permutations of possible correspondence assignments
between the neighbors n(vx) and n(v0y), even if the
number of neighbors di↵ers. The combined similarity is
then the mean of the similarities of the matched neigh-
bors plus the similarity of the original vertex pair n(vx)
and n(v0y) divided by two.

Suppose s(vx, v0y) is the similarity between two ver-
tices. M is the mapping for vertices M(n) and M 0(n)
from G to G0 where M(n) 2 n(vx) and M 0(n) 2 n(v0y).
For one specific mapping M the combined similarity is

scombined(vx, v
0
y,M) =

s(vx, v0y) +
|M |
P

n=0
(s (M (n) ,M 0 (n)))

2
.

The Strict Propagation Round algorithm takes the
topological constraints of the graph into account. If the
number of neighbors di↵ers, the similarity value for two
vertices vx and v0y is heavily penalized without look-
ing at the neighbors. In case of an equal number of
neighbors (|n(vx)| = |n(v0y)|), only those mappings are
checked that are in the correct geometrical order. As
explained before in Section 3.7, the edges leading to
neighbors are maintained in a ring bu↵er that is sorted
by the relative angle of each edge. The set of neighbors
n(vx) is sorted in the same way, i.e., using the order
of the edges that lead to them, hence providing a very
e�cient access to the neighbors left or right of another
neighbor.

A correct geometrical order implies that a mapping
from n(vx)i to n(v0y)j is only valid if also n(vx)i+1

is mapped to n(v0y)j+1. The total number of permu-
tations that comply to this restriction is simply the
number of neighbors. This is because there are |n(v0y)|
partners to choose for the first vertex in n(vx), but af-
terward all further mappings are determined by their
topological order determined by their angles.

The complexity of the propagation rounds algorithm
depends on the number of vertices in the graph |V | since
we are calculating the new similarity for every vertex.
It also depends on the number of neighbors of the ver-
tices, which is factorial in the number of neighbors in
the case of a Normal Propagation Round and linear for

12 Sören Schwertfeger, Andreas Birk

the Strict Propagation Round. But since there are typi-
cally very few neighbors for every vertex (typically three
or four) and never really many, one can actually regard
this as a bounded constant, such that in the end the
overall propagation round algorithm has a complexity
of O(|V |).

4.2 Local Vertex Similarity

The Local Vertex Similarity sl is a similarity approach
purely based on information from the Topology Graph.
It averages over a number of dissimilarity checks to de-
termine the dissimilarity between two vertices:

– First, it is checked if the two vertices di↵er in their
type, which can be either Spurious for spurious dead-
ends, DeadEnd for regular non-spurious dead-ends,
RayEnd for the end vertices of rays, or Junction for
vertices with a degree larger than two.
If both vertices have the same type, the value of
�Type is 0. If they di↵er, it is a 1.

– The second dissimilarity check �Exits takes the dif-
ference of the number of neighbors into account,
with a score of 0 if the number of neighbors is equal
and a score of 1 if they di↵er.

– The third value is obtained from the average of four
other sub-scores describing the vertex:
– The first and second sub-scores use the values of

the biggest (�anglesMax) and smallest (�anglesMin)
angle between neighboring edges of a vertex. The
di↵erence of those angle-di↵erences for the two
to be compared vertices is used together with the
parameters �angleOff and �angleMax to calculate
the scores.

– The third sub-score (�obstacle) compares the dis-
tance from the vertex to the closest obstacle for
both vertices. In case this vertex is a joined ver-
tex, those distances are averaged for all merged
vertices that form this vertex. The related pa-
rameters are �obstacleOff and �obstacleMax.

– The fourth sub-score is only applied to joined
vertices (�joined). It uses the summed up dis-
tances from the original vertices to the joined
vertex. Those according values of the two joined
vertices are compared using �joinedOff and �joinedMax.

The first, second and third - which is itself an aver-
age of four sub-scores - score values are averaged, i.e.,
the Local Vertex Similarity sl(), respectively the corre-
sponding dissimilarity s̄l() is:

s̄l(v, v
0) =

1

3
· (�type +�Exits+

(�anglesMax+�anglesMin+�obstacle+�joined)/4)

4.3 Enhanced Vertex Similarity

The simple Local Vertex Similarity presented in the
previous section uses only information from each vertex
in the Topology Graph. The Enhanced Vertex Similar-
ity takes in addition information from the neighbors of
each vertex into account, i.e., it follows the idea of the
Propagation Round. In addition, the Enhanced Vertex
Similarity takes further graph properties into account.

The Enhanced Vertex Similarity is defined as a com-
bination of the best exit assignment EA(), which is
introduced in the following subsection, and the Local
Vertex Similarity. We found the EA() in practice to be
slightly more performing than the Local Vertex Simi-
larity s(); it is hence slightly higher weighted when both
are combined:

s̄e(v, v
0) =

3 ·max(EA(v, v0)) + 2 · s̄l(v, v0)
5

4.3.1 Exit Assignment Similarity

Given a correspondence assumption between two exits
of two supposedly corresponding vertices - or short an
assignment between exits - we are interested in com-
puting a (dis)similarity of the two exits. As mentioned
before, one problem is that there are - as long as there
is more than one exit - di↵erent ways to assign the ex-
its of the two vertices to each other. As a solution, all
permutations of exit assignments between two vertices
are generated:

The mapping em of one exit exv from vertex v from
graph G to one exit ex0

v0 from graph G0 is a 2-tuple:
em = (exv, ex

0
v0).

An exit assignment ea(v, v0) is a set of exit mappings
em. It has min(deg(v), deg(v0)) entries. No exit appears
twice in this set:

8em 2 ea, @em⇤ 2 ea | (em1 = em⇤
1 ^ em2 6= em⇤

2)

_ (em2 = em⇤
2 ^ em1 6= em⇤

1)

EA(v, v0) is the set of all possible permutations of
exit assignments ea(v, v0).

The exit assignment dissimilarity is calculated on
an exit assignment simiea. First, the angle dissimilar-
ity as(ea) is calculated. It looks, for every exit, at the

Map Evaluation using Matched Topology Graphs 13

angle to the next exit (clock wise). The di↵erence of
this angle for the paired exits is calculated into a score
using �obstacleOff and �obstacleMax for all the assigned
exits. Then the scores for those angle-di↵erences are
averaged.

The exit assignment dissimilarity uses a combina-
tion of the pair-wise Exit Similarity pe(ex, ex0) pre-
sented next and the angle dissimilarity as(ea):

simiea(ea) =

2 ·
|ea|
P

n=0
(pe(ean1 , ean2)) /|ea|+ as(ea)

3

The pair-wise Exit Similarity pe(ex, ex0) calculates
the dissimilarity between the exits ex and ex0 and con-
sists of two equally weighted parts. First, there is a com-
parison of the properties of the edges and then of the
dissimilarity of the target vertices. Note that a dead-
end vertex is marked as spurious if the related edge is
short and it hence may be caused by sensing artifacts -
regular non-spurios dead-ends as well as all other ver-
tices like junctions are denoted as major vertices.

For the edge comparison the scores of the following
attributes are averaged:

– �nextV ertex: Di↵erence in the distances to the next
vertex.

– �nextMajorV : Di↵erence in the distances to the next
major vertex.

– �obstacleMin: Di↵erence in the distances to the clos-
est obstacle along the edge.

– �obstacleAvg: Di↵erence in the average distances to
obstacles along the edge.

– �existsSpurious: Di↵erence in the presence of at least
one Spurious vertex along the exit.

The dissimilarity for the target vertices ts is set to
be 1 (worst) if exactly one of the edges is a ray and 0 if
both are rays. Otherwise the local vertex dissimilarity
(see 4.2) of the target vertex and the next major vertex
are used. target(ex) returns the target vertex given an
exit. If this edge is a loop, the target vertex will be the
same vertex as the start vertex.

ts(ex, ex0) =

8

<

:

0. if ray(ex) ^ ray(ex0);
1. if ray(ex) xor ray(ex0);
sl(target(ex), target(ex0))

pe(ex, ex0) =

(
1

8
· (�nextV ertex +�nextMajorV · 4 +�obstacleMin+

�obstacleAvg +�existsSpurious) + ts(ex, ex0))/2

4.4 Sensor-based Vertex Similarities

The idea behind sensor-based methods for vertex sim-
ilarity is to compare the local appearance of the grid
maps around the two vertices to generate a similarity
value, i.e. to use a more classical place recognition to
estimate vertex correspondences. This involves two as-
pects. First, the according parts of the map have to be
extracted. Second, those parts have to be compared. For
the extraction, two strategies are investigated, namely
Disk-Extraction and Raytrace-Extraction, which extract
a local circular template, or simulate a local omni-dir-
ectional range sensor view, respectively. Di↵erent reg-
istration algorithms are tested for the comparison of
the extracted map patches, namely two variants of the
Iterative Closest Point (ICP) algorithm [5]) and the im-
proved Fourier Mellin Invarinat (iFMI) algorithm [24,
7].

