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Abstract— Hand-eye calibration is a well-known calibration
problem. The problem assumes that a camera (eye) is rigidly
mounted to the gripper (hand) of a robot arm and aims to find
the transformation between them. In this paper, we propose
a novel pipeline for hand-eye calibration without the use of a
calibration target.

First we employ feature extraction and matching, followed
by an initial hand-eye calibration step using 2-view matches. In
an iterative process, we then alternately employ triangulation
and bundle adjustment to optimize the reconstruction and the
hand-eye calibration result. Unlike in structure from motion
and traditional hand-eye calibration, during this process we
always determine the global camera poses using the hand poses
and the estimated hand-eye transformation.

Synthetic-data and real-data experiments are performed to
evaluate the proposed approach, and the results indicate that
the accuracy of our approach is superior to state-of-the-art
approaches. Moreover, the speed of our algorithm is faster than
existing methods.

I. INTRODUCTION

Calibration is a common problem in computer vision and
robotics. Let’s consider a special calibration case: suppose
that we have a robot arm with a gripper as its end-effector.
In manipulation scenarios, to help locate the position of the
target, a camera is mounted rigidly on the end-effector. If
we use an object recognition algorithm to obtain the pose
of the target in the frame of reference of the camera, we
need to know the transform between the camera (eye) and
gripper (hand), in order to calculate the pose of the target
with respect to the gripper. This problem has been studied
abundantly in past years and is well known as hand-eye
calibration.

Unlike camera-camera calibration in stereo vision, one
cannot expect to extract feature correspondences between
the gripper and the camera. However, this doesn’t mean that
hand-eye calibration is impossible. On the contrary, since no
feature correspondence are needed we can apply the solutions
of the hand-eye calibration problem to various other calibra-
tion applications, e.g. camera-laser, camera-IMU, laser-IMU
and so on.

Hand-eye calibration is based on motion. Suppose that we
have a series of corresponding hand and eye motions, and
Aij and Bij are the homogeneous transformations of the eye
and hand motions, respectively. Therefore, the equation

AijX = XBij (1)

is an obvious observation from Figure 1, where X is the
unknown transformation from gripper to camera. It is note-
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Fig. 1. Hand-eye calibration: X is the unknown transformation from
gripper to camera (the gripper pose with respect to the camera frame),
Aij is the transformation between the camera frame at times i and j, so
representing the camera motion. Bij is the corresponding transformation of
the motion of the end-effector between times i and j. The following relation
can be easily observed: AijX = XBij . Bi and Bj , and thus Bij , can be
obtained using the forward kinematics of the robot arm, while Ai and Aj
are not known.

worthy that some publications also use another kind of
expression: they describe X as the gripper pose with respect
to the camera frame, which is the same as our description. X
is the same at all times since the camera is rigidly mounted
on the arm. Tsai et al. [1] proved that two or more motions
with nonparallel rotation axes can determine X uniquely.
We assume a fully calibrated robot arm, such that the pose
of the gripper relative to robot arm base, denoted by Bi in
Figure 1, can be calculated using the measured joint angles
and the forward kinematic model of the arm. We can thus
obtain relative hand motions from the i

th hand frame to the
j

th hand frame:
Bij = B

�1
j Bi (2)

The camera motions are usually determined using structure
from motion (SFM) algorithms [2]. However, if there is no
target with known geometry, the calculated translation will
be up to an unknown scale factor. We split Eq. (1) into the
rotation and translation parts:

RAijRX = RXRBij (3)

RAij tX + �ijtAij = RXtBij + tX (4)

where R denotes the rotation and t the translation part of a
transform, e.g. Aij = {RAij , tAij}. �ij is the unknown scale
factor. In all present approaches which utilize Eq. (1) or (3)
and (4) to solve X , the unknown scale factor is regarded to
be constant for all motions. In particular, when there is a
known target, like a chess pattern [3], the camera and hand
motion can be transformed to the same metric, thus �ij is 1
in this situation.



