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Abstract— Unmanned Aerial Vehicles (UAV), especially in
the form of Micro Aerial Vehicles (MAV) are useful tools for
reconnaissance, surveillance, and general situation assessment
in safety, security, and rescue missions. Many UAV have
meanwhile good autonomous flight capabilities, especially by
tracking pre-planned routes via GPS or for station-keeping.
Here it is shown how the video stream from an UAV can be
analyzed to automatically detect motion in the scene while the
vehicle is moving itself. Concretely, it is shown how a spec-
tral image registration method, the improved Fourier Mellin
Invariant method (iFMI), can be used for video stabilization
and motion segmentation. The method is first analyzed with
scenes containing artificial markers for ground truth evaluation.
Furthermore, results from aerial video data from a quadcopter
platform are presented.

I. Introduction

Unmanned Aerial Vehicles (UAV) especially in the form
of Micro Aerial Vehicles (MAV) are used in a wide range of
SSRR applications including search and rescue, reconnais-
sance, and surveillance [9], [2], [24], [17], [30], [12], [1],
[21]. UAV are meanwhile quite capable of autonomous flight
behaviors, especially in form of tracking pre-planned routes
via GPS or to do station-keeping. What is less developed is
the capability to react to events. In [3], we presented among
others results where a UAV (Fig. 1) has significant amounts
of autonomous flight time during a surveillance mission
(Fig. 2). Though the UAV is flying autonomously, an operator
nevertheless has to constantly check the video stream from
the vehicle for motion in the scene as the mission task is to
detect intruders. Also in search and rescue missions, it is of
interest to detect motion in the scene, e.g., to detect hand
waving of a trapped victim when a UAV is autonomously
surveying a rubble pile. The challenge is that the UAV
itself is always moving - even during station-keeping it is
never perfectly stable - and hence this ego-motion has to be
compensated.

Here, we show how our contributions to mosaicking, also
known as photo-mapping, with a UAV [3] can be used for
video stabilization and motion segmentation, i.e., for the
detection of moving objects from a moving platform. Given
a perfect localization of a vehicle and the parameters of a
camera that takes pictures of the scene, the generation of
video stabilization is trivial. But UAV localization is very
coarse and error prone, especially if simple sensors like
GPS are used, respectively very costly in terms of necessary
payload for computation power, e.g., if a high end inertial
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Fig. 1. An Airrobot AR100 quadrocopter.

Fig. 2. An example of a photo map of a camp generated during a
surveillance mission from 784 video frames in real time.

navigation system would be used. An alternative is to try
to use the video stream which is provided by the vehicle
anyway.

The challenge is hence to determine the vehicle’s motion
from the image sequence to compensate for the motion.
Feature extraction methods like the Scale Invariant Feature
Transform (SIFT) [19], [18] are a popular basis for this.
SIFT delivers point-wise correspondences between distinc-
tive, non-repetitive local features in the two images, which
can then be used to estimate the motion. The number of
detected features is significantly smaller than the number of
pixels in the image. Other methods for identifying features
include local image descriptors like intensity patterns [20],
[13] and the Kanade-Lucas-Tomasi Feature Tracker (KLT)
[28]. Though there is quite some successful work with



visual features methods applied on video streams from UAV,
especially in form of visual Simultaneous Localization and
Mapping (vSLAM) [29], [30], they are inherently limited in
rather featureless scenes, e.g., when there are larger mono-
tone surface patches like lawn, concrete, or asphalt. Instead
of using features, our mosaicking method [3] is based on a
spectral registration method. It is based on the hypothesis that
the whole information in the images and not only features
should be used to minimize uncertainties and ambiguities
in registration, especially in the unstructured environments
that are typically found in SSRR missions. The moasicking
is hence based on a variant of the Fourier Mellin Invariant
(FMI) transform for image representation and processing
[8], [7], [25]. Our version introduced two modifications to
achieve a very fast and robust method as presented in more
detail in [4]: First, a logarithmic representation of the spectral
magnitude of the FMI descriptor is used. Second, a filter
on the frequency where the shift is supposed to appear is
applied. In addition to its robustness, especially in featureless
scenarios, the algorithm has the significant advantage over
feature based approaches that it has a fixed computation
time per registration, which is in addition suited for real-time
registrations on rather low power computation platforms.