Note that just the local part of the map around the
vertex location is used. Therefore, errors in other parts
of the map do not e↵ect the similarity of a vertex with
its counterpart in the ground truth map. Both extrac-
tion approaches have a radius as parameter, specifying
the disk from which obstacle points from the map are
extracted into a 2D point cloud. The Disk-Extraction
takes all points within this radius and adds it to the
point cloud. The Raytrace-Extraction only takes the
obstacles that are visible from the location of the ver-
tex, thus omitting obstacle points that are within the
radius but that are obstructed by closer obstacles. See
Figure 8 for examples of both. The idea behind the
latter approach is to only use obstacles from a room
and not from the area behind a wall. This makes the
point cloud even more local and thus localization er-
rors e↵ect vertex similarities based on this extraction
methods measure even less. Also, the number of points
generated is usually much less compared to the Disk-
Extraction, which can lead to faster registrations. On
the other hand, since there are less points, it might also
be less descriptive and it can turn out to be less robust
in the place recognition.

The similarity of the two vertices has to be indepen-
dent of the rotation of the point clouds, because errors
in the initial orientation of the maps or localization er-
rors might lead to (significantly) di↵erent orientations.
Therefore, registration algorithms should provide an in-
herent rotational invariance in the comparison step.

4.4.1 ICP-based Vertex Similarity

The Iterative Closest Point (ICP) is a classical algo-
rithm to calculate the transformation between two point
clouds [5]. Starting with an initial assumption for the

14 Sören Schwertfeger, Andreas Birk

Fig. 8 Example extractions for the vertices 2, 12 and 22
(from left to right) from Vertex Similarity Experiment Map
H (see Figure 9). On the top the Raytrace-Extraction and on
the bottom the Disk-Extraction is shown. The location of the
related vertex is marked with a red dot.

transformation, it calculates the transformation with
the lowest mean squared error between nearest neigh-
bors from the two point clouds. It then iterates the
process with the found transformation as new initial
transformation until either a maximum of iterations or
a threshold for the mean squared error or its change is
reached.

The first ICP Similarity approach (called Simple
ICP Similarity) assumes the identity for the initial trans-
formation and uses the square root of the resulting
mean squared error as similarity value. The idea is, that
this value will be lowest for the vertices from the two
maps that are on the same location and higher for all
(or at least most) of the other candidates.

In general, ICP is quite sensitive with respect to
the initial guess of the transformation between the two
point clouds. If this assumption is o↵ the actual trans-
formation by a larger amount, ICP often is caught in
a local minimum. The Simple ICP Similarity thus de-
pends on the orientation of the maps and it is thus
not perfectly rotation invariant, as required. As can be
seen in the experiments (see Section 4.5) this leads to
unsatisfactory results.

The Rotated ICP Similarity mitigates this problem
by running the algorithm a couple of times with initial
guesses for the rotation that are evenly distributed over
the 360 degrees of a circle. For example, with a param-
eter n of 12 for the number of di↵erently seeded ICP
runs, it increments the initial start angle by 30 degrees
for each trial. Thus the correct rotation between the
two point clouds will not be o↵ more than 15 degrees
from the initial guess of the best fitting trial. This gives
a very good chance that the ICP run with a starting
rotation close to the correct value will not be caught in
a local minimum but advance to the global minimum,

thus giving the correct and lowest mean squared error.
The square root of the lowest of the mean squared er-
rors for all runs is then selected as the similarity value.
Obviously the main disadvantage of this approach is
the increase in computation time (n-times).

4.4.2 iFMI Similarity

The improved Fourier Melling Invariant (iFMI) algo-
rithm [8,7] is a further option to calculate the similar-
ity between the two point clouds of obstacles from the
area around the respective vertices from the two maps.
First, the point clouds have to be put into a square 2D
grid as iFMI works on square matrices. The iFMI is an
improved version of the well-known Fourier-Mellin im-
age registration technique, which is inherently rotation
invariant. It is hence well suited for our purposes here.
The signal to noise ratio around the Dirac pulse of the
translation step indicates the quality of a match and it
is hence used here as the similarity value.

4.5 Vertex Similarity Experiments

The performance of the di↵erent vertex similarity al-
gorithms is evaluated now in experiments. The di↵er-
ent approaches are applied to a number of maps that
show the same environment - the random maze from the
Response Robot Evaluation Exercise at Disaster City
2010. For the experiments nine di↵erent maps are used.
One example map (Map H) is shown in Figure 9 - all
other maps are shown in Figure 10. Map A is a ground
truth map, while maps B, C, D and E where gener-
ated by di↵erent mapping algorithms. All those maps
are roughly in the same orientation. Map F is the Map
B rotated by exactly 90 degrees, while Map G is Map
B rotated by 180 degrees. Map H is Map B rotated by
approximately 140 degree and Map I is Map C rotated
by about 37 degrees.

The maps show the Topology Graphs and numbers
for the vertices. The numbering simply starts at the top
left and goes down to the bottom right.

Since the maps all show the same environment, it is
expected that the Topology Graphs are very similar and
this is indeed the case. This is used to assess the per-
formance of the vertex similarity experiments. The ver-
tices from two maps at corresponding locations should
have very good similarity values, i.e., high scores, while
non-corresponding vertex pairs should have lower val-
ues. The evaluation criterion in these experiments is
hence simple, namely whether for any given vertex from
one map, the best (highest vertex similarity value) of
all vertices from another map is the one corresponding

Map Evaluation using Matched Topology Graphs 15

Fig. 9 Vertex Similarity Experiment Map H

to that location. For this purpose the correctly corre-
sponding vertices between the maps were determined
by hand for comparison.

For example, the mapping from Map A to Map H
is: (1,20) (2,23) (3,19) (4,22) (5,21) (6,15) (7,18) (8,12)
(9,18) (10,13) (11,11) (12,4) (13,10) (14,2) (15,9) (16,8)
(17,1).

One can see that, for example, the vertex number 1
in Map A corresponds to the vertex number 20 in Map
H. So in the experiments, vertex number 1 in Map A
will be compared with all the vertices from Map H,
using one of the vertex similarity methods. If the ver-
tex from Map H with the lowest (best) value is vertex
number 20, then this was a success, otherwise a failure.

All maps feature 17 vertices that always appear at
the same location, so those are the ones used for the
success calculation. Some maps have some additional
Spurious vertices (e.g. for Map H vertices 3, 5, 6, 7,
14 and 16) that are included in the similarity calcula-
tions (and could thus have the lowest similarity value
for another vertex, making this comparison a failure),
but that do not otherwise e↵ect the success calculation.

Not all combinations of maps were used. This is
because the Topology Graphs for maps that are just
rotated by 90 or 180 degrees are exactly the same.
Thus the Simple and Enhanced Vertex Similarity have
a 100% success rate. This seems like an unfair advan-
tage to those algorithms, since in reality the exact same
maps will not be used. Note that maps rotated at an
angle other than 90, 180 or 270 degree always have dif-

Fig. 10 Vertex Similarity Experiment Maps A (top left), B
(top right), C, D, E, F, G, and I

ferences due to the interpolation and thus the Topology
Graph di↵ers to some extend.

Furthermore, a distinction for map pairs with a sim-
ilar orientation and rotated maps has been made to
show the e↵ects of the rotation for the di↵erent algo-
rithms. The success rate is averaged over all vertices and
map pairs for the “No Rotation” case, for the “Just Ro-
tation” case and for the combined results called “Both”.