This paper presents a novel pipeline for hand-eye calibra-
tion. In the first step we extract features from all images and
match them. Secondly, according to feature matches between
two views, we estimate the relative poses of 2-view matches.
Thirdly, with hand poses and relative camera poses of 2-view
matches, we form several equations of (3) and (4) and solve
the hand-eye transformation. However, this initial calibration
is extremely inaccurate, so we employ triangulation and bun-
dle adjustment alternately for several times, in order to refine
hand-eye calibration and 3D reconstruction simultaneously.

The contributions of this paper are three-fold. (I) we
propose a novel end-to-end pipeline for hand-eye calibration.
Our approach utilizes known tools and techniques, but uses
them in a unique way: We combine 3D reconstruction and
hand-eye calibration. Thus our algorithm differs significantly
from existing methods which usually use SFM just as an
input source to get the relative camera motions. (II) we
extend AX = XB by supposing that any two camera
motions are up to an unequal scale factor, and propose a
new method to solve this problem. (III) we demonstrate the
high accuracy of our approach with synthetic and real data
experiments.

The remainder of this paper is arranged as follows. Section
II discusses related work. Section III gives an overview of our
algorithm. Section IV introduces the initial hand-eye calibra-
tion algorithm by solving AX = XB and Section V explains
the bundle adjustment. Section VI presents experiments to
analyze and compare the performance of our algorithm with
others. Section VII gives a conclusion of this work.

II. RELATED WORK

The hand-eye calibration problem was proposed in the
1980s and has been studied for nearly 40 years. There is
a considerable number of publications about hand-eye cali-
bration so far and new ones are still appearing continuously.
On the other side, the hand-eye calibration problem itself is
developing and has expanded to several branches. In the rest
of this section, we will review a few hand-eye calibration
algorithms by branches.

A. Conventional Hand-Eye Calibration

At the very beginning, hand-eye calibration was regarded
as to solve Eq. (1), and hand and camera motion are both
with real metric, i.e. �ij in Eq. (4) is 1. We call this kind
of problem conventional hand-eye calibration. Conventional
hand-eye calibration was presented earliest, so there is lots
of literature on that topic.

Early approaches [1], [4]–[6] treated this problem as two
separate parts: rotation and translation. They firstly estimated
RX using Eq. (3), then utilized the estimated RX to solve tX

using Eq. (4). However, such a separation inevitably leads
to the propagation of the residual error of the estimated
rotation into the translation estimation, so later approaches
for simultaneous estimation of both RX and tX appeared.
Daniilidis [7] derived a linear formulation using the dual
quaternion representation of Eq. (3) and (4), and then SVD
was utilized to solve RX and tX simultaneously. As a part

of [8], Andreff et al. also proposed a linear formulation of
Eq. (1) using the Kronecker product.

Several iterative methods were proposed in past years.
Zhuang and Shiu [9] presented an iterative nonlinear method
to minimize the loss function

P
i,j kAijX � XBijk2 to

estimate X . In [10], Horaud and Dornaika separated the
rotation and translation parts, and used nonlinear optimiza-
tion to minimize the sum of the norm of the rotation and
translation parts. The disadvantage of the nonlinear method
is that an initial solution is necessary, otherwise, it may not
converge to the global optima. In [11], Zhao utilized the
linear formulation proposed in [8] and [7] to construct the
so-called second-order cone program (SOCP) problem [12].
SOCP is a kind of convex problem where it is guaranteed to
find the global optima even without an initial solution. How-
ever, Zhao’s approach doesn’t enforce the orthogonality of
the rotation matrix, such that an orthogonalization progress
is necessary which will increase the error of the rotation
estimation.

B. Extended Hand-Eye Calibration

Now, let’s consider that �ij in Eq. (4) is unknown. In
this case, conventional hand-eye calibration approaches don’t
work any more, but since the hand’s poses are in real metric
units, the rigid transformation can still be solved. This prob-
lem has no unified name, some authors call it online hand-
eye calibration or SFM based hand-eye calibration. We prefer
the name extended hand-eye calibration, for this problem is a
more general case which includes the conventional hand-eye
calibration. Extended hand-eye calibration approaches can be
used to solve the conventional hand-eye calibration problem
directly. We will classify any approach that can be used to
solve the extended hand-eye calibration as extended hand-eye
calibration approach, even if the authors didn’t announce that
explicitly. The method proposed in this paper also belongs
to extended hand-eye calibration approaches.