In this paper, it is shown that the iFMI registration
can be used to generate a kind of video-stabilization also
known as image- or camera-stabilization, or (ego-)motion-
compensation [26], [22], [31], [14], [10]. This means that
the photo-mapping provides the video frames in a fixed
coordinate frame of the static environment despite the ve-
hicle’s ego-motion. It is well known that video-stabilization
significantly eases vision processes on moving vehicles, see
for example [16], [11]. Especially, it can be used as basis
for object detection by motion extraction through di↵erential
images [15].

The rest of this paper is structured as follows. In section
II, the improved Fourier Mellin Invariant (iFMI) descriptor
for image registration is introduced. Section III describes the
application of the image registration for video stabilization
which itself is used for motion segmentation. Two experi-
ments are shown in section IV while section V concludes
this paper.

II. Improved FourierMellinMapping
The classical Matched Filter (MF) of two 2D signals r(x,y)

and s(x,y) is defined by:

q(x,y) =
Z Z 1

�1
s(a,b)r(x�a,y�b)dadb (1)

This function has a maximum at (x0, y0) that determines the
parameters of a translation. One limitation of the MF is that
the output of the filter primarily depends on the energy of
the image rather that on its spatial structures. Furthermore,
depending on the image structures, the resulting correlation
peak can be relatively broad. This problem can be solved by
using a Phase-Only Matched Filter (POMF). This correlation
approach makes use of the fact that two shifted signals
having the same spectrum magnitude are carrying the shift
information within its phase (eq. 2).

A. Principles of the Fourier Mellin transform

The principle of phase matching is now extended to
additionally determine a�ne parameters like rotation, scaling
and afterward translation.

f (t�a)⌫ F(!)ei!a (2)

When both signals are periodically shifted the resulting
inverse Fourier transformation of the phase di↵erence of both
spectra is actually an ideal Dirac pulse. This Dirac pulse
indicates the underlying shift of both signals which have to
be registered.

�(t�a)⌫ 1ei!a (3)

The resulting shifted Dirac pulse deteriorates with changing
signal content of both signals. As long as the inverse trans-
formation yields a clear detectable maximum this method
can be used for matching two signals. This relation of the
two signals phases is used for calculating the Fourier Mellin
Invariant Descriptor (FMI). The next step for calculating
the desired rotation parameter exploits the fact that the 2D
spectrum (eq. 5) rotates exactly the same way as the signal
in the time domain itself (eq. 4):

s(x,y) = r[(xcos(↵)+ ysin(↵)), (�xsin(↵)+ ycos(↵))] (4)

| S (u,v) |=|R[(ucos(↵)+vsin(↵)), (�usin(↵)+vcos(↵))] | (5)

where ↵ is the corresponding rotation angle.
For turning this rotation into a signal shift the magnitude

of the signals spectrum is simply re-sampled into polar coor-
dinates. This can be done in a di↵erent resolution (the polar-
log-resolution) than the original one (image-resolution). For
turning a signal scaling into a signal shift several steps are
necessary. The following Fourier theorem

f (
t
a

)⌫ aF(a!) (6)

shows the relations between a signal scaling and its spectrum.
This relation can be utilized in combination with another
transform called Mellin transform which is generally used
for calculations of moments:

V M( f ) =
Z 1

0
v(z)zi2⇡ f�1dz (7)

Having two functions v1(z) and v2(z) = v1(az) di↵ering only
by a dilation the resulting Mellin transform with substitution
az = ⌧ is:

V M
2 ( f ) =

Z 1

0
v1(az)zi2⇡ f�1dz

=

Z 1

0
v1(⌧)(

⌧

a
)i2⇡ f�1 1

a
d⌧

= a�i2⇡ f V M
1 ( f ) (8)