The 10 combinations used for “No Rotation” and
the 23 map pairs for ”Just Rotation“ are:

– No rotation (10): AB, AC, AD, AE, BC, BD, BE,
CD, CE, DE

– Just Rotation (23): AF, AG, AH, AI, BH, BI, CF,
CG, CH, CI, DF, DG, DH, DI, EF, EG, EH, EI,
FH, FI, GH, GI, HI

16 Sören Schwertfeger, Andreas Birk

4.5.1 Experimental Evaluation of the Vertex Similarity
Algorithms

In total 38 methods to compute a vertex similarity
are tested during the experiments. The Local Vertex
Similarity, the Enhanced Vertex Similarity, the Simple
ICP Similarity, the Rotated ICP Similarity (abbrevi-
ated as ICP-12), and the iFMI Similarity are used. To
all of them two Propagation Rounds are applied - both
strict (abbreviated as 1 s and 2 s) as well as normal
ones (abbreviated as 1 and 2) are used. For the En-
hanced Vertex Similarity only one Round is applied,
since it already contains a round in its default ver-
sion. The appearance-based algorithms (ICP and iFMI)
were tested with both Raytrace-Extraction and Disk-
Extraction (those results are shown in di↵erent dia-
grams).

All 38 algorithms have been applied to all 33 map
pairs. The ICP algorithms use a maximum number of
100 iterations and an error reduction factor tolerance of
0.01. The radius for the Raytrace- and Disk-Extraction
is 50 pixel or 2.5 meter. The resolution for the iFMI
algorithms is accordingly 100x100 pixel. The average
point cloud size for the Raytrace-Extraction for both
maps combined is 76 points, while there are 619 points
on average in the Disk-Extraction.

4.5.2 Configuration Parameters for Vertex Similarity

The following parameters are used in the calculation of
the Local Vertex Similarity:

– �angleOff = 1 degree. The biggest and the small-
est angle between edges of a vertex are used as
descriptors. When comparing these descriptors be-
tween two vertices, this parameter is used to com-
pute the similarity value, i.e., we assume angles within
this tolerance to be the same.

– �angleMax = 12 degree. This parameter limits the
similarity in the angle descriptors, i.e., from that
threshold on, angular descriptors are considered to
be di↵erent to each other.

– �obstacleOff = 0.5. The average distance to the near-
est obstacle is a descriptor for edges and vertices.
When comparing these descriptors, this parameter
describes the tolerance when the distances are still
considered to be the same.

– �obstacleMax = 2. When the di↵erence in the aver-
age distances to the nearest obstacle exceeds this
value, the related descriptors are considered to not
be similar anymore.

– �joinedOff = 0.5. For vertices that were created by
joining several vertices in the merging step, the av-
erage distance to the joined vertices is used as a

time (msec)
17x17 similarities

Local Vertex Similarity 0.6410
Enhanced Vertex Similarity 11.2360
Raytrace-Extraction (R.E.) 131.5789

Disk-Extraction (D.E.) 128.2051
Simple ICP (R.E.) 232.5581

Rotated ICP Similarity (R.E.) 2,439.0244
Simple ICP (D.E.) 2,702.7027

Rotated ICP Similarity (D.E.) 26,315.7895
iFMI 3,225.8065

One Propagation Round 0.0053
One Strict Propagation Round 0.0051

Table 1 Runtimes of the di↵erent algorithms (R/D.E. =
Ray-/Disk-Extraction).

descriptor. This parameter corresponds to the tol-
erance when these descriptors are still considered to
be identical.

– �joinedMax = 2. This parameter accordingly sets the
threshold to consider descriptors from joined ver-
tices as di↵erent.

As mentioned before, the o↵set values are tolerances
to small di↵erences in the descriptor values, i.e., up until
the o↵set, the descriptors are considered to be exactly
the same with a similarity score of 1. The maximum val-
ues are thresholds to determine when descriptors di↵er,
i.e., from that value on, the descriptors are considered
to be completely di↵erent with a similarity score of 0. In
between these parameters, the similarity is normalized
to]0, 1[.

As mentioned before, note that all spatial param-
eters are unit-less, i.e., they are in the scale of the
grid map. Given the “geo-refencing” information, it can
make sense to relate them to metric values. For exam-
ple, if �obstacleMax = 2 and the resolution of the maps
is 5cm, then this value corresponds to 10cm.

4.5.3 Experimental Results

The 17 x 17 vertices from any of the two map combina-
tions have 289 possible vertex correspondence pairs, so
there are 578 extractions needed (2 per pair). Table 1
shows the runtimes for the di↵erent algorithms for the
complete computation of the 17 x 17 similarity values
for each. The computation was done in a single thread
on a 2.8 GHz Intel Core 2 processor.

Note that any of the vertex similarity methods can
be followed by one or more (Strict) Propagation Rounds.
As every (Strict) Propagation Round uses the precom-
puted similarities for consistency checking, its runtimes
are fixed and independent of the vertex similarity method
with which it is combined. Also note its very high speed.

Map Evaluation using Matched Topology Graphs 17

The extraction times are included in the ICP and
iFMI runtimes. The main result of the runtime compar-
ison is, that the calculation of a propagation round is
about 2 orders of magnitude faster than the Local Ver-
tex Similarity which in turn is one order of magnitude
faster than the Enhanced Vertex Similarity. Neverthe-
less, all this is still two orders of magnitude faster than
the sensor-based approaches.

Figure 11 shows the results of the similarity exper-
iments. The higher the bars the better the similarity.
Both graphs show the results from the Local and the
Enhanced Vertex Similarities, including the versions
with Propagation Rounds. These are twice the same
results - they are included in both graphs to ease the
comparison with the di↵erent sensor-based methods.
The graphs show the di↵erent results for the sensor-
based approaches (ICP and iFMI) with the upper graph
(11(a)) showing the results while using the Raytrace-
Extraction and the lower graph (11(b)) showing the
results based on the Disk-Extraction.

Note that the accuracy percentages shown here are
achieved with the simplest matching algorithm possible,
namely just matching a vertex against the one vertex
from the other map with the best similarity score. Later
on, better methods of matching will be introduced. The
values computed using the similarity algorithms pre-
sented in this section are then used to guide this search
and thus do not need to be perfect.

4.5.4 Discussion of the Results of the Vertex
Similarity Experiments

First the e↵ects of the Propagation Rounds are evalu-
ated. It can be seen that for most approaches adding
Propagation Rounds improves the result. Often the Strict
Rounds approach is better than using Normal Rounds.
The Enhanced Vertex Similarity, which basically is a
Local Vertex Similarity with one Propagation Round
and additional constraints such as the edge lengths, is
superior to the Local Vertex Similarity with one Prop-
agation Round, proving that the additional informa-
tion is quite helpful. The Enhanced Vertex Similarity
is already as strict as a Strict Propagation Round and
therefore there is very little di↵erence between the ad-
ditional Normal and the additional Strict Propagation
Round.

A very clear result is that the range-sensor-based
place recognition (ICP and iFMI) perform much better
using the Disk-Extraction than with the Ray-Extraction.
It seems that raytracing omits too much information
and is just too sparse.

The e↵ects on the similarity algorithms of a ro-
tation of or in the map can be seen when compar-

ing the ”No Rotation“ bars with the ”Just Rotation“
ones. One can see that the graph based approaches (Lo-
cal and Enhanced Vertex Similarity) have very similar
values for both cases - this is especially true for the
Enhanced Vertex Similarity. The place-based solutions
have more problems. The Simple ICP Similarity is for
the ”No Rotation“ cases relatively decent and for the
Disk-Extraction even excellent, but for the ”Just Ro-
tation“ combinations it performs very badly. Only for
the information-rich Disk-Extraction the Rotated ICP
Similarity is not significantly a↵ected by the rotations.
The same is true for the iFMI approach.

The best results are clearly achieved using the Ro-
tated ICP Approach with Disk-Extraction. Adding one
strict Propagation Round seems to improve the result
- but just by a little bit. With or without any kind of
Propagation Rounds - the values are close to or above
90 Percent, regardless of the rotation. If for any applica-
tion the runtime is also important, the Enhanced Ver-
tex Similarity with one additional Propagation Round
is also very interesting. The values are in the high eight-
ies while this algorithm is about 2000 times faster (three
orders of magnitude) then the Disk-Extracted Rotated
ICP method.

5 The Matching of two Topology Graphs

Now the matching between two graphs can be deter-
mined. In the following, the smaller graph, i.e., the one
with less vertices, of two graphs is denoted as first graph
G, and the larger one is denoted as second graph G0.
If not mentioned otherwise, G is matched against G0,
which is typically a robot-generated (partial) map of
the environment that is matched against an exhaustive
ground truth representation.

Two Topology Graphs are matched by first finding
an isomorphism and then applying a recursive neighbor
growing approach. Finding an isomorphism is a quite
fast and strict way to find parts of the maps that do
not diverge in the connections of the graph. The sec-
ond, more heuristic approach is the recursive neighbor
growing algorithm which makes heavy use of the vertex
similarity. It mostly ignores the constraints that guide
the isomorphism algorithm and uses a similarity value
for the whole match to guide the search.