The first solution to extended hand-eye calibration was
proposed by Andreff et al. [8]. A linear formulation of
the hand-eye calibration was derived using the Kronecker
product, and Andreff et al. suggested to estimate RX and
tX separately. Schmidt et al. [13] exploited two kinds of
non-linear optimization techniques using Eq. (3) and (4) and
their dual quaternion representation, respectively. Heller et
al. [14] firstly estimated RX using the method proposed by
Park et al. [6], and then estimated tX using SOCP.

It is noteworthy that camera motions estimated by SFM
are usually noisy, for there often exist wrong feature cor-
respondences, especially in environments with repetitive
structures. Such noise will increase the error in the camera
pose estimation. As a result, the noisy Aij will mislead the
extended hand-eye calibration using AX = XB. In [15] and
[16], Heller et al. and Ruland et al. simultaneously proposed
very similar branch-and-bound search methods, which can
ensure the global optimum with respect to the L1-norm.
A slightly extended approach of [15] is given in [17]. We
notice that the branch-and-bound search approach utilizes
feature correspondences rather than camera motions, thus



overcoming the disadvantage of traditional extended hand-
eye calibration, which makes it the state-of-the-art method
to our best knowledge. However, this branch-and-bound
search method is more than ten times slower than traditional
approaches.

C. Simultaneous Hand-Eye and Robot-World Calibration

Another branch of hand-eye calibration is simultaneous
hand-eye and robot-world calibration. This problem was first
proposed by Zhuang et al. [18]. The additional robot-world
calibration is to determine the transformation between the
robot base frame and world frame which is usually based
on a chess pattern. For that reason, to our best knowledge,
all approaches for simultaneous hand-eye and robot-world
calibration assume that the camera poses are in real metric
units.

Similar to conventional hand-eye calibration, approaches
for simultaneous hand-eye and robot-world calibration can
also be classified by estimating rotation and translation
separately or simultaneously. Early approaches usually es-
timated the rotation and translation separately [12], [18]–
[20]. As a part of [12], Dornaika and Horaud proposed a
nonlinear approach which estimates rotation and translation
simultaneously. Li et al. [21] utilized the Kronecker product
and dual quaternions to do so. In [22], Malti proposed
a bundle adjustment based approach which is similar to
the bundle adjustment partition of our algorithm. However,
the difference is that Malti’s approach doesn’t optimize the
position of 3D points while our approach does.

Recently, Wu et al. [23] extended hand-eye calibration to
a even more complicated case, called hand-eye, tool-flange
and robot-robot calibration, which could be used in multi-
robot cooperation.

One common fact for all three branches of hand-eye
calibration is that they need hand and eye motion correspon-
dences, but due to the asynchronicity of different sensors,
the correspondences may not hold. As a result, several
probabilistic approaches [24]–[28] are proposed to solve this
kind of problem. Due to less correlation to this work, we
won’t explain them here.

III. OVERVIEW

For robotic arms the pose of the gripper depends on the an-
gles of all arm joints, which are determined by high accuracy
encoders. As a result, the gripper pose can be calculated with
high precision (the repeat localization precision is usually
better than 0.2mm). However, the accuracy of SFM highly
depends on the performance of the feature matching. Bad
feature correspondences will result in large errors in the
camera pose estimation. Unfortunately, there is no absolutely
perfect feature matching so far. To make things worse, the
intrinsic parameters of a camera are also estimated by SFM,
and inaccurate intrinsic parameters will reduce the pose
estimation accuracy. For all these reasons, the traditional
hand-eye calibration algorithms, which are based on solving
AX = XB, are restricted by the camera pose estimation.
In our algorithm, we only utilize AX = XB to guess the

hand-eye transformation initially, but then bundle adjustment
is utilized to obtain a more accurate calibration result. In
other words, we avoid relying on the estimated SFM camera
poses. The experiments in Section VI will illustrate that
the accuracy of our hand-eye calibration is significantly
improved.