The factor a�i2⇡ f = e�i2⇡ f ln(a) is complex which means that
with the following substitutions

z = e�t, ln(z) = �t,dz = �e�tdt,

z! 0) t!1,z!1) t!�1 (9)



the Mellin transform can be calculated by the Fourier trans-
form with logarithmically deformed time axis:

V M( f ) =

Z �1

1
v(e�t)e�t(i2⇡ f�1)(�e�t)dt

=

Z 1

�1
v(e�t)e�i2⇡ f tdt (10)

Now the scaling of a function/signal using a logarithmically
deformed axis can be transfered into a shift of its spec-
trum. Finally, the spectrum’s magnitude is logarithmically
re-sampled on its radial axis and concurrently the spectrum
is arranged in polar coordinates exploiting the rotational
properties of a 2D Fourier transform as described before.
Scaling and rotation of an image frame are then transformed
into a 2D signal shift where the 2D signal is actually the
corresponding spectrum magnitude of the image frame. This
intermediate step is called the FMI descriptor.

The overall algorithm is sketched here. First the calcula-
tion of the POMF is shown:

1) calculate the spectra of two corresponding image
frames

2) calculate the phase di↵erence of both spectra
3) apply an inverse Fourier transform of this phase dif-

ference
The following steps are taken for a full determination of the
rotation, scaling and translation parameters:

1) calculate the spectra of two corresponding image
frames (in image-resolution)

2) calculate the magnitude of the complex spectral data
3) re-sample the spectra to polar coordinates (in polar-

log-resolution)
4) re-sample the radial axes of the polar spectra logarith-

mically
5) calculate a POMF on the re-sampled magnitude spectra
6) determine the corresponding rotation/scaling parame-

ters from the Dirac pulse
7) re-size and re-rotate the corresponding image frame to

its reference counterpart
8) calculate a POMF between the reference and re-rotated

and re-scaled image
9) determine the corresponding x,y translation parameters

from the Dirac pulse
The steps are used in the Fourier Mellin based image

registration in a straightforward way. A sequence of images
Ik is acquired. Images In and In+1 are processed with the
above calculations. The result is the transformation T M

n in
the frame of reference Fn of In between In and In+1 and
hence the motion of the camera. Some properties of this
image registration method have been described in [27] while
applications for underwater [5], [23] and aerial [6] robots
used the image registration for photo mapping.

III. Video Stabilization andMotion Segmentation
The image registration over two consecutive frames as

described in the above section is the first step for the video
stabilization, which itself is used to perform the motion
segmentation.

A. Video Stabilization Application

The inverse of the transformation T M
n between images In

and In+1 is applied to In+1. This way the contents (features) of
the images do not move for the observer. If the application
is to provide a stabilized video stream for an observer or
operator additional steps have to be taken. The problem
is, that the transformations accumulate and the frames thus
would leave the area of the output frame.

So, PID controllers are applied to the components of the
transform to keep the center of the image in the view. The
errors fed into the controllers come from the transformation
of the current frame with respect to the output frame. After
tuning the parameters of the PID controller the image is thus
always gently pulled back into the center of the output frame
while still compensating for abrupt motions and vibrations.

B. Motion Segmentation

The motion segmentation can work with two (In and In+1)
or three (In�1, In and In+1) consecutive frames. All work is
done in the frame of reference of image In, such that the
other images have to be transformed accordingly. Motion in
parts of the frames that do not overlap cannot be detected,
such that those pixels are marked as no motion (black) per
definition.

In the next step the images are converted into the hue,
saturation, and lightness (HSL) color space. Only the light-
ness value is used to calculate the di↵erence d for each pixel
between the image frames in the next step. A threshold value
t determines if the lightness di↵erence between those pixels
is big enough for them to be marked as motion. In the three
frame version of the algorithm both di↵erences (between In�1
and In as well as between In and In+1) have to exceed the
threshold.

In the implementation used for this paper the image
transformation is done on the fly while calculating the pixel
di↵erences. Pixels found to represent motion are marked by
giving them the color of said pixels in frame In (it has to be
di↵erent than black).