5.1 Finding Isomorphisms

A graph isomorphism is a basic concept of graph theory
[37,10]. For map matching we are looking for subgraphs
from both graphs that form an isomorphism, which

18 Sören Schwertfeger, Andreas Birk

Simple
Simple_1

Simple_2
Simple_1_s

Simple_2_s
Enhanced

Enhanced_1
Enhanced_1_s

ICP
ICP_1

ICP_2
ICP_1_s

ICP_2_s
ICP-12

ICP-12_1
ICP-12_2

ICP-12_1_s
ICP-12_2_s

FMI
FMI_1

FMI_2
FMI_1_s

FMI_2_s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
No Rotation

Just Rotation

Both

(a) Using the Raytrace-Extraction for the Sensor-based Approaches.

Simple
Simple_1

Simple_2
Simple_1_s

Simple_2_s
Enhanced

Enhanced_1
Enhanced_1_s

ICP
ICP_1

ICP_2
ICP_1_s

ICP_2_s
ICP-12

ICP-12_1
ICP-12_2

ICP-12_1_s
ICP-12_2_s

FMI
FMI_1

FMI_2
FMI_1_s

FMI_2_s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
No Rotation

Just Rotation

Both

(b) Using the Disk-Extraction for the Sensor-based approaches - the values for the topological
methods are the same as the above values and they are just included for better comparison.

Fig. 11 Combined average success rates and standard deviations of the Vertex Similarity experiments

is known as the maximum common subgraph isomor-
phism problem. In our application, we deal with planar
graphs (no edges intersect on a 2D plane), we have a
very good heuristic for possible vertex correspondences
(the Vertex Similarity) and we have local metric infor-
mation like edge orientations that can be exploited. Due
to these special conditions, we can use a very e�cient
custom approach to solve the graph matching problem
at hand.

Concretely, just two simple rules are used for finding
the isomorphism:

– the number and the geometric order of the edges of
the matching vertices should match

– and the length of the corresponding edges should
coincide to at least a certain degree.

Map Evaluation using Matched Topology Graphs 19

5.1.1 The Vertex Assignment Structure

The vertex assignment structure maintains the informa-
tion about the assignment of possible correspondences
of vertices and exits of the two graphs that are com-
pared. The mapping between vertices is stored as two
hash maps for both directions for quick access. An other
mapping is used for the Exits that are already assigned.

The similarity value for the whole assignment is the
sum of the similarities of the already assigned vertex
pairs using one of the vertex similarity algorithms pre-
sented above.

Using this structure it is possible to e�ciently check
if a vertex has already been assigned to a vertex from
the other graph - for both graphs respectively. One can
also check if assigning a vertex v 2 G to a vertex v0 2 G0

would be consistent: if both vertices have not yet been
assigned then the result is true by default. If one of them
has been assigned and the other was not, then the result
if false by default. If both have been assigned, then the
result is true if they have been assigned to each other
and false if they have been assigned to di↵erent vertices.

5.1.2 Finding Candidate Isomorphisms

The pairwise vertex similarities allow to determine a
straightforward candidate subgraph isomorphism by as-
suming correspondences between the most similar ver-
tices. The goal is now to find possibly larger subgraphs
between which a proper isomorphism can be established.

For every vertex vx for which no correspondence has
not yet been assigned, it is attempted to find a new iso-
morphism starting at said vertex vx. This is done by
matching this vertex with every vertex from the other
graph that has the same number of connected edges -
starting with the ones with the highest similarities. The
recursive Wavefront Propagation algorithm presented
in the following subsection is then applied to the pair
of best corresponding vertices, i.e., the two most simi-
lar ones. When the Wavefront Propagation ends with a
complete subgraph isomorphism as result, it is checked
if the number of matched vertices in this assignment is
at least as big as the configuration value �isoMinV ert.
If this is the case the result is accepted. The biggest
accepted assignment for vx is then added to the final
assignment.

5.1.3 Wavefront Propagation

In the Wavefront Propagation algorithm, vertices that
have edges to other, not yet matched vertices form the
wavefront. In the beginning, the best correspondence

Algorithm 5 The Recursive Wavefront Propagation
function recursiveWavefrontPropagation(frontier, cur-
rrentVertexAssignment)
while not frontier.empty() do

currentVertexPair = frontier.pop()
goodAssignments = getGoodAssignments(currentVert-
exPair, currrentVertexAssignment)
if goodAssignments.size() == 1 then

addToVertexAssignmentAndFrontier(goodAssign-
ments.top(), frontier, currrentVertexAssignment)

continue

else if goodAssignments.empty() then

continue

end if

// goodAssignments has more than one entry - recursion!

for all assignment in goodAssignments do

frontierCopy = frontier
assignmentCopy = currrentVertexAssignment
addToVertexAssignmentAndFrontier(assignment,
frontierCopy, assignmentCopy)
recursiveWavefrontPropagation(frontierCopy, assign-
mentCopy)

end for

end while

function getGoodAssignments(currentVertexPair, cur-
rrentVertexAssignment)
rtnVarGoodAssignments.empty()
exitAssignmentTable = vertexTable [currentVertex-
Pair.first] [currentVertexPair.second].exitTable
for all exitAssignment in exitAssignmentTable do

if checkExitAssignmentForConsistency(exitAssign-
ment, currrentVertexAssignment) then

rtnVarGoodAssignments.insert(exitAssignment)
end if

end for

return rtnVarGoodAssignments

pair is in this wavefront, i.e., the best pair from the can-
didate vertex list (Section 5.1.2). Although the Wave-
front Propagation is a recursive algorithm by design,
most matches of vertices will not meet the strict pa-
rameters for a Topology Graph isomorphism, such that
mainly a computationaly very e�cient iterative search
is performed.

In Algorithm 5 the exit assignment table, which is
generated during the calculation of the Enhanced Ver-
tex Similarities (see Section 4.3), is used in the function
getGoodAssignments. Each exit assignment is the pair-
wise matching of exits of one vertex from the first graph
with the exits of the matched vertex from the second
graph. The exit assignment table consists of all permu-
tations of matches between the exits of the vertices.

The function ”checkExitAssignmentForConsistency”
checks if an exit assignment is consistent with the cur-
rent vertex assignment. This is only true if the exits
are equal in number and are matched in the correct

20 Sören Schwertfeger, Andreas Birk

(local geometric) order. Otherwise the function imme-
diately returns false. Then it checks if the vertices that
the edges are leading to are already matched and if so,
if they are matched with the correct vertices, using the
Vertex Assignment Structure from above. In this step
the possibility that an edge might lead to a Spurious
vertex is taken into account. The function thus also re-
turns consistency if a Spurious vertex matches a major
vertex - as well if major vertices match. Additionally,
the length of the edges are compared. The following for-
mula to compute the similarity value ratio is used to
be more lenient on shorter edges:

ratio(firstDistance, secondDistance) =

firstDistance + �isoEdgeDistMinAllow

secondDistance + �isoEdgeDistMinAllow

if(ratio(...) > 1) ratio(...) = 1/ratio(...)

If ratio is then smaller than �isoEdgeDistFactor this
exit assignment is rejected.

5.2 Grow Neighbors

The grow neighbors algorithm is quite similar to the
isomorphism algorithm from above, but it is a more
heuristic version with more relaxed constraints that can
be used in addition to find a few more correspondences.
Though there is the risk of false positives due to its
more heuristic nature, we found it to be very robust in
practice.

It uses a recursive wavefront approach to extent the
match according to the edge assignments that are possi-
ble for a match in the wavefront. Unlike the proper iso-
morphism method, the edge assignment does not have
to be in order and also vertices that di↵er in their num-
bers of edges are expanded. The consistency check only
returns false if an inconsistency in the vertex assign-
ments is detected.

The vertex similarity is used extensively in this method.
If a new match is found it is checked if the similar-
ity of the whole match falls below a certain threshold.
If that is the case the match is not added. Figure 12
shows an example match between the ground truth map
from RoboCup 2010 in Singapore and a robot gener-
ated map using the isomorphism and neighbor growing
approaches.

5.3 Configuration Parameters for Graph Matching

The following configuration values are used as parame-
ter in the graph matching in the experiments described
here and in the next section:

– �isoMinV ert = 6. During the isomorphism algorithm,
this value is the minimum number of vertices that
have to be matched so that a matched subgraph is
accepted and kept as a result. We consider values be-
tween five and eight to be useful for this parameter;
higher values can be beneficial if there are repetitive
topologies in the environment.