Figure 2 shows a diagram of our algorithm. At the
beginning feature extraction and matching are executed. This
is a common step in computer vision, so the details are
omitted in this paper. After matching features, the relative
poses of two views which have enough correspondences
can be determined. If the readers would like to learn the
basis of 2-view geometry, we refer to [2]. We assume the
cameras to be already intrinsically calibrated. With two or
more pairs of hand and camera motions, we can estimate
the rigid transformation between the hand and the camera by
solving AX = XB, which will be explained in Section IV.
This serves as the initial calibration value for the next steps.

Suppose that we know the transformation from hand to
camera (X) and one of the hand poses, say Bi, then we
can calculate the corresponding camera pose with respect to
robot arm base, say Ai (see Figure 1), using:

Ai = BiX
�1 (5)

As we have stated before, the hand poses are usually very
accurate, so if the hand-eye transformation is estimated pre-
cisely, so are the eye poses calculated by Eq. (5). Therefore,
instead of estimating camera pose by SFM, we utilize Eq.
(5) in triangulation and bundle adjustment.

Triangulation is a fundamental problem in 3D reconstruc-
tion. Given a 3D point’s projections onto two or more
images, triangulation aims to estimate the 3D position of
the point. Its geometrical principle can be found in [2]. In
triangulation, the camera poses are needed, so that Eq. (5)
will be utilized in our algorithm. It should be noted that since
the camera pose determined by Eq. (5) is in real metric units,
the positions of the points will also be in real metric units.

As the most important step of our algorithm we employ
bundle adjustment [29] to refine the hand-eye calibration
and the reconstruction simultaneously. Details about bundle
adjustment will be given in Section V. At the end, our
approach will output the final hand-eye calibration result,
and the reconstruction as the by-product.

Please notice an additional advantage of our approach.
If we denote a view by a vertex and two vertices are
connected by an edge if two views are matched (their relative
transform can be calculated based on matched features), we
get a view graph. SFM based reconstruction can only be
done on a connected subgraph. As a result, traditional hand-
eye calibration can also only work on connected subgraphs
independently, as they require the camera positions to be
within the same metric. However, this limitation doesn’t
appear in our approach, as our method does not estimate
the global camera pose using SFM. Moreover, the several
reconstructions estimated with subgraphs can even be com-
bined into one. This ability of our algorithm is very useful
for robot arms whose motion space is really restricted.
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Fig. 2. Block diagram of the proposed hand-eye calibration algorithm.

The C++ code of our algorithm is available on
https://github.com/STAR-Center.

IV. INITIAL HAND-EYE CALIBRATION

As we have stated in Section II, all existing extended hand-
eye calibration algorithms, which utilize Eq. (1) or (3) and
(4) to solve X , assume that �ij is unknown but constant
for all hand-eye motions, because they have estimated the
global camera poses before forming AX = XB. However, in
this work, we attempt to utilize the transformations estimated
with 2-view matches directly. Since there is no known object,
we notice that �ij can be variable for any two different
translations of 2-view matches, i.e.

�ij 6= �mn, if i 6= m or j 6= n (6)

As a result, we actually propose an extension for the extended
hand-eye calibration problem, and obviously, traditional al-
gorithms for extended hand-eye calibration are unavailable
to solve it. To solve this new problem we propose a novel al-
gorithm based on eliminating �ij . Before that, let’s introduce
a definition.

Definition 1 (Skew-symmetric matrix). Suppose that
u = [u1, u2, u3]T 2 R3, we define its corresponding skew-
symmetric matrix, denoted by û, as:

û =

2

4
0 �u3 u2

u3 0 �u1

�u2 u1 0

3

5 2 R3⇥3 (7)

Obviously, û is a 3⇥3 skew-symmetric matrix, i.e. ûT = �û.
It can be immediately verified that ûu = 0. For Eq. (4), we
multiply both sides by t̂Aij , obtaining

t̂AijRAij tX = t̂AijRXtBij + t̂Aij tX (8)

Now �ij is eliminated and traditional methods to estimate tX

with known RX , e.g. [1], [5], [6], [8], can be used to solve
the extended hand-eye calibration. In this work we propose
a SVD-based approach, which is inspired by Andreff et al.
[8].