C. Filter

Two di↵erent kind of filters are applied to the result of the
registered motion segmentation. First the pixels are applied
to a neighborhood-criterion and then a minimum blob-size
for segmented parts is enforced.

Often line-shaped features (e.g. edges of buildings or
stairs) are present in the environment. Then small errors in
the registration can lead to false positives that have a similar,
line-shaped appearance. The neighborhood filter counts how
many of the four direct neighbors also indicate motion. A
threshold value for the minimum count (between 1 and 4)
then determines, whether said pixels remains valid.

The blob filter tries to count all pixels belonging to the
same segment of detected motion in the frame. A minimum
size is then applied to all blobs, disregarding all of those
which are too small.



(a) pic static1 (b) pic static2 (c) pic static3

(d) registration result

Fig. 3. Registration of 3 pictures from a scene with a static marker.

IV. Experiments and Results
In this section the image registration and stabilization

is first evaluated with a lab-experiment. Data from three
aerial missions is then used in the second experiment to
demonstrate the proposed algorithms.

A. Evaluation with Artificial Markers

The method is first evaluated with artificial markers as
ground truth reference points. Figure 3 shows a simple static
scene with a marker. Three snapshots are taken with the
camera moving from right to left (Figures 3(a), 3(b), and
3(c)). Please note that the camera is simply hand-held and
that no camera calibration is used. Nevertheless, the image
stabilization is very accurate as indicated by the registration
result shown in Figure 3(d). This is also supported by an
evaluation of the displacements between the marker positions
in the input images versus the registered ones (Table I). The
camera has a resolution of 1600 ⇥ 1200 pixels. The displace-
ment of 364 pixels for static1 ! static2 hence corresponds
to about 23% of the image width, while the 413 pixels for
static2 ! static3 are 26% of the image width. Nevertheless,
the registration keeps the marker almost perfectly in a static
place.

TABLE I
The displacements in pixels between the marker positions of two

subsequent images in the static scene (figure 3)

unregistered registered
static1 ! static2 364 3
static2 ! static3 413 2

Figure 4 shows a second scene with two markers where
one of them, namely maker #2, moves. Four snapshots are
taken with the marker #2 moving randomly (Figures 4(a),
4(b), 4(c), and 4(d)). Please note that the camera is also here
just hand-held. Again, the image stabilization is working well
as indicated by the registration result shown in Figure 4(e).

This is also supported by an evaluation of the localization
of the moving marker #2 between the marker positions in

(a) pic moving1 (b) pic moving2

(c) pic moving3 (d) pic moving4

(e) registration result

Fig. 4. Registration of 4 pictures from a scene with a moving marker (#2)
and a static one (#1) as reference.

TABLE II
The ground truth distance D between marker #1 and the moving marker

#2 from the scene shown in Figure 4, and the related error in the
registered image.

D (pixel) error (pixel)
pose 1 630 9
pose 2 889 15
pose 3 777 33
pose 4 350 17

the input images versus the registered ones (Table II). The
static marker #1 is again quite stable in a fixed position; its
position varies by about 18 pixels on average between the
registered images. The average of the coordinates of marker
#1 is used as a reference point. The Euclidean distance in
pixels between the position of marker #2 in the registered
image 4(e) and this reference is than compared to the ground
truth distance in each of the images 4(a), 4(b), 4(c), and 4(d).

B. Motion Segmentation on Aerial Video Data

For the second experiment data collected with a Un-
manned Aerial Vehicle (UAV) is applied to the motion seg-
mentation algorithm. On three di↵erent occasions a vehicle
passed through the field of view of the robot. A total of 196
frames from those three scenes are used in this experiment.
The UAV is flying over the campus of the Jacobs University



in Bremen. Due to wind and steering commands of the
operator the vehicle is showing considerable ego-motion.

Please refer to the video attached to this paper for the
original movie as well as the di↵erent results.

In the following, results are presented for four di↵erent
approaches to the motion segmentation problem. First, the
naive approach of motion segmentation without image regis-
tration is tested (”no iFMI”). In the second set, the result of
the naive method is filtered. The ego-motion of the camera
is compensated by applying the iFMI image registration
algorithm (”iFMI”) in the third approach. The fourth test
additionally applies the filter to the result of the second
algorithm (”iFMI plus filter”).