– �isoEdgeDistMinAllow = 20. During the isomorphism
algorithm edges are only matched if their distance
is compatible. If the length di↵erences are smaller
this threshold-parameter, they are considered to be
similar.

– �isoEdgeDistFactor = 0.6. If the length di↵erence of
two edges relative to the length of the shorter one
exceeds this threshold-parameter, they are consid-
ered to be not compatible.

As mentioned before, note that all spatial parame-
ters are unit-less, i.e., they are in the scale of the grid
map. Given the “geo-refencing” information of the map,
it can make sense to relate them to metric values. For
example, if �isoEdgeDistMinAllow = 20 and the reso-
lution of the maps is 5cm, this value corresponds to
100cm.

6 Map Evaluation using Matched Topology

Graphs

Once the matching of the Topology Graph G of a map
with the Topology Graph G0 of a reference map is done,
the actual evaluation of the map quality is quite easy. It
can for example be done similar to the approach of the
Fiducial Map Metric [25] - but with vertex-correspondences
from the Topology Graphs instead of requiring fiducials
as artificial landmarks. For a map quality assessment,
the map attributes can hence be calculated as follows:

– Coverage: Calculate the percentage of vertices from
the ground truth Topology Graph matched to ver-
tices from the graph of the robot map.

– Global Accuracy: Correctness of the locations of the
matched vertices in the global reference frame.

– Relative Accuracy: Correctness of locations of matched
vertices after correcting (the initial error of) the
map reference frame using Horn’s algorithm [12].

– Local Consistencies: The shortest distances between
any two vertices in the ground truth graph are cal-
culated. All vertex pairs are permutated. The pairs

Map Evaluation using Matched Topology Graphs 21

Fig. 12 Example match between a ground truth map (left) and a robot generated map (right) using the isomorphism
algorithm (green lines indicate the correspondences found), followed by the grow neighbors approach that finds a few additional
correspondences (red lines). There are 28 assignments made and one assignment is missing from the left graph (vertex 11).
This is the RoboCup environment from Figure 1.

are put into di↵erent classes of di�culty according
to their distance over the graph. The geometric dis-
tance between the two vertex positions is calculated
and compared to the geometric distance between
the two matched vertices from the robot generated
map. The errors of those comparisons are averaged
for each of the classes of di�culty.

6.1 Calculating the Brokenness

In [6] another map attribute, the brokenness, is pro-
posed. It is defined as ”the degree with which a map can
be partitioned into regions that are locally consistent
with ground truth but o↵ relative to each other.“ Cal-
culating the brokenness using a Topology Graph that
is matched against a ground truth Topology Graph is

relatively simple. A subset of connected vertices, a Bro-
kenness Group, has to be found whose minimal mean
square error regarding the location of the vertices com-
pared to the matched ground truth vertex locations
does not exceed a certain threshold. This minimal mean
square error is easily computed using Horn’s algorithm.
This subset is saved. The process is iterated over the
remaining vertices that are not yet part of a subset. A
subset is only accepted if it contains at least a certain
number of vertices. The number of subsets found minus
one is then the brokenness degree as defined by Birk.

6.1.1 Finding Brokenness Groups

The goal is to find a set of vertices that geometrically fit
to each other. For this, two thresholds are defined. The
✏brokenThres describes the upper bound on how big the

22 Sören Schwertfeger, Andreas Birk

Mean Squared Error of the vertex locations with regard
to the matched ground truth vertices can be. And the
✏brokenMinV is the minimum number of vertices needed
in this set to be considered a Brokenness Group.

The idea behind the brokenness concept is, that
the part of a map that is broken has in itself no sub-
stantial local errors. Maps are typically broken because
of either bump noise (the wheels/ tracks slip on the
ground, maybe because the robot hit an obstacle, thus
the odometry is broken) or because of a failed registra-
tion of the sensor data. Even with the use of SLAM al-
gorithms according large local residual errors can occur.
Areas of maps where the mapping consistently failed
and which thus show no large-scale identifiable struc-
tures are not considered broken areas. Since broken
parts are internally relatively intact, the Topology Graph
should match nicely, too. This idea guides the imple-
mentation for the brokenness search, for which a Wave-
front Propagation is used here.

We start with one matched vertex pair (vx, v0y) from
G and G0. The neighbors of this match have to be added
to the frontier of to be tried matches.

6.1.2 Frontier Adding

The incident vertices (neighbors) of vx from graph G
are iterated. If those were matched to a vertex from G0

during the Topology Graph Matching, they are about
to be added to the frontier. But before that, it is checked
that this vertex match is not already in another Broken-
ness Group, and not in the current Brokenness Group,
nor already in the frontier.

6.1.3 Adding the Best Match to the Brokenness Group

Now a new match from the frontier should be added to
the current Brokenness Group. So we iterate through
the frontier matches. For every frontier match it is cal-
culated what the error value of the current Brokenness
Group would be, if it were added to the Brokenness
Group. This error is the Mean Squared Error (MSE)
of the best fitting between the vertex locations of the
vertices in the set from G and the matched vertices in
the set from G0. It is calculated using Horn’s algorithm.

At the end the best match, i.e., the one which leads
to the lowest overall MSE, is taken. If this error value
is above the threshold ✏brokenThres we return with the
current Brokenness Group. Otherwise the best match
is added to the Brokenness Group and its neighbors
are added to the frontier using the approach described
above. This process of calculating the error values of the
frontier and adding the best match is repeated until
either the frontier is empty or ✏brokenThres has been
exceeded.

6.1.4 Finding all Brokenness Groups

So far it was described how to grow one Brokenness
Group using a Wavefront Propagation approach. Find-
ing all Brokenness Groups is then fairly simple. All
matches of vertices between G and G0 are iterated. If
the match is not already in a Brokenness Group it is
taken as the initial match for the Wavefront Propaga-
tion. The resulting Brokenness Group that this match
created is saved.

After that the biggest Brokenness Group is selected.
If it has at least ✏brokenMinV vertices it is added to the
final set of Brokenness Groups. This process is repeated
until no Brokenness Group can be extracted anymore.

The reason why the number of vertices is taken as
a selection criterion and not the error value is, that
the error value will always tend towards the threshold.
Matches are added until there is none left that would
not exceed the threshold. So the values of the errors
are often similar. Taking the biggest group is a good
choice, since one can be fairly certain that a big group
within the error threshold is actually a good matching
map part.

6.1.5 Handling Unmatched Vertices

It can happen that a part of a map that is broken is not
represented by a fully connected Topology Graph. This
happens if some vertices are not matched, i.e., no corre-
spondences for them were found, e.g., because the local
grid map information is severely erroneous. In this case
there are two Brokenness Groups generated, because
the Wavefront Propagation cannot ”skip“ through un-
matched vertices. Following approach mitigates this ef-
fect.

After finding a Brokenness Group of at least the
minimum size, all unused matches between vertices from
G andG0 tried to be added to the brokenness group, i.e.,
they are processed as described in Section 6.1.3 for the
good matches: the one with the lowest MSE is selected
and added if the threshold ✏brokenThres is not exceeded.
This is repeated until no more unused matches are left
or all of the vertices exceed the threshold.

6.2 Brokenness Experiment

The six maps that were used in [6] are also used in the
following experiment for comparison. Map 0 (Figure 13)
serves as the ground map while Maps 1 to 5 (Figures
13 and 14) are the maps that are evaluated. The com-
putation is done with ✏brokenThres = 80 as threshold
for the mean squared error and ✏brokenMinV = 5 for the
minimum number of vertices in an accepted group.

Map Evaluation using Matched Topology Graphs 23

Fig. 13 The Ground Truth Map (Map 0 - bottom) matched to Map 2 (top), which has two broken areas. The green matches
are made by the Topology Graph Isomorphism and the additional red matches by a subsequent run of the Neighbor Growing
algorithm. The numbers represent the brokenness group each vertex belongs to.