Neudecker [30] proved that the following equation is true:

vec(XY Z) = (X ⌦ Z

T )vec(Y ) (9)

where X, Y and Z are any dimension-compatible matrices, ⌦
denotes the Kronecker product and vec is an operator which

reorders the entries of a m by n matrix, say V, to a column
vector, i.e. row-wise vectorization:

vec(V ) = [v11, v12, · · · , v1n, v21, v22, · · · , vmn]
T (10)

vec

�1 is defined as the inverse operator to vec, i.e.
vec

�1(vec(V )) = V .
According to Eq. (9), we can rewrite and concatenate Eq.

(3) and (8):

I9 �RAij ⌦RBij 09⇥3

t̂Aij ⌦ t

T
Bij

t̂Aij (I3 �RAij )

� 
vec(RX)

tX

�

=


09⇥1

03⇥1

� (11)

Suppose there are n pairs of hand-eye motions, then 12n
linear equations can be determined, such that the coefficient
matrix, say C, is 12n by 12. The solution of Eq. (11) is
in a 1-dimensional subspace, which is just the null space
of C, so that we can utilize SVD to find it. Yet, there is
another constraint that RX has to be a rotation matrix, i.e.
the determinant of RX is 1. According to this property of
RX , we can determine the unique solution.

Suppose that the solution of Eq. (11) is x, we denote M =
vec

�1(x1:9), where x1:9 are the first nine entries of x. If
without noise, M and RX satisfy

M = ↵RX (12)

where ↵ 2 R, such that

↵ = (det(M))
1
3 (13)

With ↵, the estimated hand-eye rotation and translation are

R̃X =
M

↵

(14)

t̃X =
x10:12

↵

(15)

Due to noise, R̃X is usually not orthogonal, so one more
orthogonality procedure is necessary. We are employing QR
decomposition for that.

A. Selection of Hand-Eye Motions using RANSAC

2-view matches are rough, so there exists a significant
number of outliers in the estimated transformations of 2-
views matches, and these outliers will inevitably reduce the
accuracy of the initial hand-eye calibration. RANSAC [31]
is a simple but useful algorithm to reject outliers, which is

https://github.com/STAR-Center


commonly used in computer vision. In this work, we utilize
it to improve the accuracy of the initial hand-eye calibration.

One RANSAC sample is generated by randomly selecting
a certain number of 2-view matches and solving the inital
hand-eye calibration from Section IV for them. As two pairs
of hand-eye motions could determine the unique hand-eye
transform, in our experiments we used two pairs of 2-view
matches. Then we calculate the error e for all valid 2-views
and thus determine the number of inliers for this sample. We
rely on a good estimate of the error in order to determine if a
sample is an inlier or outlier. The first step in the computation
of the error e is that we predict Aij using Eq. (3) and (4):

R̃Aij = RXRBijR
T
X (16)

t̃Aij = RXtBij + (I3 � R̃Aij )tX (17)

The rotation error eR is defined as follows:

eR = kRAij � R̃Aijk2 (18)

Although �ij is not estimated, we assume that �ij is the one
enabling t̃Aij to approach tAij as close as possible, so we
define the translation error as follows:

et = min
�ij

k�ijtAij � t̃Aijk2 (19)

This is a quadratic function about �ij and one can prove that
its minimum is:

et =
q
kt̃Aijk22 � htAij , t̃Aij i2/ktAijk22 (20)

The final error e is a combination of the rotation and
translation errors. In our experiments, we always set the
translation unit to meter, so in order to balance the rotation
and translation errors, we scale the translation error by 0.1,
i.e. the total error is

e = eR + 0.1 ⇤ et (21)

In this work, we let the threshold of the error be 0.01, the
minimal inlier ratio be 60%. It should be noted that this is
just an initial guess, it is unworthy to spend much time to
get a small accuracy improvement, so we set the maximal
iterations of RANSAC to 500.