The runtime for the image registration does not depend on
the content of the frame but solely on the resolution used,
which is 476x476 pixels in these experiments. The video was
actually captured with a resolution of 640x480 pixels, but due
to some disturbances on the top and bottom of the frames
two pixels were omitted on both ends, such that the frames
were cropped to the square resolution mentioned above. The
registration can run with 17.1 frames per second (fps) on a
2.8 GHz laptop. The computation time for the filter depends
on the amount of marked pixels, but it is anyways much less
than the time needed for the image registration (”iFMI”). For
the whole application which loads the images, displays the
original as well as a video of the detected motions in a GUI
etc. the speed is 8.1 fps.

The experiments were performed with the two frames
approach described in section III-B and the neighborhood
filter used a minimum of four neighbors while the blob filter
demanded at least 20 marked pixels in one group.

Figure 5 shows the amount of pixels that suggest move-
ment for each frame. Artificial entries to mark the 99 frames
that actually contain moving cars have been added as “Car
present”. It can be seen that the amount of marked pixels
(pixels that indicate motion in that part of the frame) is
significantly higher for the naive approach. The number of
pixels marked by the naive approach directly corresponds
to the amount of movement of the UAV. As expected there
are fewer marked pixels after filtering the naive approach.
Without moving cars the iFMI algorithm gives more than
4.5 times fewer amounts of marked pixels, all of which are
removed by the filter of the iFMI+ approach.

The significantly less amount of marked pixels when iFMI
and iFMI+ are used can also be seen in the histogram in
Figure 6. That histogram has 20 bins for 97 frames that
do not have moving cars. The non-registration approach
dominates the high-percentage range.

A more compact representation of these results is pre-
sented in Table III. The percentages of marked pixels are
averaged for the four methods. The standard deviation and
the maximum is also calculated. The first part of the table
contains those values for all the frames. The 99 frames that
actually contained movement are omitted in the bottom of
this table, such that those numbers then provide an indication
for the amount of false positives in the frames. Please note
that these numbers correspond to the number of pixels and
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Fig. 5. The amount of pixels with detected motion is here shown for each
frame. The “Car Present” entries mark the frames where there is actually
motion due to the cars. Please note the logarithmic scale of the y-axis.
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Fig. 6. Histogram for the 97 frames without cars. The 20 bins are for the
number of pixel that detected motion. For the filtered case all 97 frames
have zero non-black pixel while the frames using registration feature far
less pixel then the ones without. Please note again the logarithmic scale of
the y-axis.

not to the number of objects themselves. This means, that
though not all moving pixels of a car may be fully segmented,
there are typically more marked pixels than cars.

The frames can be classified as containing motion or
not, simply by checking for the existence of at least one
marked pixel in that frame. In Table IV the results of that
classification is checked for correlation with the 99 frames
found to contain car motion. It should be noted, that in 9
frames (4.6% of all images) that contained moving cars the
iFMI+ algorithm did, additionally to those pixel of the car,
mark other regions that contained no motion as well.

The following figures also illustrate the results in quali-
tative terms. Figure 7 shows the arrangement of the results
of the di↵erent methods in these figures. On the left the
input video frame In can be seen while the right side shows



TABLE III
Percentages of pixels with detected motion per frame.

Registration:
in % None Filter iFMI iFMI+
Average 9.81 1.58 3.82 0.63

All frames Std. deviation 8.08 2.23 4.39 1.52
Maximum 45.27 9.86 26.41 8.47
Average 3.78 0.22 0.80 0

Without car Std. deviation 4.47 0.81 1.87 0
frames Maximum 21.71 4.67 11.49 0

TABLE IV
The correctness of segmented frames - at least one detected pixel counts
as positive (motion). The true positive and true negative values are

relative to the number of frames with/ without motion.