Map Number of Matching Vertices with Ground Truth
Vert. E. Isomorphism Neighbor Missing

Growing
0 75 88 - - -
1 74 86 58 8 8
2 76 89 61 6 8
3 79 94 49 9 17
4 79 93 50 9 16
5 79 93 47 9 19

Table 2 Data of the Topology Graphs of the di↵erent maps
of the brokenness experiment and their matches against the
ground truth map. (Vert. = Vertices; E. = Edges)

In Figure 13 Map 2 is shown together with the
matches to the ground truth map and the Brokenness
Groups found. The numbers represent the Brokenness
Group the vertex belongs to. The biggest group with 44
matches (which also means 44 vertices per map) is num-
ber 0 - this part represents the unbroken map. Horn’s
algorithm of course also calculates the transformation
between two point sets. The angle from this transfor-
mation is 0 degrees for set 0 and 20.6 degrees for set 1,
which is correct.

Map Brok. Set # Squared Angle
Number Matches Error in �

1 1
0 44 20.8 0.0
1 18 57.3 20.6

2 2
0 44 58.5 0.1
1 11 8.9 -69.5
2 9 79.9 21.8

3 2
0 35 68.5 0.1
1 8 69.9 23.4
2 6 44.4 -70.8

4 3

0 28 77.7 0.3
1 10 79.7 7.4
2 9 79.9 21.8
3 7 77.3 -70.5

5 4

0 19 76.8 0.7
1 9 71.4 7.4
2 9 79.9 21.8
3 7 77.3 -70.5
4 6 53.8 7.8

Table 3 The di↵erent brokenness groups. (Brok. = Detected
Brokenness)

Table 2 shows some statistics for the graphs of the
maps and their matches. In Table 3 the di↵erent Bro-
kenness Groups for the matches are presented. Please

24 Sören Schwertfeger, Andreas Birk

(a) Map 1: Brokeness degree 1

(b) Map 3: Brokeness degree 3

(c) Map 4: Brokeness degree 4

(d) Map 5: Brokeness degree 5

Fig. 14 The brokenness groups for the di↵erent maps.

Map Coverage Relative Consistency
Accuracy Short Medium Long

1 0.88 0.71 0.95 0.88 0.41
2 0.89 0.62 0.94 0.84 0.29
3 0.77 0.63 0.87 0.68 0.25
4 0.79 0.63 0.86 0.70 0.17
5 0.75 0.59 0.82 0.53 0.13

Table 4 The results of the Topology Map Evaluation.

also refer to Figures 13 and 14 for a visualization of
these results. The evaluation of maps 1 and 2 generates
the expected result, i.e., a brokenness of 1, respectively
2 is detected. For maps 3, 4 and 5, the left-most bro-
kenness cannot be detected. It is a very small area that
is a↵ected and it is only represented by three vertices.
Since the minimum number of vertices in a brokenness
group (✏brokenMinV) is configured with 5 this broken
part cannot form its own set. All other broken parts
from maps 3, 4 and five are properly detected.

In Table 4 the results for the other map attributes
are shown. The inherent ranking of the maps (maps
with higher numbers being more often broken and thus
worse than lower number maps) is nicely reflected in
the Consistency attributes. Due to the brokenness some
vertices cannot be matched and thus the coverage is not
100% for the maps. But still the value is and remains
quite high for the di↵erent maps, reflecting that they
represent a fair amount of the actual environment.

One can see that the Relative Accuracy does also
not change too much with the level of brokenness. This
is because sometimes the next brokenness is bend to-
wards the ”correct” direction, thus potentially even im-
proving the Relative Accuracy. As expected, the Consis-
tency attributes are the strongest indicator that is cor-
ralated with the brokenness. Three Local Consistency
attributes are calculated: One for graph-distances be-
tween two vertices from the ground truth graph (Map 0)
of less than 60 (short), one for distances between 60 and
180 (medium) and one for higher distances (long). The
medium and long range consistency values significantly
decrease in value with every brokenness that is added
to the map. Since the broken parts do not have any
other errors, the short range consistency is quite high
and only slowly decreasing due to the errors around the
start areas of the broken parts.

The runtime for the experiments are very short. The
extraction of the Topology Graphs takes much longer
than the finding of the Brokenness Groups. Everything
together is done for one of the experiment maps in un-
der one second. The algorithm finds the brokenness al-
most as reliable as [6]. Only very small scale broken
parts which are not represented by enough vertices in
the Topology Graph cannot be detected. But the im-

Map Evaluation using Matched Topology Graphs 25

age registration approach used in [6] relies on similar
”looking“ maps, i.e., distinct local features of the grid
map - and it has a much higher runtime.

6.3 Experiments with the Interleague Mapping
Challenge 2010 Maps

The following experiments are performed on maps gen-
erated during the Interleague Mapping Challenge 2010
[21]. The challenge was designed to compare the per-
formance of mapping algorithms. All other factors that
influence the quality of maps such as sensors, the envi-
ronment, the path taken or the processing power, are
the same for all contestants due to the special setup of
the competition. This is achieved by the organizers by
providing the sensor data and the computation envi-
ronment.

The sensor data was gathered during the RoboCup
Rescue Competition 2010 in Singapore, while the train-
ing data was collected at the robot test facilities at the
National Institute of Standards and Technology (NIST)
in Gaithersburg, Maryland, earlier that year. The data
consists of the readings of a Laser Range Finder (LRF)
and an Inertial Measurement Unit (IMU). Some datasets
were used twice, with the second set altered in two spe-
cific ways. The first change was, in order to simulate
a LRF with shorter range, that the range data was
capped at 5 meters. Second, the order in which the
data was presented to the algorithm could be reversed.

The sensor data was provided to the mapping algo-
rithm in a defined, binary format provided by the Uni-
versity of Koblenz [21]. The sensors used for the data
collection of the Interleague Mapping Challenge are a
Hokuyo UTM-30LX laser range finder (LRF) with a
field of view of 270�, an angular resolution of 0.25� and
a range of slightly above 30m as well as a Xsens MTi
gyro and accelerometer. Those were mounted on a stick
and connected to a Laptop. The sensor data was col-
lected by a person, holding the stick with the sensors,
slowly walking through the maze and the environment.

Eight maps representing the final round of the map-
ping competition are evaluated against the ground truth
map, shown in Figure 15. The ground truth data of the
environment used for the mapping finals was collected
in the maze configuration of the last day of RoboCup
2010 in Singapore, in which the runs for the autonomy-
and the mapping-awards were conducted. Table 5 lists
the datasets used. The ground truth map from Figure
15 was generated by using nearly perfect sensor data (a
lightweight robot was carried through the maze) and
the path included several loops, such that a very good
map could be created.

Maps Map Name Description
0 Ground truth No dataset, but the ground

truth map from Figure 15.
I & mappingFinal The original dataset
V including LRF (up to

30m range) and IMU data.
II & mappingFinal-5m The above dataset with LRF
VI range capped at 5 meter.

III & mappingFinal- The original dataset in
VII backwards reverse replaying order.
IV & mappingFinal- The above, reversed
VIII backwards-5m dataset capped at 5 meter.

Table 5 The “mapping final” datasets from the Interleague
Mapping Challenge 2010.

Fig. 15 The ground truth map.

Two mapping algorithms, one provided by the Uni-
versity of New South Wales, Australia, and one from
the University of Koblenz, Germany were tested. Fig-
ures 16 and 17 show the resulting maps and how they
were matched against the ground truth map. No global
reference was used; so the relative global position of the
maps varies. Thus the general direction of the lines rep-
resenting the matches with the ground truth topology
graph, which is not shown, varies for each map.

For Map 1 the brokenness algorithm detected a bro-
kenness degree of one with an associated angle of 7.6
degrees. The brokenness groups for this map are shown,
but omitted for all other maps, since for those no bro-

26 Sören Schwertfeger, Andreas Birk

kenness was detected. The broken parts in the map are
indicated with arrows.

6.3.1 Results

Table 6 shows the results of the experiments. The graph
of Map VIII di↵ers too much from the ground truth
graph, such that it could not be matched. This is be-
cause of blocked or too narrow passages in the map and
other mapping errors that can be seen when carefully
comparing this map to the ground truth map. The abil-
ity to sense such circumstances although the map does
not look too bad on first glance is an important aspect
of this map evaluation algorithm.

Three Local Consistency attributes have been cal-
culated (see [25] for a detailed definition): One for dis-
tances between two vertices of a graph of less than 6
meters (short), another for distances between 6 and 18
meters (medium) and one for higher distances (long).

The map attributes have also been combined into
a weighted result. The coverage was given the most
importance, because it is the only attribute that pe-
nalizes missing matches. The other attributes work on
the matched vertices and could thus return good val-
ues even if half of the map has really bad quality. So
for the weighted result, the Relative Accuracy and the

Fig. 16 Maps I (top left), II (top right), III (bottom left) and
IV (bottom right). The broken parts of Map I are indicated
with arrows.