V. BUNDLE ADJUSTMENT

Bundle adjustment almost always appears in image-based
3D reconstruction algorithms, refining camera parameters
and positions of 3D points. Specifically speaking, it aims
to minimize the overall reprojection error of each estimated
point to the image which can observe that point. In mathe-
matical expression: assume that there are m 3D points and
n views. xij denotes the projection of the i

th point in the j

th

view, and vij is equal to 1 if the i

th point can be observed by
the j

th view, otherwise 0. Moreover, assume Aj is the rigid
homogeneous transformation from the j

th view frame to the
world frame, Pj(·) is the projection of the j

th view including
distortion, and let Ti be the predicted homogeneous position
of the i

th point. The bundle adjustment model is formed as:

min
Pj ,Aj ,Ti

mX

i=1

nX

j=1

vijkxij � Pj(A
�1
j Ti)k22 (22)

In our algorithm, we utilize Eq. (5) to substitute Aj for
bundle adjustment, so we will refine the hand-eye trans-
formation and keep the hand poses constant. Besides, we
assume that the camera has been calibrated, so that we won’t
refine camera intrinsic parameters, although we actually
could. Our resulting bundle adjustment model is:

min
X,Ti

mX

i=1

nX

j=1

vijkxij � Pj(XB

�1
j Ti)k22 (23)

The hand-eye transformation consists of 3 rotation parame-
ters and 3 translation parameters, while each point consists
of 3 position parameters, i.e. there are 3m + 6 variables in
(23). Substantially similar to (22), (23) can also be solved
using the Levenberg-Marquardt (LM) approach.

The initial guess may be very inaccurate, so as to improve
that, we perform the triangulation and bundle adjustment
alternately for several times. Considering that the hand-eye
translation is in real metric units, we can set the precision
we would like to get. In this work, the iteration will termi-
nate when estimated hand-eye translation changes less than
10�6

m compared to that of last iteration or reaches the
maximum number of iterations, which is 10 in this paper.

VI. EXPERIMENTS

We verify our algorithm with various different experi-
ments. We implement our algorithm based on Theia [32],
an end-to-end C++ SFM library. We utilize SIFT [33] as the
feature descriptor and the Ceres solver [34] as bundle adjust-
ment solver. In real-data experiments, we utilize Bouguet’s
camera calibration toolbox [35] to obtain the intrinsic and
extrinsic parameters of the camera.

We compare our algorithm with three other approaches.
To be convenient, in the following experiments, we will
denote our algorithm as “Ours”. Besides, we denote the
approach proposed by Andreff et al. in [8] as “Andreff”.
Since “Andreff” needs camera motions, an incremental SFM
pipeline implemented by Theia is performed in advance.
We denote the approach proposed by Heller et al. in [14],
[15] as “Heller11” and “Heller12”, respectively, and feature
extraction and matching for both of them comes from Theia,
too.

“Ours”, “Andreff” and “Heller12” are all implemented
with C++, and we conduct them on the same 64-bit Linux
platform with an Intel Core i7-4790 3.60GHz processor.
“Heller11” is implemented with MATLAB, without using
multi threading. Therefore, the readers will notice that, in
the following experiments, the runtime of “Heller11” is much
longer than the other algorithms.

A. Synthetic-data Experiment

We first evaluate our approach with a synthetic scene and
a virtual camera. 500 points are generated randomly inside
a cuboid. The center of the cuboid locates at (5, 0, 0), and
the edge lengths along x, y and z axis are 2m, 5m and 5m,
respectively. The intrinsic parameters of the virtual camera
are listed in Table I. We will compare the performance of



TABLE I
INTRINSIC PARAMETERS OF THE VIRTUAL CAMERA FOR THE SYNTHETIC

EXPERIMENT

Parameters Value Parameters Value
Image width 3000 aspect ratio 1
Image height 2000 skew 0

Principle point (1500,1000) distortion None
Focal length 2200

TABLE II
RUNTIME COMPARISON FOR THE SYNTHETIC-DATA EXPERIMENT.

Approach Andreff Heller11 Heller121 Ours
Runtime 0.38s 1800s 90s 0.19s

different algorithms regarding two factors: projection noise
and number of hand-eye motions.