Registration:
in % None Filter iFMI iFMI+
True Positive 100 100 100 99
True Negative 0 52 0 100
False Positive 100 48 100 0
False Negative 0 0 0 1

the four approaches. The top left image shows �n as the
thresholded di↵erential image between In and In+1. The
filtered di↵erential image is shown on the top right. The
image �iFMI

n as the thresholded di↵erential images after iFMI
registration of In and In+1 is shown on the bottom left in each
figure. The same image with additional filtering is shown on
the bottom right.

Figure 8(a) shows that the naive approach can create as
output �n (top left) significant amounts of marked pixels even
if there are no moving objects. This is due to the ego-motion
of the camera. Since the iFMI registration compensates for
that, the images �iFMI

n (bottom left) and �iFMI+
n (bottom

right) do not contain marked any pixel. But when there
is a moving object as shown in Figure 8(b), the iFMI
compensated pictures clearly shown the motion. But there
can be errors for those pixels, e.g., due to:
• errors in the image registration
• image distortions if a tilt is present in the frames
• perspective errors due to the 3D nature of the environ-

ment
• due to the sometimes abrupt movement of the aerial

vehicle the image can be blurred

Fig. 7. The arrangement of the images in the following example figures.
The left shows the input video frame In. On the top left �n, i.e., the
thresholded di↵erential image between In and In+1 is shown. The top right
image shows, as comparison, the filtered frame of �n. The image �iFMI

n as
the thresholded di↵erential images after iFMI registration of In and In+1 is
shown on the bottom left. The same image with additional filtering, i.e.,
�iFMI+

n , is shown on the bottom right.

(a) An example without cars, i.e., moving objects, which corresponds to the
35-th and the 36th frame in the input video. The top left di↵erential image �35
contains quite some noise due to the ego-motion of the robot. Even the filtering
of the di↵erential image (top right) leaves false positives in this frame. Both
iFMI-processed images �iFMI

35 and �iFMI+
35 shown on the bottom contain no

noise and are fully black, i.e., the absence of movement is correctly detected
in them.

(b) A car is present in this example. Both iFMI-processed images �iFMI
143

and �iFMI+
143 (bottom) correctly show a correct motion segmentation of this

car, despite the motion of the aerial vehicle. The unfiltered iFMI-processed
image �iFMI

143 still contains some residual noise which is then removed by the
filter. The comparison image �143 (top left) contains a lot of noise due to the
displacements between the input image frames that can not be removed by
the filter (top right).

(c) This example illustrates in the image �iFMI+
194 (bottom right) the benefit of

the additional filter, which is able to remove the significant amounts of noise
in �iFMI

194 (bottom left) when the registration occasionally is some pixel o↵.

(d) In frame 180 the video link to the ground station was disturbed. The
registration fails in this case, as can be seen in the image �iFMI

179 . The
disturbance results in two frames with bad object detection results: �iFMI

179
and �iFMI

180 are both a↵ected since both use the bogus frame 180.

Fig. 8. Example frames from the experiment.



Therefore the additional filter is beneficial. Figure 8(c) shows
that the filter can remove errors from the registered result
while still detecting the moving objects. Please note that the
filter tends to remove pixels from the outline of objects, i.e.,
not only their presence but also their visual center and hence
their local position can still be very well determined.

Figure 8(d) shows that disturbances in the video connec-
tion cannot be compensated for and lead to two unusable
detection results.

V. Conclusions
A video stabilization and motion segmentation approach

suited for aerial video data was presented. It can be used
to automatically detect motion in the scene from an au-
tonomously flying UAV; for example to detect an intruder in
a surveillance mission or to detect a waving victim trapped
in a rubble pile during a search and rescue operation.

The method is based on improved Fourier Mellin Invariant
(iFMI) registration, which uses a logarithmic representation
of the spectral magnitude of the FMI descriptor. In addition,
a filter on the frequency where the shift is supposed to
appear is applied. This leads to robust registrations and
hence motion compensation under the extensive ego-motion
of aerial vehicles and under the presence of disturbance due
to moving objects. The motion compensation is used for
video-stabilization and subsequently for object segmentation.
Experiments with artificial markers and with aerial video are
presented to illustrate that the approach works as intended.
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