Consistencies are averaged in one value which is in turn
averaged with the Coverage attribute.

In Table 7, the rankings among the maps that are
derived from the di↵erent attributes are shown. A qual-
itative ranking made by the authors is included as a ba-
sis of comparison for the map metric. This qualitative
human ranking was done a priori to the quantitative
evaluations and it is motivated as follows:

Maps VI and V are very good and reflect the geom-
etry of the environment better than Map I. Maps III
and IV as well as VII and VIII have problems in the
lower half of the map. But Maps III and IV are still
better than VII and VIII - the paths to a free stand-
ing barrel in the lower right corner is correctly shown,
which is not the case for maps VII and VIII. Map IV is
better than Map III, because of the better represented
dead end on the left and also because of the top parts,
that are shown more accurately. Map II contains severe
errors in the right side (e.g. location of a free standing
barrel) and it is hence put into the worst class together
with Maps VII and VIII.

The rankings from Table 7 show that the Topol-
ogy Map Metric corresponds quite well with the hu-
man judgment of the maps. Furthermore, brokenness
could be detected in the upper part of Map I. This is
a very nice result, because this fact could have been

Fig. 17 Maps V (top left), VI (top right), VII (bottom left)
and VIII (bottom right).

Map Evaluation using Matched Topology Graphs 27

Map Number Number Number Coverage Relative Consistency Weighted
Vertices Matches Major Accuracy Short Med. Long Result

Matches
I 57 36 30 0.68 0.89 0.83 0.81 0.45 0.71
II 53 29 23 0.52 0.83 0.77 0.58 0.47 0.59
III 62 32 26 0.59 0.88 0.78 0.59 0.30 0.61
IV 55 34 28 0.64 0.95 0.85 0.80 0.76 0.74
V 55 39 34 0.77 0.96 0.85 0.81 0.82 0.81
VI 59 43 35 0.80 0.95 0.89 0.77 0.78 0.82
VII 38 20 16 0.36 0.87 0.79 0.73 0.44 0.53
VIII 31 0 0 0 0 0 0 0 0

Table 6 The results of the Topology Map Evaluation for the Interleague Mapping Challenge maps.

Map H. W. C. Rel. Consistency
Acc. Short Med. Long

V 1-2 2 2 1 2-3 1-2 1
VI 1-2 1 1 2-3 1 4 2
I 3 4 3 4 4 1-2 5
IV 4 3 4 2-3 2-3 3 3
III 5 5 5 5 6 6 7
II 6-8 6 6 7 7 7 4
VII 6-8 7 7 6 5 5 6
VIII 6-8 8 8 8 8 8 8

Table 7 The rankings of the Topology Map Evaluation for
the Interleague Mapping Challenge maps, sorted by the hu-
man ranking. H.:Human Ranking, W.: Weighted Ranking, C.:
Coverage, Rel. Acc.: Relative Accuracy.

easily missed by a human judge. The brokenness in the
map can be seen when looking at the V-shaped walls
indicated by the red arrows. Although maps II, VII and
VIII contain large errors in the bottom parts, those ar-
eas don’t qualify as broken, because they also contain
in itself lots of errors.

7 Conclusions

A novel approach for map evaluation using Topology
Graphs has been introduced in this article. The main
advantage of this approach is that it abstracts from the
grid representation with the occupied cells and employs
the underlying topology of the maps. After matching
two Topology Graphs, standard map quality attributes
like coverage, global accuracy, relative accuracy, consis-
tency, or brokenness can then be e�ciently computed
in a reliable manner.

The computation of a Topology Graph is based on
the well-known Voronoi Diagram. Starting from a raw
Voronoi Diagram extracted from an occupancy grid map,
several processing steps are used to prune and simplify
the graph such that only a much smaller amount of high
level topological environment information remains, i.e.,
that especially junctions and larger places are repre-
sented by single interconnected vertices. The Topology
Graph also maintains local metric information like the

relative angles in which edges - or more precisely, the
related metric paths - leave a vertex. This abstracted
metric information can be used for place-recognition.

Several methods for computing the similarity of ver-
tices in two Topology Graphs, i.e., for performing a
place-recognition, were presented. The methods fall into
two di↵erent categories, namely topological ones using
information from the Topology Graphs including the
abstracted local metric information and sensor-based
ones that use the grid-map data in the direct neighbor-
hood of the vertices. It was shown in an experimental
evaluation that topological methods can be quite robust
and that they are computationally extremely e�cient.
Furthermore, it is shown that the robustness can be sig-
nificantly boosted by exploiting the neighborhood rela-
tions in the Topology Graphs: if two vertices are similar
then their neighbors should also be similar if the two
vertices indeed correspond to the same place. It was
shown through the strategy of propagation rounds that
this principle can be very e�ciently applied to vertex
similarity computations.

Vertex similarity allows for an initial assignment of
possible correspondences between the vertices of two
Topology Graphs, i.e., to identify the same places in
two di↵erent maps. Based on this, a strategy for com-
puting (sub)graph-isomorphisms was introduced to find
large connected components in the graphs that can be
matched to each over. The method uses a wavefront
propagation in combination with a few heuristics to be
computationally very e�cient.

Finally, it was shown in several experiments that
the Topology Graphs approach is indeed beneficial for
map evaluation with standard map quality attributes
like coverage, global accuracy, relative accuracy, consis-
tency, and brokenness. While this is out of the scope
of this article, it is interesting to note that the Topol-
ogy Graph with its combination of topological and ab-
stracted local metric information can also be used for
applications beyond map evaluation. The topological
computation of Vertex Similarity can for example be
applied to place-recognition in general and the Graph

28 Sören Schwertfeger, Andreas Birk

Matching may for example be used for map merging
and cooperative multi-robot mapping.

Acknowledgements The authors would like to thank all
RoboCup Rescue teams that agreed to have their maps pub-
lished in the context of this research: CASualty: University of
New SouthWales, Australia and Resko: University of Koblenz,
Germany.

References

1. Aurenhammer, F.: Voronoi diagramsã survey of a fun-
damental geometric data structure. ACM Comput.
Surv. 23, 345–405 (1991). DOI http://doi.acm.org/
10.1145/116873.116880. URL http://doi.acm.org/10.

1145/116873.116880

2. Bai, X., Latecki, L.: Path similarity skeleton graph
matching. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 30(7), 1282–1292 (2008). DOI
10.1109/TPAMI.2007.70769

3. Bai, X., Latecki, L., yu Liu, W.: Skeleton pruning by con-
tour partitioning with discrete curve evolution. Pattern
Analysis and Machine Intelligence, IEEE Transactions on
29(3), 449–462 (2007). DOI 10.1109/TPAMI.2007.59

4. Balaguer, B., Balakirsky, S., Carpin, S., Visser, A.: Eval-
uating maps produced by urban search and rescue robots:
lessons learned from robocup. Autonomous Robots 27,
449–464 (2009)

5. Besl, P.J., McKay, N.D.: A method for registration of 3-d
shapes. IEEE Trans. on Pattern Analysis and Machine
Intelligence 14(2), 239–256 (1992)

6. Birk, A.: A quantitative assessment of structural errors
in grid maps. Autonomous Robots 28, 187–196 (2010)

7. Birk, A., Wiggerich, B., Bülow, H., Pfingsthorn, M.,
Schwertfeger, S.: Safety, security, and rescue missions
with an unmanned aerial vehicle (uav): Aerial mosaicking
and autonomous flight at the 2009 european land robots
trials (elrob) and the 2010 response robot evaluation ex-
ercises (rree). Journal of Intelligent and Robotic Systems
64(1), 57–76 (2011)

8. Chen, Q.S., Defrise, M., Deconinck, F.: Symmetric phase-
only matched filtering of fourier-mellin transforms for
image registration and recognition. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 16(12),
1156–1168 (1994)

9. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the
shape of a set of points in the plane. Information The-
ory, IEEE Transactions on 29(4), 551 – 559 (1983). DOI
10.1109/TIT.1983.1056714

10. Fortin, S.: The graph isomorphism problem. Tech. rep.
(1996)

11. Handa, A., Whelan, T., McDonald, J., Davison, A.: A
benchmark for rgb-d visual odometry, 3d reconstruction
and slam. In: Robotics and Automation (ICRA), 2014
IEEE International Conference on, pp. 1524–1531 (2014).
DOI 10.1109/ICRA.2014.6907054