Projection Noise 15 camera positions are generated inside
a cube whose center is the coordinate origin and edge
length is 3m. With its position, the camera’s orientation is
determined by assuming that the camera looks towards the
3D point cuboid center, i.e. (5, 0, 0). Every point will be
projected to the image plane at every view, but the projection
will be neglected if it is outside the image. Moreover,
every projection will be corrupted by Gaussian noise in the
pixel domain with a standard deviation � 2 [0, 3.0] and a
step of 0.5 pixel. Finally, we randomly select a hand-eye
transformation, with a random rotation and a translation of
up to 0.2m along each axis, and the hand poses are calculated
using Bi = AiX .

Number of Hand-Eye Motions In this experiment, we
fix the � to be 0.2, and the hand-eye motion varies from 6
to 12 with a step of 1, while keeping all other parameters
same to “projection noise” experiment.

To qualify the results, we compute the errors associated
with rotation and translation as follows:

eR = kR̃X �RXk2 (24)

et =
kt̃X � tXk2

ktXk2
(25)

where R̃X is the estimated rotation, RX is the true
rotation, t̃X is the estimated translation and tX is the true
translation. For each noise level, 30 experiments were done
independently, and the final error is the mean of all 30 errors.

Using a box plot, Figure 3 illustrates the error distri-
butions of the hand-eye rotation and translation estimated
by the four algorithms. Clearly, our approach beats the
others both in rotation and translation estimation. Meanwhile,
“Heller12” performs worst. The error of rotation estimated
by “Heller11” is smaller than that estimated by “Andreff”.
However, “Andreff” performs better regarding translation
estimation. We believe that the reason is that the residual
error of the estimated rotation propagates into the translation
estimation, because “Heler11” estimates rotation first, while

1To balance the accuracy and runtime of “Heller12”, we set �min to
0.0001 in this experiment.
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Fig. 3. Error of estimated rotation and translation against � (above
two figures) or number of motions (below two figures). For each standard
deviation the boxes show the error of the following algorithms: “Ours” (left-
most, black), “Heller11” (cyan), “Andreff” (blue) and “Heller12” (rightmost,
magenta). To save space, some large outliers which are denoted by ‘+’ in
red are not shown.

the translation is calculated afterwards using the estimated
rotation.

Table II gives the average runtime of the approaches of
the “projection noise” experiment. Since “Andreff” utilizes
a linear formulation it is quite fast. It is difficult to com-
pare the speed of “Heller11”, since it is implemented in
MATLAB. However, as “Heller11” begins with the rotation
estimation proposed by Park and Martin [6], which almost
consumes the same time as “Andreff”, we are convinced that
“Heller11” should be slower than “Andreff” and “Ours”.
All in all, “Ours” runs slightly faster than “Andreff” and
the slowest algorithms are “Heller11” and “Heller12”. This
result meets our expectations, since “Ours” is similar to
a global SFM pipeline [36], which is regarded to be less
robust but faster than the incremental SFM pipeline used in
“Andreff”, while “Ours” dispenses with global camera pose
estimation. “Heller12” is a branch-and-bound search method,
which doesn’t need an initial guess, but its computation will
grow exponentially with higher expected precision.



Fig. 4. Example photo from the monocular experiment.

TABLE III
ERROR AND RUNTIME COMPARISON FOR THE MONOCULAR

EXPERIMENT.

Approach Andreff Heller11 Heller122 Ours
Rotation Error 0.00499 0.00544 0.00642 0.000409

Translation Error(m)3 0.0119 0.0310 0.00860 0.000648
Runtime4 18.35s nearly 6h 1038s 15.55s

B. Monocular Experiment

It is difficult to obtain the accurate transformation be-
tween a camera and another device, so there is no ground
truth available to validate algorithms for extrinsic calibration
relative to a camera. Indeed, this problem occurs in hand-
eye calibration. In this experiment we assume that we are
calibrating “two” cameras using the hand-eye calibration
approach. But actually the two cameras are the same one:
we set up a special scene including a chess pattern, like Fig.
4, and afterwards we move the camera and take a series
of photos, ensuring that the entire chess pattern is in the
view in every frame. Afterwards, we calibrate the camera
using a chess pattern calibration approach to determine the
camera poses, and regard this camera as the “hand”. For
the “eye” poses we assume that we don’t know that there
is a chess pattern and utilize hand-eye calibration approach
to determine the transformation between “hand” and “eye”.
Obviously, the ground truth is the identity matrix for the
rotation and a zero vector as translation. In this way, we
overcome the problem that no ground truth is available.