12. Horn, B.K.P.: Closed-form solution of absolute orienta-
tion using unit quaternions. Journal of the Optical Soci-
ety of America 4(4), 629–642 (1987)

13. Karavelas, M.: 2D Voronoi diagram adaptor. In: CGAL
User and Reference Manual, 3.8 edn. CGAL Edi-
torial Board (2011). http://www.cgal.org/Manual/

3.8/doc_html/cgal_manual/packages.html#Pkg:

VoronoiDiagramAdaptor2

14. Klein, R.: Abstract voronoi diagrams and their applica-
tions. In: H. Noltemeier (ed.) Computational Geometry
and its Applications, Lecture Notes in Computer Science,
vol. 333, pp. 148–157. Springer Berlin / Heidelberg (1988)

15. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M.,
Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the
accuracy of slam algorithms. Autonomous Robots 27(4),
387–407 (2009)

16. Lakaemper, R., Adluru, N.: Using virtual scans for
improved mapping and evaluation. Auton. Robots
27(4), 431–448 (2009). DOI http://dx.doi.org/10.1007/
s10514-009-9149-4

17. Lee, D.C.: The Map-Building and Exploration Strategies
of a Simple Sonar-Equipped Mobile Robot: An Experi-
mental, Quantitative Evaluation. Distinguished Disserta-
tions in Computer Science. Cambridge University Press
(1996)

18. Leonard, J.J., Durrant-Whyte, H.F.: Directed Sonar
Sensing for Mobile Robot Navigation. Springer (1992)

19. Pellenz, J., Paulus, D.: Mapping and Map Scoring at the
RoboCupRescue Competition. Quantitative Performance
Evaluation of Navigation Solutions for Mobile Robots
(RSS 2008, Workshop CD) (2008)

20. Pomerleau, F., Liu, M., Colas, F., Siegwart, R.: Chal-
lenging data sets for point cloud registration algorithms.
The international Journal of Robotics Research 31(14),
1705–1711 (2012)

21. Schwertfeger, S.: Robocuprescue interleague mapping
challenge (2010). http://robotics.jacobs-university.
de/mappingChallenge/

22. Schwertfeger, S.: Robotic mapping in the real world:
Performance evaluation and system integration. Ph.D.
thesis, Department of Electrical Engeneering and
Computer Science, Jacobs University Bremen (2012).
URL http://www.jacobs-university.de/phd/files/

phd20120706_Schwertfeger.pdf

23. Schwertfeger, S., Birk, A.: Evaluation of map quality by
matching and scoring high-level, topological map struc-
tures. In: Robotics and Automation (ICRA), 2013 IEEE
International Conference on (2013)

24. Schwertfeger, S., Bülow, H., Birk, A.: On the e↵ects of
Sampling Resolution in Improved Fourier Mellin based
Registration for Underwater Mapping. In: 7th Interna-
tional Symposium on Intelligent Autonomous Vehicles
(IAV 2010). IFAC (2010)

25. Schwertfeger, S., Jaco↵, A., Pellenz, J., Birk, A.: Using
a fiducial map metric for assessing map quality in the
context of robocup rescue. In: International Workshop
on Safety, Security, and Rescue Robotics (SSRR). IEEE
Press (2011)

26. Schwertfeger, S., Jaco↵, A., Scrapper, C., Pellenz, J.,
Kleiner, A.: Evaluation of maps using fixed shapes: The
fiducial map metric. In: Proceedings of PerMIS (2010)

27. Scrapper, C., Madhavan, R., Balakirsky, S.: Stable navi-
gation solutions for robots in complex environments. In:
IEEE International Workshop on Safety, Security and
Rescue Robotics (SSRR), pp. 1–6 (2007)

28. Siddiqi, K., Shokoufandeh, A., Dickenson, S., Zucker, S.:
Shock graphs and shape matching. In: Computer Vi-
sion, 1998. Sixth International Conference on, pp. 222–
229 (1998). DOI 10.1109/ICCV.1998.710722

29. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cre-
mers, D.: A benchmark for the evaluation of rgb-d slam
systems. In: Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp. 573–
580 (2012). DOI 10.1109/IROS.2012.6385773

http://doi.acm.org/10.1145/116873.116880
http://doi.acm.org/10.1145/116873.116880
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:VoronoiDiagramAdaptor2
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:VoronoiDiagramAdaptor2
http://www.cgal.org/Manual/3.8/doc_html/cgal_manual/packages.html#Pkg:VoronoiDiagramAdaptor2
http://robotics.jacobs-university.de/mappingChallenge/
http://robotics.jacobs-university.de/mappingChallenge/
http://www.jacobs-university.de/phd/files/phd20120706_Schwertfeger.pdf
http://www.jacobs-university.de/phd/files/phd20120706_Schwertfeger.pdf

Map Evaluation using Matched Topology Graphs 29

30. Texas A&M University College Station, T.: Nist
response robot evaluation exercise (2008). URL
http://www.teex.com/teex.cfm?pageid=USARprog&

area=usar&templateid=1538

31. Thrun, S.: Robotic mapping: A survey. In: G. Lakemeyer,
B. Nebel (eds.) Exploring Artificial Intelligence in the
New Millenium. Morgan Kaufmann (2002)

32. Torsello, A., Hancock, E.: A skeletal measure of 2d shape
similarity. In: C. Arcelli, L. Cordella, G. di Baja (eds.)
Visual Form 2001, Lecture Notes in Computer Science,
vol. 2059, pp. 260–271. Springer Berlin Heidelberg (2001).
DOI 10.1007/3-540-45129-3 23

33. Varsadan, I., Birk, A., Pfingsthorn, M.: Determining map
quality through an image similarity metric. In: L. Iocchi,
H. Matsubara, A. Weitzenfeld, C. Zhou (eds.) RoboCup
2008: Robot WorldCup XII, Lecture Notes in Artificial
Intelligence (LNAI), pp. 355–365. Springer (2009)

34. Voronoi, G.: Nouvelles applications des paramètres con-
tinus à la théorie des formes quadratiques. Premier
mémoire. Sur quelques propriétés des formes quadra-
tiques positives parfaites. Journal für die reine und
angewandte Mathematik 133, 97–102 (1908). DOI
10.1515/crll.1908.133.97. URL http://dx.doi.org/10.

1515/crll.1908.133.97

35. Wagan, A.I., Godil, A., Li, X.: Map quality assessment.
In: PerMIS ’08: Proceedings of the 8th Workshop on
Performance Metrics for Intelligent Systems, pp. 278–
282. ACM, New York, NY, USA (2008). DOI http:
//doi.acm.org/10.1145/1774674.1774718

36. Wulf, O., Nüchter, A., Hertzberg, J., Wagner, B.: Ground
truth evaluation of large urban 6d slam. pp. 650 –657
(2007). DOI 10.1109/IROS.2007.4399026

37. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich,
R.I.: Graph isomorphism problem. Journal of Math-
ematical Sciences 29(4), 1426–1481 (1985). DOI 10.
1007/BF02104746. URL http://dx.doi.org/10.1007/

BF02104746

http://www.teex.com/teex.cfm?pageid=USARprog&area=usar&templateid=1538
http://www.teex.com/teex.cfm?pageid=USARprog&area=usar&templateid=1538
http://dx.doi.org/10.1515/crll.1908.133.97
http://dx.doi.org/10.1515/crll.1908.133.97
http://dx.doi.org/10.1007/BF02104746
http://dx.doi.org/10.1007/BF02104746

 Springer US 2015

 The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-015-9493-5

Published: 03.09.2015

Provided by Sören Schwertfeger http://robotics.shanghaitech.edu.cn/people/soeren

ShanghaiTech Advanced Robotics Lab http://robotics.shanghaitech.edu.cn

School of Information Science and Technology http://sist.shanghaitech.edu.cn

ShanghaiTech University http://www.shanghaitech.edu.cn/eng

File location http://robotics.shanghaitech.edu.cn/publications

http://robotics.shanghaitech.edu.cn/
http://dx.doi.org/10.1007/s10514-015-9493-5
http://robotics.shanghaitech.edu.cn/people/soeren
http://robotics.shanghaitech.edu.cn/publications
http://www.shanghaitech.edu.cn/eng
http://sist.shanghaitech.edu.cn/

	Introduction
	Overview and Notations
	Computation of a Topology Graph
	Calculating the Similarity of two Vertices
	The Matching of two Topology Graphs
	Map Evaluation using Matched Topology Graphs
	Conclusions