In practice, we use the rear camera of a Samsung Galaxy
S6 smart phone, with its AutoFocus disabled to satisfy our
assumption that the camera is intrinsically calibrated, and a
resolution of 3264 ⇥ 1836 pixels. Each square of the chess
pattern is 28⇥28mm. We took 18 images in total at various
directions and distances.

Table III illustrates the estimation errors and runtime of the
four approaches. Regarding the estimation error, the accuracy
of our approach is more than one order of magnitude better
than the other algorithms, both in rotation and translation.
Also, our approach is the fastest of all methods.

2�min = 0.001 in this experiment.
3Since the ground truth is zero, the translation error is determined by the

norm of estimated translation rather than Eq. (25).
4 The runtime of the monocular experiment is much longer than synthetic-

data experiment, this results from extra feature extraction and matching
which are very time-consuming.
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Fig. 5. Gripper-camera experiment. (a) set-up of gripper-camera calibration
experiment. (b) reconstruction result. (c) the norm of final translation after
biasing the translation estimated by initial hand-eye calibration.

C. Gripper-Camera Experiment

A Schunk LWA 4P lightweight robot arm with a two-finger
gripper is utilized in this experiment, and we let the gripper
grip an Asus Xtion Pro Live rigidly, as shown in Figure
5(a). Even though the Xtion Pro Live has a depth sensor,
only the RGB camera is used here and the resolution is set
to 1280⇥ 1024. We use the ROS MoveIt! software package
along with the Schunk canopen driver to control the arm and
get the hand poses with respect to the robot base.

Figure 5(a) also shows two independent scenes deliber-
ately made by us, aiming to test the feasibility to merge
the reconstructions for them using our approach. 24 motions
are set manually, half of whom face scene 1 and the others
face scene 2. 24 pairs of gripper poses and the correspond-
ing images are obtained during this procedure. No images
depicting both scene 1 and scene 2 were taken and thus
SFM algorithms cannot create a single model containing both
scenes.

Finally, our approach is performed, and the reconstruction
result is given in Figure 5(b). It should be noted that the re-
constructions of scene 1 and scene 2 are merged because the
hand-eye calibration is integrated into the bundle adjustment.

Since no true gripper-camera transformation is available,
we measure the translation from the gripper to the cam-
era by hand with the known mechanical structure of the
gripper and Xtion Pro Live, which is approximated to
[�0.020, 0.000,�0.107]T . This corresponds to the approx-
imate 10cm distance between the camera and the center of
the other side of the gripper and the fact that the RGB camera
was approximately 2cm off center. The estimated translation
by our approach is [�0.0211,�0.00117,�0.119]T , very
close to the manual measurement.

To evaluate the robustness of the bundle adjustment, we
corrupt the translation result, which is estimated by the
initial hand-eye calibration, by adding 0.3m to the X, Y or
Z component, respectively. Figure 5(c) illustrates the norm



(length) of the estimated translation after each iteration. One
can see that, although the initial guess is corrupted heavily,
the calibration results after bundle adjustment still converge,
and the norm difference to no bias is less than 10�5

m. This
experiment indicates that our algorithm is very robust. Of
course, more iterations are needed if the initial guess is
corrupted.

VII. CONCLUSION

In this paper, we present a novel pipeline for hand-eye
calibration. We first propose a hand-eye calibration algorithm
based on 2-view matches as the initial guess. Afterwards
bundle adjustment for simultaneous hand-eye calibration and
reconstruction is performed to obtain a more accurate result.
It should be noted that our algorithm is an extended hand-eye
calibration solver, i.e. the calibration can be performed solely
from a natural scene without any known object. Moreover,
our approach is not limited to a set of connected views,
and can even merge two or more reconstructions. Most
importantly, synthetic and real data experiments indicate
that our method is superior to existing algorithms in both
accuracy and speed of the hand-eye calibration.
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